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ON ONE THEOREM OF S. WARSCHAWSKI

R. ABDULAEV

Abstract. A theorem of S. Warschawski on the derivative of a holomorphic
function mapping conformally the circle onto a simply-connected domain
bounded by the piecewise-Lyapunov Jordan curve is extended to domains
with a non-Jordan boundary having interior cusps of a certain type.
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1. Let a simply-connected domain B be bounded by a closed piecewise-
smooth curve γ : z = z(s), 0 ≤ s ≤ S, where s is a natural parameter.
Let sk, k = 1, n, be the points of discontinuity of z′(s). The point zk = z(sk),
k = 1, n, of discontinuity of the function z′(s) will be called the corner of opening
νkπ = π − arg(z′(sk + 0) : z′(sk − 0)), where 0 ≤ νk ≤ 2 and −π < arg · ≤ π.

In [1] S. Warschawski established a result describing the behavior of the
derivative of the holomorphic function ω(z) which maps the domain B onto the
unit circle D in the neighborhood of corners. Namely, it was proved that if the
Jordan curve γ is piecewise-Lyapunov and 0 < νk ≤ 2, k = 1, n, then

ω′(z) = ω0(z)
n∏

k=1

(z − zk)
1

νk
−1

, (1)

where ω0(z) is a function holomorphic in B, continuous and non-vanishing in
B. An analogous representation is valid for (ω−1)′ as well. Various aspects of
this range of problems were intensively investigated in the subsequent period
too. A vast list of works on this topic can be found in the monograph [2]. In
[3], using the results of the theory of a discontinuous Riemann problem, the
authors showed the validity of representation [1] for a piecewise-smooth Jordan
curve γ and 0 < νk ≤ 2, k = 1, n. In that case the function ω0(z) belongs to
any Smirnov class Ep, p > 0.

In this paper a sufficiently simple way is proposed for proving one theorem of
Warschawski for a simply-connected domain with a non-Jordan boundary. This
proof covers the cases of both a piecewise-Lyapunov and a piecewise-smooth
curve γ (0 < νk ≤ 1, k = 1, n). In addition to the classical statement, it is
proved that for a piecewise-Lyapunov boundary the function ω0(z) satisfies the
Hölder condition (condition H(µ))

|ω0(z1)− ω0(z2)| < K|z1 − z2|µ, 0 < µ ≤ 1, (2)
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not only on smooth parts of the curve γ and in the neighborhood of corners
with νk < 2, but also in the neighborhood of cusps (νk = 2) of a certain type.
(In connection with this question see also [3].)

2. Recall that the smoothness of a curve is equivalent to the continuity of an
angle formed by the tangent to the curve with a fixed direction. If however this
angle as a function of the arc length satisfies the Hölder condition, then the curve
is called a Lyapunov curve. Piecewise smoothness imposes on the above-said
angle a condition of the existence of one-sided limits at points of discontinuity,
while the property of being piecewise-Lyapunov curve implies that the Hölder
condition is satisfied on each interval between points of discontinuity, including
end-points.

Lemma 1. If z(t) ∈ C1,µ[a, b], 0 < µ ≤ 1 and, z′(a) 6= 0, z(t)− z(a) 6= 0 on
[a, b], then

arg[z(t)− z(a)] ∈ C0,µ[a, b].

By the condition we have

x′(t) = Re z′(t) = x′(a) + f(t)(t− a)µ,

y′(t) = Im z′(t) = y′(a) + h(t)(t− a)µ,
(3)

where f(t) and h(t) are bounded on [a, b]. Applying mean value theorem, we
obtain

x(t)− x(a) =

b∫

a

x′(τ)dτ = x′(a)(ξ − a) + x′(t)(t− a)

= (x′(a)− x′(t))(ξ − a) + x′(t)(t− a),

where a ≤ ξ ≤ t. Hence

x(t)− x(a) =
x′(a)− x′(t)

(t− a)µ
· ξ − a

t− a
(t− a)µ+1 + x′(t)(t− a)

= x′(a)(t− a) +
x′(t)− x′(a)

(t− a)µ
(t− a)µ+1

+
x′(a)− x′(t)

(t− a)µ
· ξ − a

t− a
(t− a)µ+1

= x′(a)(t− a) + ϕ(t)(t− a)µ+1, (4)

where

ϕ(t) = f(t)
(
1− ξ − a

t− a

)
(5)

is the function bounded on [a, b].
By a similar reasoning we get

y(t)− y(a) = y′(a)(t− a) + ψ(t)(t− a)µ+1, (6)

where

ψ(t) = h(t)
(
1− η − a

t− a

)
, a ≤ η ≤ t, (7)

is also bounded on [a, b].
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Using (3)–(7) we obtain

d

dt
arg[z(t)− z(a)] =

d

dt
arc tg

y(t)− y(a)

x(t)− x(a)

=

(
x′(a)(t− a) + ϕ(t)(t− a)µ+1

)(
y′(a) + h(t)(t− a)µ

)
(
x′(a)(t− a) + ϕ(t)(t− a)µ+1

)2
+

(
y′(a)(t− a) + ψ(t)(t− a)µ+1

)2

−
(
y′(a)(t− a) + ψ(t)(t− a)µ+1

)(
x′(a) + f(t)(t− a)µ

)
(
x′(a)(t− a) + ϕ(t)(t− a)µ+1

)2
+

(
y′(a)(t− a) + ψ(t)(t− a)µ+1

)2

=
(t− a)µ+1

(
x′(a)h(t) + y′(a)ϕ(t) + h(t)ϕ(t)(t− a)µ

)

