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BI-HAMILTONIAN STRUCTURE AS A SHADOW OF
NON-NOETHER SYMMETRY


G. CHAVCHANIDZE


Abstract. The correspondence between non-Noether symmetries and bi-
Hamiltonian structures is discussed. We show that in regular Hamiltonian
systems the presence of the global bi-Hamiltonian structure is caused by
the symmetry of the space of solution. As an example, the well-known bi-
Hamiltonian realization of the Korteweg–de Vries equation is discussed.
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The Noether theorem, Lutzky’s theorem, bi-Hamiltonian formalism and bi-
differential calculi are often used in generating conservation laws and all these
approaches are unified by the same idea – to construct conserved quantities
using some invariant geometric object (a generator of the symmetry – a Hamil-
tonian vector field in the Noether theorem, non-Hamiltonian one in Lutzky’s
approach, a closed 2-form in bi-Hamiltonian formalism and an auxiliary differ-
ential in the case of bidifferential calculi). There is a close relationship between
these three approaches. Some aspects of this relationship were established in
[3–4] and [6]. In the present paper it is discussed how the bi-Hamiltonian struc-
ture can be interpreted as a manifestation of the symmetry of space of solutions.
A good candidate for this role is non-Noether symmetry. Such a symmetry is
a group of transformations that maps the space of solutions of equations of
motion onto itself, but unlike the Noether one, does not preserve action.


In the case of a regular Hamiltonian system the phase space is equipped with
symplectic form ω (closed dω = 0 and nondegenerate iXω = 0 → X = 0 2-form)
and the time evolution is governed by Hamilton’s equation


iXh
ω + dh = 0, (1)


where Xh is the vector field tangent to solutions Xh = Σiṗi∂pi
+ q̇i∂qi


and iXh
ω


denotes the contraction of Xh and ω. The vector field is said to be (locally)
Hamiltonian if it preserves ω. According to Liouville’s theorem, Xh defined by
(1) automatically preserves ω (indeed, LXh


ω = diXh
ω + iXh


dω = −ddh = 0).
One can show that the group of transformations of a phase space generated


by any non-Hamiltonian vector field E


g(a) = eaLE
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does not preserve action


g∗(A) = g∗


(∫
pdq − hdt


)
=


∫
g∗(pdq − hdt) 6= 0


because d(LE(pdq − hdt)) = LEω − dE(h) ∧ dt 6= 0 (the first term in the
right-hand side does not vanish since E is non-Hamiltonian and as far as E is
time independent LEω and dE(h) ∧ dt are linearly independent 2-forms). As
a result, every non-Hamiltonian vector field E commuting with Xh leads to
non-Noether symmetry (since E preserves the vector field tangent to solutions
LE(Xh) = [E, Xh] = 0, it maps the space of solutions onto itself). Any such
symmetry yields the following integrals of motion [1–2], [4–5]:


lk = Tr(Rk), k = 1, 2, . . . , n,


where R = ω−1LEω and n is half-dimension of the phase space.
It is interesting that for any non-Noether symmetry, the triple (h, ω, ωE)


carries the bi-Hamiltonian structure (§4.12 in [7], [8–10]). Indeed, ωE is a closed
(dωE = dLEω = LEdω = 0) and an invariant (LXh


ωE = LXh
LEω = LELXh


ω =
0) 2-form (but generic ωE is degenerate). So every non-Noether symmetry quite
naturally endows a dynamical system with the bi-Hamiltonian structure.


Now let us discuss how non-Noether symmetry can be recovered from a bi-
Hamiltonian system. The generic bi-Hamiltonian structure on a phase space
consists of a Hamiltonian system h, ω and an auxiliary closed 2- form ω• satis-
fying LXh


ω• = 0. Let us call it the global bi-Hamiltonian structure whenever
ω• is exact (there exists a 1-form θ• such that ω• = dθ•) and Xh is (globally)
a Hamiltonian vector field with respect to ω• (iXh


ω• + dh• = 0). In the local
coordinates θ• = θ•i dzi. As far as ω is nondegenerate, there exists a vector field
E• = E•i∂zi such that iE•ω = θ• (in the local coordinates E•i = (ω−1)ijθ•j ). By
construction,


LE•ω = ω•.


