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Abstract. The Cauchy type singular integral equation is investigated when
the line of integration is the union of a countable number of disconnected
segments. The equation is equivalently reduced to an equation with double
periodic kernel. Effective solutions having integrable singularities at the end-
points of the line of integration are obtained.
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We consider the Cauchy type singular integral equation when the line of inte-
gration is doubly-periodical and disconnected. This equation arises in periodical
problems of mathematical physics.


The theory of integral equations when the line of integration is the union of
a finite number of disconnected arcs was thoroughly studied by N. I. Muskhel-
ishvili [1].


The case, where the line of integration is periodical and disconnected with one
period was investigated by N. I. Akhiezer [2], A. V. Bitsadze [3], S. A. Freidkin
[4].


Let L be a disconnected double periodic line in the complex z-plane, z =
x + iy, i.e., L be the union of a countable number of disconnected segments
with positive direction from −a to a and from −b + ih to b + ih:


L =
⋃
m,n


(
L1


mn


⋃
L2


mn


)
, m, n = 0,±1,±2, . . . ,


L1
mn = {−a + 2mω ≤ x ≤ a + 2mω, y = 2nh},


L2
mn = {−b + 2mω ≤ x ≤ b + 2mω, y = (2n + 1)h},


where a, b, ω and h are constants, 0 < a, b < ω; h > 0.
It is required to solve the singular integral equation


1


π


∫


L


[
u(t)


t− z
− u(t)


t


]
dt = f(z), z ∈ L, (1)


ISSN 1072-947X / $8.00 / c© Heldermann Verlag www.heldermann.de







134 N. KHATIASHVILI


where f(z) is a given real function which belongs to the Hölder’s class on every
L1


mn


⋃
L2


mn, m,n = 0,±1,±2, . . . ,and satisfies the following conditions:


f(x + 2mω + 2nih) = f(x), x ∈ [−a, a],


f(x + 2mω + (2n + 1)ih) = f(x + ih), x ∈ [−b, b],


m, n = 0,±1,±2, . . . ,


f(0) = 0,


u(z) is the unknown function satisfying the following conditions:


u(x + 2mω + 2nih) = u(x), x ∈ [−a, a],


u(x + 2mω + (2n + 1)ih) = u(x + ih), x ∈ [−b, b],


m, n = 0,±1,±2, . . . ,∫


L1
00


S
L2


00


u(t)dt = 0. (2)


Also, u(t) is assumed to belong to the Muskhelishvili class, the class H∗ on
L1


mn


⋃
L2


mn, m,n = 0,±1,±2, . . . [1].


Definition. If the function u(t), given on L1
mn


⋃
L2


mn, m, n = 0,±1,±2, . . . ,
satisfies the Hölder’s condition H, on every closed part of L1


mn


⋃
L2


mn, m,n =
0,±1,±2, . . . , not containing ends, and if near any end c it is of the form


u(t) =
u∗(t)


(t− c)α
, 0 ≤ α < 1,


where u∗(t) belongs to the class H, then u(t) is said to belong to the class H∗


on L1
mn


⋃
L2


mn, m,n = 0,±1,±2, . . . .


The integral in the left-hand side of (1) is understood as the series
∫


L


[
u(t)


t− z
− u(t)


t


]
dt =


+∞∑
m,n=−∞


∫


L1
mn


S
L2


mn


[
u(t)


t− z
− u(t)


t


]
dt,


where ∫


L1
mn


S
L2


mn


u(t)


t− z
dt =


∫


L1
00


S
L2


00


u(t)


t + 2nω + 2mih− z
dt.


Condition (2) is necessary and sufficient for this series, to converge.
Equation (1) must hold for all z on L, with a possible exception for the ends


of the line of integration.
We will find a solution of equation (1) in the following classes of functions:
1) H(−a, a), the class of functions bounded at the ends of the line L1


00,
2) H(−b + ih, b + ih), the class of functions bounded at the ends of the line


L2
00,
3) H(−a,−b + ih), the class of functions bounded at the ends −a,−b + ih,
4) H(a, b + ih), the class of functions bounded at the ends a, b + ih,
5)H(−a, a,−b+ih), the class of functions bounded at the ends −a, a,−b+ih,
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6) H(b + ih), the class of functions bounded at the end b + ih,
7) H0, the general class of functions having integrable singularities at all


end-points,
8) H, the class of functions bounded at all end-points.
Taking into account the representation of Weierstrass function ζ(z) [5, Part


2, Ch. 1, §14]