(t− a)2
[
(x′(a) + ϕ(t)(t− a)µ)2 + (y′(a) + ψ(t)(t− a)µ)2

]

− (t− a)µ+1
[
(y′(a)f(t) + x′(a)ψ(t) + f(t)ψ(t)(t− a)µ

]

(t− a)2
[
(x′(a) + ϕ(t)(t− a)µ)2 + (y′(a) + ψ(t)(t− a)µ)2

] =
b(t)

(t− a)1−µ
,

where the function b(t) is bounded on [a, b] by virtue of the condition |z′(a)| 6= 0.
The latter equality implies

∣∣ arg(z(t1)− z(a))− arg(z(t2)− z(a))
∣∣ =

∣∣∣∣
t1∫

t2

d

dt
(arg(z(t)− z(a))dt

∣∣∣∣

≤ M1

∣∣(t1 − a)µ − (t2 − a)µ
∣∣ ≤ M1|t1 − t2|µ.

Denote by Pβ (β > 0) the mapping w = zβ, and by Eα(q) the angle {z; −πα <
arg(z − q) < πα, α < 1, Im q = 0}. For β > 1 the mapping Pβ is univalent in
Eβ−1(0).

Lemma 2. Let γ0 : z = z(s), s ≤ s ≤ =
s be a piecewise-smooth arc with the

corner z(s0) = 0, and let the positive semi-axis be the bisectrix of the interior
angle of the opening πν, 0 < ν ≤ 2, at the point z(s0). Then the curve P 1

ν
◦ γ

is smooth.

If we write the equation of the curve Γ = P 1
ν
◦ γ in the form w = w(s) =

[z(s)]
1
ν , then dw(s) = 1

ν
[z(s)]

1
ν
−1 · z′(s)ds, dσ(s) = |dw(s)| = 1

ν
|z(s)| 1ν−1 · ds and

dw(s)

dσ(s)
= exp

[
i arg[z(s)]

1
ν
−1 · z′(s)].

Furthermore,

lim
s→s0+0

arg z(s) = π
ν

2
, lim

s→s0+0
arg z′(s) = π

ν

2
− π,

lim
s→s0−0

arg z(s) = −π
ν

2
, lim

s→s0−0
arg z′(s) = −π

ν

2
.
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Hence we obtain

lim
s→s0−0

arg[z(s)]
1
ν
−1 · z′(s) =

(1

ν
− 1

)
lim

s→s0−0
arg z(s) + lim

s→s0−0
arg z′(s)

=
(1

ν
− 1

)
π

ν

2
+ π

ν

2
− π = −π

2
,

lim
s→s0+0

arg[z(s)]
1
ν
−1 · z′(s) =

(1

ν
− 1

)
lim

s→s0+0
arg z(s) + lim

s→s0+0
arg z′(s)

=
(1

ν
− 1

)(
− π

ν

2

)
− π

ν

2
= −π

2
.

Corollary. If in the conditions of Lemma 2 γ is piecewise-Lyapunov curve,
then Γ is Lyapunov curve.

On writing the equation of the curve γ for the parameter σ as γ : z = [w(σ)]ν ,

σ ≤ σ ≤ =
σ, we obtain ds = |dz(σ)| = ν|w(σ)|ν−1dσ. Let the points a1 and a2 lie

on the curve γ so that both values s1 and s2 of the arc variable, which correspond

to the points a1 and a2, occur either in the interval [s, s0] or in [s0,
=
s], and let

Aj = P 1
ν
(aj), j = 1, 2. Then

s(a1, a2) =

s2∫

s1

ds = ν

σ(A2)∫

σ(A1)

|w(σ)|ν−1dσ ≤ M2

( σ(A2)∫

σ(A1)

dσ

)µ

= M2

[
σ(A1, A2)

]µ
, 0 < µ ≤ 1. (8)

By the condition and Lemma 1 we have
∣∣∣ arg

dw

dσ
(σ(s1))− arg

dw

dσ
(σ(s2))

∣∣∣ ≤ M3|s1 − s2|µ′ , 0 < µ′ ≤ 1,

for s ≤ s1, s2 ≤ s0 or s2 ≤ s1, s2 ≤ =
s. From this, by virtue of (8), we obtain

∣∣∣ arg
dw

dσ
(σ1)− arg

dw

dσ
(σ2))

∣∣∣ ≤ M4|σ1 − σ2|µ′′ , 0 < µ′′ ≤ 1, (9)

where σ1 = σ(s1), σ2 = σ(s2). But by Lemma 2 the curve Γ is smooth and
therefore the fulfilment of condition (9) on the arcs composing Γ implies that
this condition is fulfilled on the entire curve ([4], Ch. 1, §5).

Lemma 3. For 0 < β < 1, 0 < α < 1 a > 0 Pβ(Eα(a)) ⊂ Eα(aβ).

After writing the equation of one of the sides of the angle Eα(a) as z =
a + t exp(iαπ), 0 ≤ t < ∞, we obtain

arg
[
(a + t exp(iαπ))β

]′
= arg(a + t exp(iαπ))β−1 + απ

= (β − 1) arg(a + t exp(iαπ)) + απ ≤ απ.

Next,

(
arg(a + t exp(iαπ))

)′
=

(a + t cos απ) sin απ − t cos απ sin απ

(α + t cos απ)2 + t2 sin2 απ

=
a sin απ

(a + t cos απ)2 + t2 sin2 απ
> 0,
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and therefore
[
(arg(a + t exp(iαπ))β)′

]′
< 0.