Indeed, LE•ω = diE•ω + iE•dω = dθ• = ω• and


i[E•,Xh]ω = LE•(iXh
ω)− iXh


LE•ω = −d(E•(h)− h•) = −dh′.


In other words, [Xh, E
•] is a Hamiltonian vector field, i.e., [Xh, E] = Xh′ . So


E• is not a generator of symmetry since it does not commute with Xh but one
can construct (locally) the Hamiltonian counterpart of E• (note that E• itself
is non-Hamiltonian) – Xg with


g(z) =


t∫


0


h′dt. (2)


Here the integration along the solution of Hamilton’s equation with fixed origin
and end point in z(t) = z is assumed. Note that (2) defines g(z) only locally
and, as a result, Xg is a locally Hamiltonian vector field satisfying, by construc-
tion, the same commutation relations as E• (namely, [Xh, Xg] = Xh′). Finally,







BI-HAMILTONIAN STRUCTURE 59


one recovers the generator of non-Noether symmetry, i.e., the non-Hamiltonian
vector field E = E• −−Xg commuting with Xh and satisfying


LEω = LE•ω − LXgω = LE•ω = ω•


(thanks to Liouville’s theorem LXgω = 0). So in the case of a regular Hamilton-
ian system every global bi-Hamiltonian structure is naturally associated with
the (non-Noether) symmetry of space of solutions.


Example 1. As a toy example one can consider a free particle


h =
1


2


∑
i


p2
i , ω =


∑
i


dpi ∧ dqi.


This Hamiltonian system can be extended to the bi-Hamiltonian one


h, ω, ω• =
∑


i


pidpi ∧ dqi.


Clearly, dω• = 0 and Xh =
∑


i pi∂qi
preserves ω•. The conserved quantities pi


are associated with this simple bi-Hamiltonian structure. This system can be
obtained from the following (non-Noether) symmetry (infinitesimal form):


qi → (1 + api)qi,


pi → (1 + api)pi


generated by E =
∑


i piqi∂qi
+


∑
i p


2
i ∂pi


Example 2. The earliest and probably the most well-known bi-Hamiltonian
structure is the one discovered by F. Magri and associated with the Korteweg–de
Vries integrable hierarchy. The KdV equation


ut + uxxx + uux = 0


(zero boundary conditions for u and its derivatives are assumed) appears to be
Hamilton’s equation


iXh
ω + dh = 0,


where Xh =
∫ +∞
−∞ dx ut∂u (here ∂u denotes a variational derivative with respect


to the field u(x)) is the vector field tangent to the solutions,


ω =


+∞∫


−∞


dx du ∧ dv


is a symplectic form (here v = ∂−1
x u) and the function


h =


+∞∫


−∞


dx


(
u3


3
− u2


x


)


plays the role of a Hamiltonian. This dynamical system possesses a non-trivial
symmetry – a one-parameter group of non-cannonical transformations g(a) =
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eLE generated by the non-Hamiltonian vector field


E =


+∞∫


−∞


dx


(
uxx +


1


2
u2


)
∂u + XF ;


here the first term represents the non-Hamiltonian part of the generator of
symmetry, while the second one is its Hamiltonian counterpart associated with


F =


+∞∫


−∞


(
1


12
u2v +


1


4
∂−1


x


(
u3


3
− u2


x


)
+


3


4
v


l3
l2


)
dx


(l2,3 are defined in (3)). The physical origin of this symmetry is unclear, however
the symmetry seems to be very important since it leads to the well-known
infinite sequence of conservation laws in involution:


l1 =


+∞∫


−∞


udx,


l2 =


+∞∫


−∞


u2dx,


l3 =


+∞∫


−∞


(
u3


3
− u2


x


)
dx,


l4 =


+∞∫


−∞


(
5


36
u4 − 5


3
uu2


x + u2
xx


)
dx, (3)


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


and ensures the integrability of the KdV equation. The second Hamiltonian
realization of the KdV equation discovered by F. Magri [8]


iXh•ω
• + dh• = 0


(where ω• = LEω and h• = LEh) is a result of the invariance of the KdV
equation under the aforementioned transformations g(a).
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