ζ(t− z) =
1


t− z
+


+∞∑
m,n=−∞
|m|+|n|6=0


{
1


t− z − 2nω − 2mih


+
1


2nω + 2mih
+


t− z


(2nω + 2mih)2


}
,


we can transform equation (1) to the singular integral equation


1


π


∫


L1
00


S
L2


00


u(t)[ζ(t− z)− ζ(t)]dt = f(z), z ∈ L1
00


⋃
L2


00, (3)


with condition (2).
In the sequel we will use Villa’s formula for a strip which represents an ana-


lytic periodical function Φ(z) = u0 + iv0 with period 2ω in a strip 0 < y < h of
the complex plane z = x + iy by its real part given on the boundary [6]:


Φ(z) =
1


πi


2ω∫


0


u1
0(t)[ζ(t− z)− ζ(t)]dt


− 1


πi


2ω+ih∫


ih


u2
0(t)[ζ(t− z)− ζ(t)]dt + iC0, (4)


where C0 is the real constant, u1
0(t) and u2


0(t) are the given functions, satisfying
the conditions


u1
0(t) = u+


0 (t), t ∈ [0, 2ω],


u2
0(t) = u+


0 (t), t ∈ {x ∈ [0, 2ω], y = h},
2ω∫


0


u1
0(t)dt =


2ω+ih∫


ih


u2
0(t)dt.


We also use the following representation of any elliptic function g(z) of n-th
order, with zeros α1, α2, . . . , αn and poles β1, β2, . . . , βn in the period rectangle:


g(z) = C
σ(z − α∗1)σ(z − α2) · · · σ(z − αn)


σ(z − β1)σ(z − β2) · · ·σ(z − βn)
, (5)


where C is an arbitrary constant,


α∗1 = (β1 + β2 + · · ·+ βn)− (α2 + α3 + · · ·+ αn)


and σ(z) is Weierstrass function for the periods 2ω and 2ih (see [5]).
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The following theorem consisting of eight parts is proved


Theorem.
1. There exists a unique solution of equation (1) of the class H(−a, a) if and


only if f(z) satisfies the condition
∫


L1
00


S
L2


00


f(t)− f(ih)√
X1(t)


dt = 0, (6)


where


X1(z) =
σ(z − a)σ(z + a)σ2(z − ih)


σ2(z)σ(z − b− ih)σ(z + b− ih)
, (7)


and this solution is given by


u(z) = −
√


X1(z)


π


∫


L1
00


S
L2


00


f(t)− f(ih)√
X1(t)


[ζ(t− z)− ζ(t)]dt, z∈L1
00


⋃
L2


00. (8)


2. A unique solution of the class H(−b + ih, b + ih) exists if and only if f(z)
satisfies the condition ∫


L1
00


S
L2


00


f(t)
√


X1(t)dt = 0,


and is given by


u(z) = − 1


π
√


X1(z)


∫


L1
00


S
L2


00


f(t)
√


X1(t)[ζ(t− z)− ζ(t− ih)]dt, z ∈ L1
00


⋃
L2


00.


3. There exists a unique solution of equation (1) of the class H(−a,−b + ih)
if and only if f(z) satisfies the condition


∫


L1
00


S
L2


00


f(t)√
X2(t)


dt = 0,


where


X2(z) = e2δ
′
b σ(z + a)σ(z + b− ih)σ2(z − a− b)


σ(z − a)σ(z − b− ih)σ2(z)
,


δ
′
is the constant [5], and this solution is given by


u(z) = −
√


X2(z)


π


∫


L1
00


S
L2


00


f(t)√
X2(t)


[ζ(t− z)− ζ(t)]dt, z ∈ L1
00


⋃
L2


00.


4. A unique solution of the class H(a, b+ih) exists if and only if f(z) satisfies
the condition ∫


L1
00


S
L2


00


f(t)
√


X2(t)dt = 0,
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and is given by


u(z) = − 1


π
√


X2(z)


∫


L1
00


S
L2


00


f(t)
√


X2(t)[ζ(t−z)−ζ(t−a−b)]dt, z ∈ L1
00


⋃
L2


00.


5. A unique solution of the class H(−a, a,−b + ih) exists if and only if f(z)
satisfies the conditions ∫


L1
00


S
L2


00


f(t)√
X3(t)


dt = 0,


∫


L1
00


S
L2


00


f(t)√
X3(t)


[ζ(t + b)− ζ(t)]dt = 0,


where


X3(z) = e−2δ
′
b σ(z − a)σ(z + a)σ(z + b− ih)


σ(z − b− ih)σ2(z + b)
,


and this solution is given by


u(z) = −
√


X3(z)


π


∫


L1
00


S
L2


00


f(t)√
X3(t)


[ζ(t− z)− ζ(t + b)]dt, z ∈ L1
00


⋃
L2


00.