Moreover,

[
(β − 1) arg(a + t exp(iαπ) + απ

]∣∣
t=0

= απ,

lim
t→∞

[
(β − 1) arg(a + t exp(iαπ) + απ

]
= βαπ.

Thus arg
[
(a+t exp(iαπ))β

]′
is a decreasing function on [0,∞) from the value

απ to βαπ. Repeating the above arguments for another side of the angle, we
ascertain that the lemma is valid.

3. As mentioned above, the boundary γ of the simply-connected domain B
is not assumed to be a Jordan curve. We will describe those properties of the
boundary curve which are needed for further constructions.

Denote by 〈γ〉 the range of values of the mapping γ, by B∞(γ) the component
of the set C\〈γ〉 containing the point at infinity, and by W (γ) the set of points
of all other components of the set C\〈γ〉. The symbol γ[t1, t2] will denote the arc
of the parametrized curve corresponding to the variation of t from the value t1
to t2, including end-points, while γ(t1, t2) will denote the same arc but without
the end-points. If the arcs γ1 = γ[a, b] and γ2 = γ[c, d] are such that γ(b) = γ(c),
then

(γ1 · γ2)(t) =

{
γ(t), a ≤ t ≤ b,

γ(t + c− b), b ≤ t ≤ d + b− c.

Let some point of the curve γ be the impression of two different prime ends
a1 and a2, and let {dk}∞k=1, dk ⊂ B, k = 1, 2, . . . , and

{
d′j

}∞
j=1

, d′j ⊂ B, j =

1, 2, . . . , be the sequences of domains which determine these prime ends. Denote
D+(z0, ρ) = {z ∈ D, |z−z0| < ρ} and note that for the conformal mapping f of
the circle D onto B we have f(D+(eiθ1 , ρ)) ∩ f(D+(eiθ2 , ρ)) = ∅ for sufficiently
small ρ and for different θ1 and θ2. If now as θ1 and θ2 we take the values
corresponding to the prime ends a1 and a2 and take into account the fact that
for fixed ρ we have f(D+(eiθ1 , ρ)) ⊃ dk and f(D+(eiθ2 , ρ)) ⊃ d′j for k > N and
j > N , then we find that dk ∩ d′j = ∅ holds for sufficiently large values of the
indices k and j. From this it immediately follows that the curve γ cannot have
points of self-intersection and if γ(s′) = γ(s′′), (s′ 6= s′′) and γ(s) is differentiable
at s′ and s′′, then γ′(s′) = −γ′(s′′).

Lemma 4. Let γ[s′s′′] be a closed Jordan arc of the curve γ, 0 ≤ s′ < s′′ < S,
and for some s1 ∈ (s′, s′′) there exist a value s2 such that γ(s1) = γ(s2). Then
s2 ∈ (s′, s′′).

Assume that the opposite assumption is true. Let, for definiteness, s2 > s′′.
Denote γ̃ = γ[s′′, s2] · γ[s2, S] · γ[0, s′]. Since γ has no points of self-intersection,
then either γ[s′, s′′] separates W (γ̃) from the point at infinity or γ̃ separates
W (γ[s′, s′′]) from the said point. Let us consider the first case. Then B ⊂
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W (γ[s′, s′′]) and for any point z0 ∈ B we have

κ
(
z0, γ[s′, s′′]

)
=

1

2π

∫

γ[s′,s′′]

d Arg(t− z0) = 1.

Hence

κ(z0, γ̃) =
1

2π

∫

eγ

d Arg(t− z0) = 0,

i.e., B 6⊂ W (γ̃) and therefore B ⊂ W∞(γ̃), from which we obtain B ⊂
W (γ[s′, s′′]) ∩ B∞(γ̃). Let us represent γ as γ = γ[0, s′] · γ[s′, s1] · γ[s1, s

′′] ·
γ[s′′, s2] · γ[s2, S] and consider two closed curves γ1 = γ[s′, s1] · γ[s2, S] · γ[0, s′]
and γ2 = γ[s1, s

′′] · γ[s′′, s2]. From the equality

κ(z0, γ) = κ(z0, γ1) + κ(z0, γ2) = 1

we conclude that one of the values κ(z0, γj), j = 1, 2, is equal to zero, while the
second to unity. Let κ(z0, γ2) = 0. This means that W (γ2)∩B = ∅. But since
W (γ̃) ∩ B = ∅, it follows that γ[s̃ ′′, s̃2], where [s̃ ′′, s̃2] ⊂ (s′′, s2) is separated
from B, which contradicts the initial assumption that each point of the curve
γ is a boundary point.

Arguments for the case with γ̃ separating W (γ[s′, s′′]) from the point at in-
finity do not differ from those used above.

Two values s′ and s′′ are called twin if in any neighborhoods V (s′) and V (s′′)
there are different values s1 and s2 such that γ(s1) = γ(s2). Let us show that if
s′ 6= s′′, then s′ and s′′ are twin if and only if γ(s′) = γ(s′′).

Indeed, if γ(s′) = γ(s′′), then the values s′ and s′′ themselves can be taken
as s1 and s2. Assume now that γ(s′) 6= γ(s′′). Then since γ(s) is continuous,
there are neighborhoods V (s′) and V (s′′) such that |γ(s1)− γ(s2)| ≥ d > 0 for
any s1 ∈ V (s′) and s2 ∈ V (s′′). An example of the self-twin value is the value
s0 characterized by the fact that the arcs γ[s0 − δ, s0] and γ[s0, s0 + δ] coincide
up to orientation.

