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ON SOME CONVEXITY PROPERTIES OF GENERALIZED
CESÁRO SEQUENCE SPACES
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Abstract. We define a generalized Cesáro sequence space and consider it
equipped with the Luxemburg norm under which it is a Banach space, and
we show that it is locally uniformly rotund.
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1. Preliminaries


For a Banach space X, we denote by S(X) and B(X) the unit sphere and
unit ball of X, respectively. A point x0 ∈ S(X) is called


a) an extreme point if for every x, y ∈ S(X) the equality 2x0 = x + y implies
x = y;


b) a locally uniformly rotund point (LUR-point for short) if for any sequence
(xn) in B(X) such that ‖xn + x‖ → 2 as n → ∞ there holds ‖xn − x‖ → 0 as
n →∞;


c) an H-point if for any sequence (xn) in X such that ‖xn‖ → 1 as n → ∞,


the weak convergence of (xn) to x0 (write xn
w→ x0) implies that ‖xn − x‖ → 0


as n →∞.
A Banach space X is said to be rotund (R) if every point of S(X) is an


extreme point.
If every x ∈ S(X) is a LUR-point, then X is said to be locally uniformly


rotund (LUR).
X is said to possess property (H) provided every point of S(X) is an H-point.
For these geometric notions and their role in Mathematics we refer to the


monographs [1], [6], [12] and [13]. Some of them were studied for Orlicz spaces
in [1], [7], [8], [12] and [14].


Let X be a real vector space. A functional % : X → [0,∞] is called a modular
if it satisfies the conditions


(i) %(x) = 0 if and only if x = 0;
(ii) %(αx) = %(x) for all scalar α with |α| = 1;
(iii) %(αx+βy) ≤ %(x)+%(y) for all x, y ∈ X and all α, β ≥ 0 with α+β = 1.


The modular % is called convex if
(iv) %(αx + βy) ≤ α%(x) + β%(y) for all x, y ∈ X and all α, β ≥ 0 with


α + β = 1.
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If % is a modular in X, we define


X% =
{
x ∈ X : lim


λ→0+
%(λx) = 0


}
,


and X∗
% =


{
x ∈ X : %(λx) < ∞ for some λ > 0


}
.


It is clear that X% ⊆ X∗
% . If % is a convex modular, for x ∈ X% we define


‖x‖ = inf
{


λ > 0 : %
(x


λ


)
≤ 1


}
. (1.1)


Orlicz [13] proved that if % is a convex modular in X, then X% = X∗
% and ‖.|| is


a norm on X% for which it is a Banach space. The norm ‖.‖ defined as in (1.1)
is called the Luxemburg norm.


A modular % on X is called


(a) right-continuous if limλ→1+ %(λx) = %(x) for all x ∈ X%;
(b) left-continuous if limλ→1− %(λx) = %(x) for all x ∈ X%;
(c) continuous if it is both left-continuous and right-continuous.


The following known results gave some relationships between the modular %
and the Luxemburg norm ‖.‖ on X%.


Theorem 1.1. Let % be a convex modular on X and let x ∈ X% and (xn) a
sequence in X%. Then ‖xn− x‖ → 0 as n →∞ if and only if %(λ(xn− x)) → 0
as n →∞ for every λ > 0.


Proof. See [11, Theorem 1.3]. ¤
Theorem 1.2. Let % be a convex modular on X and x ∈ X%.


(i) If % is right-continuous, then ‖x‖ < 1 if and only if %(x) < 1.
(ii) If % is left-continuous, then ‖x‖ ≤ 1 if and only if %(x) ≤ 1.
(iii) If % is continuous, then ‖x‖ = 1 if and only if %(x) = 1.


Proof. See [11, Theorem 1.4]. ¤
Let us denote by l0 the space of all real sequences. For 1 ≤ p < ∞, the


Cesáro sequence space (cesp, for short) is defined by


cesp =


{
x ∈ l0 :


∞∑
n=1


( 1


n


n∑
i=1


|x(i)|
)p


< ∞
}


equipped with the norm


‖x‖ =


( ∞∑
n=1


( 1


n


n∑
i=1


|x(i)|
)p


) 1
p


.