6. A solution of the class H(−b + ih) exists for a < b if and only if f(z)
satisfies the condition ∫


L1
00


S
L2


00


f(t)
√


X3(t)dt = 0,


and is given by


u(z) = − 1


π
√


X3(z)


∫


L1
00


S
L2


00


f(t)
√


X3(t)[ζ(t− z)− ζ(t)]dt, z ∈ L1
00


⋃
L2


00.


For b < a a solution of the class H(−b+ ih) exists if and only if f(z) satisfies
the condition ∫


L1
00


S
L2


00


(f(t)− f(−b))
√


X3(t)dt = 0,


and is given by


u(z) = − 1


π
√


X3(z)


∫


L1
00


S
L2


00


[f(t)−f(−b)]
√


X3(t)[ζ(t−z)−ζ(t)]dt, z ∈ L1
00


⋃
L2


00.


7. A solution of the class H0 exists if and only if
∫


L1
00


S
L2


00


[
f(t)√
X0(t)


− C∗
√


X4(t)


]
dt = 0, (9)
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and is given by


u(z) =


√
X0(z)


πi


∫


L1
00


S
L2


00


[
f(t)


i
√


X0(t)
− C∗


√
X4(t)


]
[ζ(t− z)− ζ(t)]dt


+ iK
√


X0(z), z ∈ L1
00


⋃
L2


00, (10)


where


X0(z) =
σ2(z − ih)σ2(z)


σ(z − a)σ(z + a)σ(z − b− ih)σ(z + b− ih)
,


X4(z) =
σ(z − 2ih)σ(z)


σ2(z − ih)
,


C∗ = f(ih)
σ(b)|σ(a− ih)|


σ2(ih)
,


(11)


K is an arbitrary constant.
8. A solution of the class bounded at the all end-points (class H) exists if and


only if f(z) satisfies the conditions
∫


L1
00


S
L2


00


f(t)
√


X0(t)dt = 0,


∫


L1
00


S
L2


00


f(t)
√


X0(t)[ζ(t− ih)− ζ(t)]dt = 0,


and is given by


u(z) = − 1


π
√


X0(z)


∫


L1
00


S
L2


00


f(t)
√


X0(t)[ζ(t− z)− ζ(t)]dt, z ∈ L1
00


⋃
L2


00,


where ζ(z) and σ(z) are Weierstrass functions for the periods 2ω and 2ih [5].√
Xj(z), j = ∗, 0, 1, 2, 3, is the branch for which


√
Xj(z) ≥ 0 when


z ∈ {x ∈ (−∞, +∞), y = 0} ∪ {x ∈ (−∞, +∞), y = h}\L ≡ L∗.


Remark 1. Conditions (6) and (9) are fulfilled for all f(z) satisfying the
condition


f(z) = −f(−z̄).


Remark 2. The root
√


Xj(z), j = ∗, 0, 1, 2, 3, always indicates the branch
which is holomorphic in the z-plane cut along L. The boundary value taken by
the root on L from the left is denoted by [


√
Xj(z)]+ =


√
Xj(z).


Proof of Theorem. Let us prove the first part. Suppose that a solution of equa-
tion (1) exists. In the strip 0 < y < h let us consider the function


Ψ(z) =
1


πi


∫


L1
00


S
L2


00


u(t)[ζ(t− z)− ζ(t)]dt. (12)
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By Villa’s formula (4) and conditions (2), (3) this function is periodic and
analytic in the strip 0 < y < h and satisfies the following mixed boundary
conditions:


Im Ψ+(t) = −f(t), t ∈ L,


Re Ψ+(t) = 0, t ∈ L∗,


Ψ(0) = 0.


(13)


So if we solve the boundary value problem (13) for the function Ψ(z) and
take into consideration (3), then a solution of equation (1) is given by


Re Ψ+(t) = u(t), t ∈ L1
00,


Re Ψ+(t) = −u(t), t ∈ L2
00.


The function
√


X1(z), where X1(z) is given by (7), satisfies, in the strip
0 < y < h, the boundary conditions


Re
√


X1(t)
+


= 0, t ∈ L,


Im
√


X1(t)
+


= 0, t ∈ L∗.
(14)


Let us consider the function Ψ(z)√
X1(z)


− iC√
X1(z)


, where the real constant C is


chosen appropriately. According to (13), (14) this function satisfies the following
boundary conditions


Re


[
Ψ(t)√
X1(t)


− iC√
X1(t)


]+


=
f(t) + C


i
√


X1(t)
, t ∈ L1


00,


Re


[
Ψ(t)√
X1(t)


− iC√
X1(t)


]+


= −f(t) + C


i
√


X1(t)
, t ∈ L2


00,


Re


[
Ψ(t)√
X1(t)


− iC√
X1(t)


]+


= 0, t ∈ L∗.