Denote by M(γ) the set of all segments I = [s′, s′′] (s′ ≤ s′′) whose end-points
are twin values. The set M(γ) is partially ordered with respect to the inclusion.
Let r = {Iα}, α ∈ A, be a maximal chain (a maximal linearly ordered subset
of the set M(γ))) [5]. As above, the continuity of γ(s) readily implies that
I =

⋂
α∈A

Iα ∈ r and Ir =
⋃

α∈A
Iα ∈ r, i.e., any maximal chain contains both the

first and the last element. We will show that I = [s ′r, s
′′
r ] is the last element of

a maximal chain if and only if γ(s ′) = γ(s ′′) ∈ ∂B∞(γ). Let

s− = sup s, s ≤ s ′r, γ(s) ∈ ∂B∞(γ),

s+ = inf s, s ≥ s ′′r , γ(s) ∈ ∂B∞(γ).

Let us show that γ(s−) ∈ ∂B∞(γ) and γ(s+) ∈ ∂B∞(γ). Indeed, let γ(sk) ∈
∂B∞(γ), k = 1, 2, . . . , lim

k→∞
sk = s− and z

(k)
m ∈ B∞(γ), lim

m→∞
z

(k)
m = γ(sk),

k = 1, 2, . . . . Then it is clear that lim
m→∞

z
(m)
m = γ(s−), i.e., γ(s−) ∈ ∂B∞(γ).
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Analogously, γ(s+) ∈ ∂B∞(γ). From the definition of s− and s+ it follows that
γ(s) 6∈ ∂B∞(γ) when s ∈ (s−, s+) and therefore the assumption γ(s−) 6= γ(s+)
would imply the existence of s0, s− < s0 < s+ such that γ(s0) ∈ ∂B∞(γ). Thus
γ(s−) = γ(s+) ∈ ∂B∞(γ), but [s−, s+] ⊇ Ir and therefore [s−, s+] = Ir.

Conversely, let [s′, s′′] be some element of the maximal chain and γ(s′) =
γ(s′′) ∈ ∂B∞(γ). Assuming that the last element of the chain is another element
[s̃ ′, s̃ ′′] ⊃ [s′, s′′], by virtue of what has been proved above we would have
s̃ − ≤ s′ and s̃ + ≥ s′′, where s̃ − and s̃ + are defined for s̃ ′ and s̃ ′′. But then
γ(s′) = γ(s′′) 6∈ ∂B∞(γ). The statement is proved.

Let I r = [s ′r, s
′′
r ] be the first element of a maximal chain. There are two

possible cases:
I. s ′r < s′′r ;
II. s ′r = s ′′r , i.e., [s ′r, s

′′
r ] degenerates into a point.

From Lemma 4 and the definition of Ir it follows that in case I the curve
γ[s ′r, s

′′
r ] is a Jordan curve.

Denote by Br the domain bounded by the curve γ[s ′r, s
′′
r ] and not containing

the point at infinity. Lemma 4 implies that two segments belonging to M(γ)
either have no interior points or one of them is wholly contained within the other.
Therefore the number of maximal chains is at most countable and Br1∩Br2 = ∅.
We will prove that the number of maximal chains of type I is finite, which is
equivalent to proving that the number of domains Br is finite. Choose a point
ar on each curve γ[s ′r, s

′′
r ]. If the set of chosen points is infinite, then it should

have at least one limit point which is a boundary point by virtue of the fact
that the set of boundary points is closed. Denote it by a0 = γ(s0). From
the set {ar} choose a sequence {ak}∞k=1 tending to a0 and assume that γk are
those Jordan curves from the set {γ[s ′r, s

′′
r ]} on which these points lie. Since

lim
k→∞

diam〈γk〉 = 0, any neighborhood of a0 will contain an infinite number of

γk. Since the curve γ is piecewise-smooth, it can be assumed without loss of
generality that γk are smooth and therefore by the property γ′(s ′k) = −γ′(s ′′k)
we have | arg γ′(s ′k) − arg γ′(s ′′k)| = π, k = 1, 2, . . . . But for sufficiently small
δ > 0 we have either | arg γ′(s)− arg γ′(s0)| < ε when |s− s0| < δ when γ′(s) is
continuous at the point s0 or | arg γ′(s)−arg γ′(s0−0)| < ε when s0−δ ≤ s ≤ s0

and | arg γ′(s) − arg γ′(s0 − 0) − πν0| < ε when s0 ≤ s < s0 + δ at a corner of
opening πν0. In both cases the interval of length π cannot be covered by the
above-said sets. Hence the set of chains of type I is finite.

Let us consider case II. Again, neglecting the finite number of points of discon-
tinuity of γ′(s), it can be assumed that γ(s) has a derivative at the ends of each
interval I = [s′α, s′′α] contained in a chain r of type II and in that case the equal-
ity γ′(s′α) = −γ′(s′′α) is fulfilled again. Therefore lim

s→s0−0
γ′(s) = − lim

s→s0+0
γ′(s),

where s0 =
⋂

α∈A
Iα, i.e., the opening of the angle at the point γ(s0) is equal to

2π. Since, by assumption that γ has a finite number of corners, the number of
chains of type II is also finite.