This space was introduced by J.S. Shue [16]. It is useful in the theory of
matrix operators and others (see [9] and [10]). Some geometric properties of
the Cesáro sequence space cesp were studied by many mathematicians. It is
known that cesp is LUR and possesses property (H) (see [10] ). Y. A. Cui and
H. Hudzik [2] proved that cesp has the Banach-Saks property, and it was shown
in [5] that cesp has property (β).
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Now let p = (pk) be a sequence of positive real numbers with pk ≥ 1 for all
k ∈ N. The Nakano sequence space l(p) is defined by


l(p) =
{
x ∈ l0 : σ(λx) < ∞ for some λ > 0


}
,


where σ(x) =
∑∞


i=1 |x(i)|pi . We consider the space l(p) equipped with the norm


‖x‖ = inf
{


λ > 0 : σ
(x


λ


)
≤ 1


}


under which it is a Banach space. If p = (pk) is bounded, we have


l(p) =
{


x ∈ l0 :
∞∑
i=1


|x(i)|pi < ∞
}


.


Several geometric properties of l(p) were studied in [1] and [4].
The generalized Cesáro sequence space ces(p) is defined by


ces(p) =
{
x ∈ l0 : %(λx) < ∞ for some λ > 0


}
,


where %(x) =
∑∞


n=1(
1
n


∑n
i=1 |x(i)|)pn . We consider this space equipped with the


so-called Luxemburg norm


‖x‖ = inf
{


λ > 0 : %
(x


λ


)
≤ 1


}


under which it is a Banach space. If p = (pk) is bounded, we have


ces(p) =


{
x = x(i) :


∞∑
n=1


( 1


n


n∑
i=1


|x(i)|
)pn


< ∞
}


.


W. Sanhan [15] proved that ces(p) is nonsquare when pk > 1 for all k ∈ N. In
this paper, we show that the Cesáro sequence space ces(p) equipped with the
Luxemburg norm is LUR and has property (H) when p = (pk) is bounded with
pk > 1 for all k ∈ N.


Throughout this paper we assume that p = (pk) is bounded with pk > 1 for
all k ∈ N, and M = supk pk.


2. Main Results


We begin by giving some basic properties of the modular % on the space
ces(p). By the convexity of the function t → |t|pk , for every k ∈ N we have that
% is a convex modular. So we have the following proposition.


Proposition 2.1. The functional % on the Cesáro sequence space ces(p) is
a convex modular.


Proposition 2.2. For x ∈ ces(p), the modular % on ces(p) satisfies the
following properties:


(i) if 0 < a < 1, then aM%
(x


a


)
≤ %(x) and %(ax) ≤ a%(x),


(ii) if a ≥ 1, then %(x) ≤ aM%
(x


a


)
,


(iii) if a ≥ 1, then %(x) ≤ a%(x) ≤ %(ax).
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Proof. All assertions are clearly obtained by the definition of %. ¤


Proposition 2.3. The modular % on ces(p) is continuous.


Proof. For λ > 1, by Proposition 2.2 (ii) and (iii), we have


%(x) ≤ λ%(x) ≤ %(λx) ≤ λM%(x). (2.1)


By taking λ → 1+ in (2.1), we have limλ→1+ %(λx) = %(x). Thus % is right-
continuous. If 0 < λ < 1, by Proposition 2.2 (i), we have


λM%(x) ≤ %(λx) ≤ λ%(x) (2.2)


By taking λ → 1− in (2.2), we have that limλ→1− %(λx) = %(x), hence % is
left-continuous. Thus % is continuous. ¤


Next, we give some relationships between the modular % and the Luxemburg
norm on ces(p).


Proposition 2.4. For any x ∈ ces(p), we have


(i) if ‖x‖ < 1, then %(x) ≤ ‖x‖,
(ii) if ‖x‖ > 1, then %(x) ≥ ‖x‖,
(iii) ‖x‖ = 1 if and only if %(x) = 1,
(iv) ‖x‖ < 1 if and only if %(x) < 1,
(v) ‖x‖ > 1 if and only if %(x) > 1,
(vi) if 0 < a < 1 and ‖x|| > a, then %(x) > aM , and
(vii) if a ≥ 1 and ‖x‖ < a, then %(x) < aM .


Proof. If ‖x‖ ≤ 1 , it follows by the convexity and continuity of % that %(x) =


%
(
‖x‖ x


‖x‖
)
≤ ‖x‖%


( x


‖x‖
)
≤ ‖x‖. So (i) is obtained. If ‖x‖ > 1, then there


is ε0 > 0 such that ‖x‖ − ε > 1 for all ε ∈ (0, ε0). Consequently, %(x) =


%
(
(‖x‖ − ε)


x


‖x‖ − ε


)
≥ (‖x‖ − ε)%


( x


‖x‖ − ε


)
> ‖x‖ − ε, so (ii) is satisfied. It


is clear that (iii), (iv) and (v) follow by Theorem 1.2, and properties (vi) and
(vii) follow by Proposition 2.2. ¤


Proposition 2.5. Let (xn) be a sequence in ces(p).