(15)


Taking into account Villa’s formula (4) and conditions (15), we get


Ψ(z)√
X1(z)


− iC√
X1(z)


=
1


πi


∫


L1
00


S
L2


00


f(t) + C


i
√


X1(t)
[ζ(t− z)− ζ(t)]dt + iK0,


z ∈ {x ∈ (−∞, +∞), 0 < y < h},
K0 is a real constant. Since 1√


X1(0)
= 0, we have K0 = 0, and since


√
X1(ih) =


0, for the convergence of the integral we have C = −f(ih). Therefore by
condition (6) the function Ψ given by (12) is of the form


Ψ(z) = −
√


X1(z)


π


∫


L1
00


S
L2


00


f(t)− f(ih)√
X1(t)


[ζ(t− z)− ζ(t)]dt + iC, (16)


z ∈ {x ∈ (−∞, +∞), 0 < y < h}.
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Using the Plemelj formula [1], from (16) we get (8).
From condition (6) it follows that the function Ψ(t) is periodic and therefore


condition (2) is automatically fulfilled.
The behavior of the singular integral near the end-points of the line of inte-


gration implies u(t) ∈ H(−a, a) [1].
Now we will prove the uniqueness of the solution of equation (1).
Let us consider the corresponding homogeneous equation


∫


L1
00


S
L2


00


u0(t)[ζ(t− z)− ζ(t)]dt = 0, z ∈ L1
00


⋃
L2


00, (17)


The corresponding problem for the analytic function Ψ(z) given by (12) is as
follows.


Problem. In the strip 0 < y < h define the analytic periodic function Ψ(z)
satisfying the boundary conditions


Im Ψ+(t) = 0, t ∈ L,


Re Ψ+(t) = 0, t ∈ L∗.
(18)


As u0(t) ∈ H(−a, a), according to conditions (18) the function Ψ(z) may have
poles at the points −b + ih, b + ih and zeros at the points −a, a; also, Ψ(z)
satisfies the additional condition


Ψ(0) = 0. (19)


By (18) we conclude that the function Ψ2(z) has poles at the points−b+ih, b+ih
and zeros at the points −a, a and satisfies, in the strip, the boundary conditions


Im Ψ2(t) = 0, t ∈ {x ∈ (−∞, +∞), y = 0},
Im Ψ2(t) = 0, t ∈ {x ∈ (−∞, +∞), y = h}. (20)


Thus we can continue this function double-periodically in the whole z-plane.
Taking into account the properties of double-periodic functions, formula (5)
and conditions (18), (19) and (20), we get


Ψ2(z) = C∗ σ(z − a)σ(z + a)σ2(z)


σ2(z + ih)σ(z − b− ih)σ(z + b− ih)
,


where C∗ is an arbitrary real constant.
From the behavior of the double-periodic functions it follows that the function


Ψ2(z) changes the sign only at the points −a, a,−b + ih, b + ih and has a pole
of second order at the point z = −ih so that C∗ = 0. Thus we conclude that
the homogeneous equation (17) has only a trivial solution. Thus the first part
of theorem is proved.


The parts 2–6 of the theorem are proved in same way.
Let us prove the seventh part, the eighth part is proved similarly.
We consider the function Ψ(z) given by (12) and the functions


√
X0(z),√


X4(z) given by formula (11). In the strip 0 < y < h the functions
√


X0(z),
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√
X4(z) satisfy the following boundary conditions:


Re
√


X0(t)
+


= 0, t ∈ L,


Im
√


X0(t)
+


= 0, t ∈ L∗,


Im
√


X4(t)
+ = 0, t ∈ {x ∈ (−∞, +∞), y = 0},


Im
√


X4(t)
+ = 0, t ∈ {x ∈ (−∞, +∞), y = h}.


The function [ Ψ(z)√
X0(z)


− C∗
√


X4(z)], where the constant C∗ is chosen appro-


priately, satisfies the following boundary conditions:


Re


[
Ψ(t)√
X0(t)


− C∗
√


X4(t)


]+


=
f(t)


i
√


X0(t)
− C∗ Re


√
X4(t), t ∈ L1


00,


Re


[
Ψ(t)√
X0(t)


− C∗
√


X4(t)


]+


= − f(t)


i
√


X0(t)
+ C∗ Re


√
X4(t), t ∈ L2


00,


Re


[
Ψ(t)√
X0(t)


− C∗
√


X4(t)


]+


= C∗
√


X4(t), t ∈ L∗.