4. Let us fix some maximal chain r′ and consider I = ∪Iα, where Iα ∈
M(γ)\r′. Since any union of the form ∪Iα, where Iα are contained in the same
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chain, is an element of this chain (i.e., is a segment) and the number of maximal
chains is finite, we conclude that the set I is a finite union of segments. Let

Ĩ =
m⋃

k=1

[s′k, s
′′
k], where s ′

r′
≤ s′1 < s′′1 < s′2 < s′′2 < · · · < s′m < s′′m ≤ s ′′

r′
. Choose

in Br′ a point z
r′ and connect it with the point γ(s

r′ ) ∈ γ[s ′
r′
, s ′′

r′
] by means of

the simple arc lr′ passing through Br′ . Let s′j < s
r′ , j = 1, k, s′′j < s

r′ , j = 1, k,
and s′k+1 > s

r′ . Consider the curve

Cr′ = Lr′ · γ[s ′
r′
, s′1] · γ[s′′1, s

′
2] · · · · γ[s′′k, sr′ ] · lr′ , (10)

where Lr′ is a simple curve passing through B∞(γ) and connecting the point
at infinity with γ(s ′

r′
). The curve Cr′ is simple by construction. Fix in C\〈Cr′〉

a one-valued branch of the function P (r′) : w =
√

z − z
r′ . The function P (r′)

conformally maps B onto some domain B(r′) whose boundary contains simple
arcs P (r′)◦γ[s ′

r′
, s′1], P (r′)◦γ[s′′1, s

′
2], . . . , P (r′)◦γ[s′′m, s ′′

r′
]. Since P (r′) is analyt-

ically continuable across the both sides of the cut Cr′ , the images of the corners
of the curve γ are the corners of the boundary of the domain B(r′) of the same
openings, while new corners do not appear. Since all twin values corresponding
to the end-points of segments, contained in the chain r′, cease being twin, the
number of maximal chains in M(Pr′ ◦ γ) is less by one than in M(γ), while the
points P (r′)(γ(s′k)) and P (r′)(γ(s′′k)), k = 1,m, turn out to lie on ∂B∞(Pr′ ◦ γ)
and thus become the last elements of the respective chains.

If now the procedure described above is applied to B(r′), then, without vio-
lating the piecewise-smoothness of the boundary, we again decrease the number
of maximal chains by one.

Continuing this process, after a finite number of steps we come to the domain
B0 bounded by the piecewise-smooth curve γ0 with the same number of corners
and the same angle openings as those of the initial curve γ. But if the set M(γ)
contains maximal chains of type II, the new curve γ0 will keep them and it will
not be a Jordan curve.

Lemma 5. Let z∗ be an accessible from B∞(γ∗) corner of opening ν∗π, ν∗ < 1,
on ∂B∗. Then there exists a holomorphic and univalent function w = Φ∗(z) in

B∗ such that the mapping ζ = (w − Φ∗(z∗))
1

ν∗ is univalent in Φ∗(B∗).

We will construct the function Φ∗ with more specific properties. Namely,
Φ∗(γ∗) = 0 and the direction of the bisectrix of the angle E∗ with vertex at the
point Φ∗(z∗) will coincide with the direction of the positive real semi-axis.

Choose a point a ∈ D(z∗, δ) ∩ CB, where D(z∗, δ) = {z; |z − z∗| < δ}, and
connect it by means of the curve l∗, having no common points with B∗, with
the point at infinity. This can be done since z∗ is accessible from B∞(γ∗). Cut
the plane along l∗ and map the obtained domain conformally onto the plane
cut along the negative real semi-axis. Normalize the mapping w = F (z) by the
condition F (z∗) = u0, arg F ′(z∗) = η, where u0 > 0 and η is chosen so that the
direction of the bisectrix of the angle E∗ with vertex at z∗ be mapped on the
direction of the positive real semi-axis.
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Take ε > 0 such that ν∗
2

+ ε < 1
2

and choose δ > 0 so that w(s) = F (z(s)) ∈
E ν∗

2
+ε(u0) for s ∈ (s∗−δ, s∗+δ), where z∗ = γ∗(s∗). Next, choose q and 0 < q <

u0 so that (D(q, ρ)\E ν∗
2

+ε(u0)) ∩ F (B∗) = ∅. Denote by w1 some point of the

intersection of the circumference C(q, ρ) = {w : |w−q| = ρ} with the boundary
E ν∗

2
+ε(u0) and let πβ = | arg w1|. It is obvious that 0 < β < 1. Consider the

translation Tq : ζ = w−q. For the mapping Pβ ◦Tq the circle D′(q, ρ), cut along
the radius directed towards the negative real semi-axis, is mapped into Eβ(0),
while the angle E ν∗

2
+ε(u0) is mapped by Lemma 3 onto the domain contained in

E ν∗
2

+ε((u0−q)β). Thus the domain Eβ(0)\E ν∗
2

+ε((u0−q)β) contains no points of

the domain Pβ(Tq(F (B∗))). Make another translation T̃(u0−q)β : ζ̃ = ζ−(u0−q)β.

Then T̃(u0−q)β

(
Pβ(Tq(F (B∗)))

) ⊂ E ν∗
2

+ε(0). But E ν∗
2

+ε(0) is a subdomain of the

domain where the function P 1
ν∗

is univalent. Each of the mappings T̃(u0−q)β ,

Pβ, Tq and F is univalent on the closure of those domains on which they are

defined and therefore the mapping Φ∗ = T̃(u0−q)β ◦ Pβ ◦ Tq ◦ F satisfies required
conditions.

Note that the statement of the lemma also holds for ν∗ ≥ 1 since in the case
ν∗ = 1 the point z∗ is not a corner, while for ν∗ > 1 we can take as Φ∗ the
identical mapping. However, for the symmetrical notation of the expressions
arising below we will use the common symbols in all cases. In this context, for
ν∗ > 1 we will take as Φ∗(z) the entire linear function which maps a corner on
the origin and the direction of the interior angle bisectrix on the direction of
the positive real semi-axis. Our next task is to map the domain B0 onto the
domain bounded by a Jordan curve without corners.