(i) If ‖xn‖ → 1 as n →∞, then %(xn) → 1 as n →∞.
(ii) ‖xn‖ → 0 as n →∞ if and only if %(xn) → 0 as n →∞.


Proof. (i) Suppose ‖xn‖ → 1 as n → ∞. Let ε ∈ (0, 1). Then there exists
N ∈ N such that 1 − ε < ‖xn‖ < 1 + ε for all n ≥ N . By Proposition 2.4 (vi)
and (vii), we have (1 − ε)M < %(xn) < (1 + ε)M for all n ≥ N , which implies
that %(xn) → 1 as n →∞.


(ii) It follows from Theorem 1.1 that if ‖xn‖ → 0 as n →∞, then %(xn) → 0
as n → ∞. Conversely, suppose ‖xn‖ 6→ 0 as n → ∞. Then there is ε ∈
(0, 1) and a subsequence (xnk


) of (xn) such that ‖xnk
‖ > ε for all k ∈ N. By


Proprosition 2.4 (vi), we have %(xnk
) > εM for all k ∈ N. This implies %(xn) 6→ 0


as n →∞. ¤
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Proposition 2.6. Let (xn) ⊆ B(l(p)) and (yn) ⊆ B(l(p)). If σ
(xn + yn


2


)


→ 1, then xn(i)− yn(i) → 0 as n →∞ for all i ∈ N.


Proof. We first note that if x ∈ B(`(p), then σ(x) ≤ 1. Supose that xn(i) −
y(i) 6→ 0 as n →∞ for some i ∈ N. Without loss of generality we may assume
that i = 1, and then assume without loss of generality (passing to a subsequence
if necessary) that, for some ε > 0,


∣∣xn(1)− yn(1)
∣∣p1 ≥ ε ∀ n ∈ N.


Thus


2p1(|xn(1)|p1 + |yn(1)|p1) ≥ ε ∀ n ∈ N. (2.3)


Since the function t → |t|p1 is uniformly convex, there exists δ > 0 such that


∣∣∣xn(1) + yn(1)


2


∣∣∣
p1 ≤ (1− δ)


( |xn(1)|p1 + |yn(1)|p1


2


)
∀ n ∈ N. (2.4)


It follows from (2.3) and (2.4) that for each n ∈ N,


σ
(xn + yn


2


)
=


∞∑
i=1


∣∣∣xn(i) + yn(i)


2


∣∣∣
pi


=
∣∣∣xn(1) + yn(1)


2


∣∣∣
p1


+
∞∑
i=2


∣∣∣xn(i) + yn(i)


2


∣∣∣
pi


≤ (1− δ)
( |xn(1)|p1 + |yn(1)|p1


2


)
+


1


2


∞∑
i=2


|xn(i)|pi +
1


2


∞∑
i=2


|yn(i)|pi


=
1


2
σ(xn) +


1


2
σ(yn)− δ


( |xn(1)|p1 + |yn(1)|p1


2


)


≤ 1


2
+


1


2
− δ


ε


2p1+1
= 1− δ


ε


2p1+1
.


This implies that σ
(xn + yn


2


)
6→ 1 as n → ∞, a contradiction, which finishes


the proof. ¤


Proposition 2.7. Let (xn) ⊆ B(ces(p)) and x ∈ S(ces(p)). If %
(xn + x


2


)
→ 1


as n →∞, then xn(i) → x(i) as n →∞ for all i ∈ N.


Proof. For each n ∈ N and i ∈ N, let


sn(i) =


{
sgn(xn(i) + x(i)) if xn(i) + x(i) 6= 0,


1 if xn(i) + x(i) = 0.
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Hence we have


1 ← %
(xn + x


2


)
=


∞∑


k=1


(1


k


k∑
i=1


∣∣∣xn(i) + x(i)


2


∣∣∣
)pk


=
∞∑


k=1


(1


k


k∑
i=1


sn(i)
xn(i)


2
+


1


k


k∑
i=1


sn(i)
x(i)


2


)pk


. (2.5)


Let an(k) = 1
k


∑k
i=1 sn(i)xn(i) and bn(k) = 1


k


∑k
i=1 sn(i)x(i) for all n, k ∈ N.


Then (an) ∈ l(p) and (bn) ∈ l(p), and from (2.5) we have


σ
(an + bn


2


)
→ 1 as n →∞.


Form Proposition 2.6 we have


an(i)− bn(i) → 0 as n →∞ (2.6)


for all i ∈ N. Now we shall show that xn(k) → x(k) as n → ∞ for all k ∈ N.
From (2.6) we have


sn(1)xn(1)− sn(1)x(1) → 0 as n →∞.