And, similarly to part 1 we obtain


Ψ(z) =


√
X0(z)


πi


∫


L1
00


S
L2


00


[
f(t)


i
√


X0(t)
− C∗


√
X4(t)


]
[ζ(t− z)− ζ(t)]dt


+ C∗


√
X0(z)


πi


∫


L∗∗


√
X4(t)[ζ(t− z)− ζ(t)]dt


+ iK
√


X0(z) + C∗
√


X0(z)
√


X4(z),


z ∈ {x ∈ (−∞, +∞), 0 < y < h},
where K is an arbitrary real constant,


L∗∗ = {[−ω, ω]\L1
00} ∪ {[−ω + ih, ω + ih]\L2


00},
f(ih)σ(b)|σ(a− ih)| − C∗σ2(ih) = 0


with the necessary condition (9).
Using the Plemelj formula, we get (10).


The solution of the corresponding homogenous problem is C∗√X0(z), where
C∗ is an arbitrary constant. ¤


Remark 3. Taking into account condition (2), equation (3) can be rewritten
as


1


π


∫


L1
00


S
L2


00


u(t)[ζ(t− z)− ζ(t) + 2ζ(z/2)]dt = f(z), z ∈ L1
00


⋃
L2


00.
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By formula (5) the kernel of the singular integral equation (1) could be in-
troduced in the form


ζ(t− z)− ζ(t) + 2ζ(z/2) =
σ2(t− z/2)


σ(t− z)σ(t)
.


Remark 4. If we use the Muskhelishvili theory, we will not find an effective
solution, but we can make some conclusions about the index of the singular
integral equation (1) [1].


We can represent equation (2) as


1


πi


∫


L1
00


S
L2


00


u(t)


t− z
dt +


1


πi


∫


L1
00


S
L2


00


u(t)k(t, z)dt =
f(z) + C0


i
, z ∈ L1


00


⋃
L2


00,


k(t, z) =
+∞∑


m,n=−∞
|m|+|n|6=0


{
1


t− z − 2nω − 2mih
− 1


t− 2nω − 2mih


}
,


C0 =
1


π


∫


L1
00


S
L2


00


u(t)


t
dt.


According to the Muskhelishvili theory this equation is equivalent to the
Fredholm equation with additional conditions in the parts 2 and 3 of Theorem,
which is not given here, and we arrive at the following conclusions:


– the index of the classes 1)–4) is zero.
– the index of the class 5) is −1.
– the index of the class 6) is 1.
– the index of the class 7) is 2.
– the index of the class 8) is −2.


Remark 5. Integral equation (2) is equivalent to the integral equation


1


π


∫


L


u(t)


t− z
dt = f(z), z ∈ L, (21)


with the conditions
∫


L1
00


S
L2


00


tu(t)dt = 0,


∫


L1
00


S
L2


00


u(t)dt = 0, (22)


Thus we conclude that solutions of different classes of equation (21) are the
same as for equation (1), provided that condition (22) is also fulfilled.


Note that the condition f(0) = 0 is not necessary in this case.


Remark 6. In the author’s previous works equation (21) is considered in the
case of b = 0 and solutions for this case are obtained; in some special cases
condition (6) is not necessary [7], [8]:
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1) For f(−x) = f(x), the integral equation (21) equivalently reduces to the
equation


1


π


a∫


0


u(t)[ζ(t− x) + ζ(t + x)− 2ζ(t)]dt = f(x), x ∈ [0, a]. (23)


A unique solution of equation (23) of the class H(−a, a) exists if and only if
a∫


0


f(t)√
X(t)


dt = 0,


a∫


0


f(t)√
X(t)


a∫


0


τ
√


X(τ)[ζ(t− τ)− ζ(t + τ)]dτdt = 0,


and is given by


u(x) = −
√


X(x)


π


a∫


0


f(t)√
X(t)


[ζ(t− x)− ζ(t + x)]dt, x ∈ [0, a],


where


X(x) =
σ(x− a)σ(x + a)


σ2(x)
.


The root
√


X(z) always indicates the branch which is holomorphic in the
z-plane cut along L.


2) For f(x) = −f(−x), equation (21) reduces to the equation


1


π


a∫


0


u(t)[ζ(t− x)− ζ(t + x)]dt = f(x), x ∈ [0, a]. (24)


A unique solution of equation (24) of the class H(−a, a) exists and is given
by


u(x) = −
√


X(x)


π


a∫


0


f(t)√
X(t)


[ζ(t− x) + ζ(t + x)− 2ζ(t)]dt, x ∈ [0, a].
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