Let z1 = γ0(s∗) be the first element of the maximal chain r1 ∈ M(γ0) of
type II. The natural parameter on the curve γ0 is again denoted by s and it is
assumed that s′j and s′′j are the same notations for r1 as in the case of a chain
of type I. An auxiliary curve Cr1 has the same form as (10) but with the only
difference that the curve lr1 is absent and the last cofactor in the expression for
Cr1 is γ0[s

′′
k, s∗], where s′′k < s∗, and s′k+1 > s∗. Let us make a mapping P 1

2
◦Φ1,

where Φ1 is the holomorphic function from Lemma 5 (the entire linear function
in the considered case). By Lemma 2 the point P 1

2
◦ Φ1(z1) is not a corner of

the curve γ1 = P 1
2
◦ Φ1 ◦ γ0. Moreover, like in the case of a chain of type I, the

number of maximal chains in M(γ1) is less by one than the number of chains
in M(γ0). All corners of the curve γ1, except the point P 1

2
◦ Φ1(z1), have the

same opening as their preimages.
Continue this process until after performing a finite number of steps the

obtained curve γn0 becomes a Jordan curve. Number the remaining corners in
an arbitrary manner starting from n0 + 1. The following notation will be used
below: Φj (j ≥ 2) will denote the function from Lemma 5 for the domain

(
P 1

νj−1

◦ Φj−1 ◦ · · · ◦ P 1
ν1

◦ Φ1

)
(B0)

and the point (P 1
νj−1

◦ Φj−1 ◦ · · · ◦ P 1
ν1

◦ Φ1

)
(zj).
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Recall that ν1 = ν2 = · · · = νn0 = 2 and z1, z2, . . . , zn0 are the points corre-
sponding to the first elements of type II in M(γ0).

Denote ω̃ = P 1
νk

◦Φn ◦ · · · ◦P 1
ν1

◦Φ1. From Lemma 2 and the above construc-

tions it follows that the curve γn = ω̃ ◦ γ0 is a Jordan smooth curve.
5. Fix k, 1 ≤ k ≤ n, and write ω̃ in the form

ω̃ = Xk ◦ P 1
νk

◦ X̃k,

where

X̃k = Φk ◦ P 1
νk

◦ · · · ◦ P 1
ν1

◦ Φ1,

Xk = Φ 1
νn
◦ Φn ◦ P 1

νn−1

◦ · · · ◦ Φk+1.

Since the univalent function B0 in X̃k is holomorphic at the point zk and

X̃k(zk) = 0, for z sufficiently close to zk we have

X̃k(z) =
∞∑

m=1

ãm(z − zk)
m, ã1 6= 0.

Hence we obtain
X̃(z) = (z − zk)Rk(z),

where Rk(z) 6= 0 for |z − zk| < δk. Therefore

d

dz

(
P 1

νk

(X̃k(z))
)

=
1

νk

(z − zk)
1

νk
−1

(Rk(z))
1

νk
−1[

Rk(z) + (z − zk)R
′
k(z)

]

= (z − zk)
1

νk
−1

gk(z),

where gk(z) = 1
νk

(Rk(z))
1

νk
−1

[Rk(z) + (z − zk)R
′
k(z)] is a non-vanishing holo-

morphic function in D(zk, δk).

Since Xk(w) is holomorphic in the neighborhood w = 0, for w = P 1
νk

(X̃(z)),

where z ∈ D+(zk, δk), we have

dω̃(z)

dz
=

dXk(w)

dw
· dw

dz
=

dXk

(
P 1

νk

(X̃(z))
)

dw
· d

dz

(
P 1

νk

(X̃k(z))
)

=
dXk

(
P 1

νk

(X̃(z))
)

dw
· (z − zk)

1
νk
−1 · gk(z).

Denoting

dXk

(
P 1

νk

(X̃(z))
)

dw
· gk(z) = ω̃k(z),

we obtain the local representation

ω̃ ′(z) = (z − zk)
1

νk
−1 · ω̃k(z), (11)

where ω̃k(z) is holomorphic in D +(zk, δk)\{zk}, continuous in D(zk, δk) because

P 1
νk

(X̃k(z)) is continuous and non-vanishing because Xk(w) is univalent in the

neighborhood of zero.
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Consider the function

ω̃0(z) = ω̃ ′(z)
n∏

k=1

(z − zk)
1− 1

νk . (12)

By virtue of (11) the function ω̃0(z) is holomorphic in B0\
n⋃

k=1

{zk}, continuous

in B0 and non-vanishing. From (12) we obtain the representation

ω̃ ′ = ω̃0 (z)
n∏

k=1

(z − zk)
1

νk
−1

.

To obtain a similar representation of the function Ω̃ ′(ζ) = (ω̃ −1(ζ))′, where

ζ ∈ Bn = ω̃(B0), we write Ω̃ in the form

Ω̃ = X̃ −1
k ◦ Pνk

◦X−1
k ,

where

X−1
k = Φ−1

k+1 ◦ Pνk+1
◦ Φ−1

k+2 ◦ · · · ◦ Pνn ,

X̃ −1
k = Φ−1

1 ◦ Pν1 ◦ Φ−1
2 ◦ · · · ◦ Φ−1

k

and investigate the behavior of its derivative in the neighborhood of the point

ζk = ω̃(zk). Repeating the previous arguments for the function Ω̃, we obtain
the representation

Ω̃ ′(ζ) = Ω̃0(ζ)
n∏

k=1

(ζ − ζk)
νk−1, (13)

where the function Ω̃0(z) is holomorphic in Bn\
n⋃

k=1

{ζk}, continuous and non-

vanishing in Bn.
So far we have been investigating the behavior of the derivative of the function

mapping B0 onto D. But B0 is obtained from the domain B by means of the
conformal mapping violating neither the piecewise-smoothness of the boundary
nor the openings of corners and therefore the reasoning used above for ω̃ and

Ω̃ can be applied both to the function mapping B onto D and to the inverse
function.