This implies xn(1) → x(1) as n →∞. Assume that xn(i) → x(i) as n →∞ for
all i ≤ k − 1. Then we have


sn(i)(xn(i)− x(i)) → 0 as n →∞ (2.7)


for all i ≤ k−1. Since sn(k)(xn(k)−x(k)) = k(an(k)−bn(k))−∑k−1
i=1 sn(i)(xn(i)−


x(i)), it follows from (2.6) and (2.7) that sn(k)(xn(k) − x(k)) → 0 as n → ∞.
This implies xn(k) → x(k) as n → ∞. So we have by induction that xn(k) →
x(k) as n →∞ for all k ∈ N. ¤


Theorem 2.8. The space ces(p) is LUR.


Proof. Let (xn) ⊆ B(ces(p)) and x ∈ S(ces(p)) be such that ‖xn + x‖ → 2


as n → ∞. Then
∥∥∥xn + x


2


∥∥∥ → 1 as n → ∞. By Proposition 2.5 (i) we have


%
(xn + x


2


)
→ 1 as n →∞. By Proposition 2.7 we have xn(i) → x(i) as n →∞


for all i ∈ N.
Now let ε > 0 be given. Then there exist k0 ∈ N and n0 ∈ N such that


∞∑


k=k0+1


(1


k


k∑
i=1


|x(i)|
)pk


<
ε


3


1


2M+1
, (2.8)


k0∑


k=1


(1


k


k∑
i=1


|xn(i)− x(i)|
)pk


<
ε


3
for all n ≥ n0, (2.9)


k0∑


k=1


(1


k


k∑
i=1


|xn(i)|
)pk


>


k0∑


k=1


(1


k


k∑
i=1


|x(i)|
)pk − ε


3


1


2M
for all n ≥ n0. (2.10)







ON SOME CONVEXITY PROPERTIES 199


By Proposition 2.4 (i) and (iii) we have %(xn) ≤ 1 for all n ∈ N and %(x) = 1.
From these together with (2.8), (2.9), (2.10) and the fact that (a + b)pk ≤
2pk(apk + bpk) for a, b ≥ 0 we have that for all n ≥ n0,


%(xn − x) =
∞∑


k=1


(1


k


k∑
i=1


|xn(i)− x(i)|
)pk


=


k0∑


k=1


(1


k


k∑
i=1


|xn(i)− x(i)|
)pk


+
∞∑


k=k0+1


(1


k


k∑
i=1


|xn(i)− x(i)|
)pk


<
ε


3
+ 2M


( ∞∑


k=k0+1


(1


k


k∑
i=1


|xn(i)|
)pk


+
∞∑


k=k0+1


(1


k


k∑
i=1


|x(i)|
)pk


)


=
ε


3
+ 2M


(
%(xn)−


k0∑


k=1


(1


k


k∑
i=1


|xn(i)|
)pk


+
∞∑


k=k0+1


(1


k


k∑
i=1


|x(i)|
)pk


)


≤ ε


3
+ 2M


(
1−


k0∑


k=1


(1


k


k∑
i=1


|xn(i)|
)pk


+
∞∑


k=k0+1


(1


k


k∑
i=1


|x(i)|
)pk


)


<
ε


3
+ 2M


(
1−


k0∑


k=1


(1


k


k∑
i=1


|x(i)|
)pk


+
ε


3


1


2M
+


∞∑


k=k0+1


(1


k


k∑
i=1


|x(i)|
)pk


)


=
ε


3
+2M


(
%(x)−


k0∑


k=1


(1


k


k∑
i=1


|x(i)|
)pk


+
ε


3


1


2M
+


∞∑


k=k0+1


(1


k


k∑
i=1


|x(i)|
)pk


)


=
ε


3
+ 2M


( ∞∑


k=k0+1


(1


k


k∑
i=1


|x(i)|
)pk


+
ε


3


1


2M
+


∞∑


k=k0+1


(1


k


k∑
i=1


|x(i)|
)pk


)


=
ε


3
+ 2M


(
2


∞∑


k=k0+1


(1


k


k∑
i=1


|x(i)|
)pk


+
ε


3


1


2M


)


=
ε


3
+ 2M+1


∞∑


k=k0+1


(1


k


k∑
i=1


|x(i)|
)pk


+
ε


3
<


ε


3
+


ε


3
+


ε


3
= ε.


This shows that %(xn − x) → 0 as n → ∞. By Proposition 2.5(ii) we have
‖xn − x‖ → 0 as n →∞. This completes the proof of the theorem. ¤


It is known in general that a locally uniformly rotund space has property (H).
So we have the following result.


Corollary 2.9. The space ces(p) possesses property (H).
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