6. Before we proceed to investigating the nature of the continuity of the
considered functions it is appropriate to make the following remark: if the
domain B (or B0) is bounded by a non-Jordan curve, then an inequality of
form (2) cannot be satisfied globally all over the boundary. Again, since the
mapping B → B0, as mentioned above, is analytically continuable across the
boundary, it inherits all the local boundary properties of the function ω̃ which
we are interested in.

Let 0 < νk < 2. Then, as is known ([4], §6 and Appendix 1), the function t
1

νk

satisfies on the curve t = X̃k ◦ γ0(s) the condition H(µ), where µ = min(1, 1
νk

).
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Therefore for z1, z2 ∈ 〈γ〉 ∩D(zk, δk) we have

∣∣∣∣
dXk

(
P 1

νk

(X̃k(z1))
)

dw
−

dXk

(
P 1

νk

(X̃k(z2))
)

dw

∣∣∣∣ ≤ M5

∣∣P 1
νk

(X̃k(z1)− P 1
νk

(X̃k(z2))
∣∣

≤ M6

∣∣X̃k(z1)− X̃k(z2)
∣∣µ ≤ M7|z1 − z2|µ. (14)

It obviously follows that on ∂D(zk, δk)∩B0 the function
dXk

(
P 1

νk

( eXk(z))
)

dw
satisfies

the condition H(1) and thus it satisfies the condition H(µ) all over D +(zk, δk) =

D(zk, δk) ∩B0 ([4], § 15 and Appendix II).
Let us consider the case νk = 2 (cusp). Let L1 and L2 be the arcs of the

curve X̃k ◦ γ which are adjacent to the corner z̃k = 0, and let in a sufficiently
small neighborhood of zero these arcs be represented in the form

L1 : ỹ = χ1(x̃), L2 : ỹ = −χ2(x̃),

where χ
j
(x̃) = |x̃|pjϕj(x̃), 0 < k ≤ ϕj(x̃) ≤ K, j = 1, 2; 0 ≤ −x̃ ≤ ε, 1 < pj <

∞. In that case the point zk is called a cusp of finite order. It is obvious that
the numbers pj, j = 1, 2, are invariant with respect to diffeomorphisms of the
domain enclosing B0. Let z̃j = x̃j + iỹj ∈ Lj, j = 1, 2. Then

|z̃j| =
√

x̃ 2
j + χ2

j
(x̃j) =

√[χ
j
(x̃j)

ϕj(x̃j)

] 2
pj

+ χ2
j
(x̃j)

=
∣∣χ

j
(x̃j)

∣∣ 1
pj

√[
ϕj(x̃j)

]− 2
pj +

[
χ

j
(x̃j)

]2(1− 1
pj

)

≤ M8

∣∣χ
j
(x̃j)

∣∣ 1
pj ≤ M8

∣∣χ
j
(xj)

∣∣ 1
p , (15)

where p = max(p1, p2).
On the other hand, we have

|z̃1 − z̃2| ≥ |χ1(x̃1)|+ |χ2(x̃2)|. (16)

From (15) and (16) we obtain

|z̃1 − z̃2| ≥ M9

(|z̃1|p + |z̃2|p
)
. (17)

Now using the inequality

ap + bp ≥ 21−p(a + b)p, (18)

where a ≥ 0, b ≥ 0 and p > 1 ([6], Section 3.5), from (17) we get

|z̃1 − z̃2| ≥ M10

(|z̃1|+ |z̃2|
)p

.

Let wj = P 1
2
(z̃j), j = 1, 2. Then

|z̃1 − z̃2| ≥ M10

(|w1|2 + |w2|2
)p

and again using inequality (18) we obtain

|z̃1 − z̃2| ≥ M11

(|w1|+ |w2|
)2p ≥ M11|w1 − w2|2p,
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i.e.,

|w1 − w2| ≤ M12|z1 − z2|
1
2p . (19)

Inequality (19) means that for a cusp of finite order the function w = z̃
1
2

satisfies, on X̃k ◦ γ in a neighborhood of zero, the condition H( 1
2p

) in the so-

called strong form ([4], Appendix II). Hence, repeating the arguments we used
for (14), we conclude that ω̃0(z) also satisfies, on 〈γ〉 ∩D(zk, δk)), the condition
H( 1

2p
) in the strong form and therefore satisfies this condition in D +(zk, δk).

Since ω̃0 is holomorphic in B0\
n⋃

k=1

{zk}, the latter fact immediately implies

that if γ0 is a Jordan curve and all cusps are of finite order, then ω̃0 satisfies
the Hölder condition all over Bo.

The proof that Ω0 is a Hölder continuous function in Bn is simpler since
γn = ∂Bn is smooth and an estimate of form (14) for the function

dX−1
k

(
Pνk

(X−1
k (ζ))

)

dz̃
,

where z̃ = Pνk
(X−1

k (ζ)), ζ ∈ Bn, implies that it is a Hölder continuous function
in Bn.

7. Let us perform the last mapping Φ : Bn → D. Note that if zk is a corner
of opening πνk, νk < 2, or a cusp of finite order, then for z1, z2 ∈ D +(zk, δk) we
have ∣∣ω̃(z1)− ω̃(z2)

∣∣ =
∣∣Xk

(
P 1

νk

(X̃k(z1))
)−Xk

(
P 1

νk

(X̃k(z2))
)∣∣

≤ M13

∣∣P 1
νk

(X̃k(z1))− P 1
νk

(X̃k(z2))
∣∣ ≤ M14

∣∣X̃k(z1)− X̃k(z2)
∣∣µ

≤ M15|z1 − z2|µ, µ > 0.

Let γ be a piecewise-Lyapunov curve. Then, by the corollary of Lemma 2,
∂Bn is a Lyapunov curve and Φ′

ζ(ζ) satisfies in Bn the Hölder condition and is
different from zero [7]. Denote ω = Φ ◦ ω̃. Then

dω

dz
=

dΦ(ζ)

dζ
· dω̃(z)

dz
.

If zk is a corner with νk < 2 or a cusp of finite order, then for z1, z2 ∈ D +(zk, δk)
we have∣∣Φ′

ζ(ω̃(z1))− Φ′
ζ(ω̃(z2))

∣∣ ≤ M16

∣∣ω̃(z1)− ω̃(z2)
∣∣µ1 ≤ M17|z1 − z2|µ2 , µ2 > 0.

Therefore in the representation

ω′(z) = Φ′
ζ(ω̃(z)) ω̃k(z)(z − zk)

1
νk
−1

given by equality (11) the function Φ′
ζ(ω̃(z)) ω̃k(z) satisfies in D +(zk, δk) the

Hölder condition and is different from zero. This fact allows us to conclude
that in the representation

ω′(z) = ω0(z)
n∏

k=1

(z − zk)
1

νk
−1
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the holomorphic function ω0(z) in B0 is continuous in B0 and satisfies the Hölder
condition on each smooth simple arc of the curve γ0. If however γ0 is a Jordan
curve and all cusps are of finite order, then ω0 is a Höder continuous function
in B0.

Let us denote Φ−1 = Ψ and consider the behavior of the function Ω = Ω̃◦Ψ in
the neighborhood of the point τk = Φ(ω̃(zk)) = ω(zk). Since ∂Bn is a Lyapunov
curve, the function Ψ′(τ) satisfies in D the Hölder condition and is different
from zero [7]. Using (13), we obtain

Ω′(τ) = Ψ′(τ) · Ω̃ ′
ζ(Ψ(τ)) = Ψ′(τ) · Ω̃0(Ψ(τ)) ·

n∏

k=1

(
Ψ(τ)−Ψ(τk)

)νk−1

= Ψ′(τ) · Ω̃0(Ψ(τ))
n∏

k=1

(Ψ(τ)−Ψ(τk)

τ − τk

)νk−1
n∏

k=1

(τ − τk)
νk−1.

Since Ω̃0(ζ) and Ψ(τ) are Hölder continuous functions, the composition Ω̃0 ◦Ψ
is a Hölder continuous function in D. Consider the continuous function

u(τ, τk) = Arg
Ψ(τ)−Ψ(τk)

τ − τk

(20)

in D. By Lemma 1 this function satisfies the Hölder condition on each of the
arcs l−k = {eiθ, θk−ε ≤ θ ≤ θk} and l+k = {eiθ, θk ≤ θ ≤ θk +ε}, where τk = eiθk .
Therefore u(τ, τk) satisfies the Hölder condition on l− ∪ l+. On the remaining
part of the unit circumference the Hölder continuity of the function u(τ, τk) is
obvious. But in that case the function

W (τ, τk) = ln
Ψ(τ)−Ψ(τk)

τ − τk

satisfies the Hölder condition in D [4]. Therefore∣∣∣∣
Ψ(τ ′)−Ψ(τk)

τ ′ − τk

− Ψ(τ ′′)−Ψ(τk)

τ ′′ − τk

∣∣∣∣ =
∣∣ exp W (τ ′, τk)− exp W (τ ′′, τk)

∣∣

=

∣∣∣∣
∞∑

n=1

W n(τ ′, τk)−W n(τ ′′, τk)

n!

∣∣∣∣ ≤
∣∣W (τ ′, τk)−W (τ ′′, τk)

∣∣ ·
∞∑

n=1

nMn
18

n!

≤ M19|τ ′ − τ ′′|α, 0 < α ≤ 1.

In conclusion let us consider the case with the piecewise-smooth curve γ. In
that case ∂Bn is a smooth curve and therefore Ψ′(τ) ∈ Hp(D) for all p > 0([7],

Ch. IX). The function Ω̃0(Ψ(τ)) is bounded in D since Ω̃0(ζ) is continuous in
Bn. The continuity of the function u(τ, τk) in D implies that

[
Ψ(τ)−Ψ(τk)

τ − τk

]±1

∈ Hp

for all p > 0 ([7], Ch. IX), from which it follows that

Ψ′(τ)Ω̃0(Ψ(τ))
n∏

k=1

[Ψ(τ)−Ψ(τk)

τ − τk

]νk−1

∈ Hp
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for all p > 0.
Finally, the identity∣∣ω(Ω(τ)) p

√
Ω′(τ)

∣∣p = |τ |p |Ω′(τ)|, τ ∈ D,

immediately implies that ω(z) belongs to
⋂
p>0

Ep(B0).
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