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COCHAIN OPERATIONS DEFINING STEENROD
^i-PRODUCTS IN THE BAR CONSTRUCTION

T. KADEISHVILI

Abstract. The set of cochain operations defining Steenrod ^i-products in
the bar construction BC∗(X) is defined in terms of surjection operad. This
structure extends a Homotopy G-algebra structure which defines only ^.
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Adams’s cobar construction ΩC∗(X) of the chain complex of a topological
space X determined the homology H∗(ΩX) of the loop space just additively.

Later Baues [1] constructed the geometric diagonal

∇0 : ΩC∗(X) → ΩC∗(X)⊗ ΩC∗(X)

which turns the cobar construction into a DG-Hopf algebra. This diagonal
allows one to produce the next cobar construction ΩΩC∗(X) which models the
double loop space.

Our aim here is to define on ΩC∗(X) geometric cooperations (dual to Steenrod
^i-products)

{∇i : Ω(C∗(X)) → Ω(C∗(X))⊗ Ω(C∗(X)), i = 0, 1, . . . }
satisfying the standard conditions

deg∇i = i, ∇id + (d⊗ 1 + 1⊗ d)∇i = ∇i−1 + T∇i−1 (1)

(since we work here over Z2, the signs are ignored). These cooperations are
necessary (but of course not sufficient) for a further iteration of the cobar con-
struction. Additionally, we require a certain compatibility between ∇i-s and the
standard multiplication of ΩC∗(X). This allows us to define ∇i-s by restrictions
on the generators Ei : C → ΩC∗(X)⊗ ΩC∗(X).

In fact, we present particular elements {Ei
p,q, i = 0, 1, . . . ; p, q = 1, 2, . . . } in

the surjection operad χ ([11]) such that the corresponding chain multicoopera-
tions

{Ep,q
i : C∗(X) → (C∗(X)⊗p)⊗ (C∗(X)⊗q), p, q = 1, 2, . . . }

define ∇i-s in the cobar construction ΩC∗(X) and the corresponding cochain
multioperations

{Ei
p,q : (C∗(X)⊗p)⊗ (C∗(X)⊗q) → C∗(X), p, q = 1, 2, . . . }

define ^i-s in the bar construction BC∗(X).
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It is known that the ^i-products in C∗(X) are represented by the following
elements of χ:

^= (1, 2); ^1= (1, 2, 1); ^2= (1, 2, 1, 2); . . . .

Let us consider them as the first line cochain operations.
Let the second line be presented by a homotopy G-algebra structure ([4]) on

C∗(X) which consists of the sequence of operations

{E1,q : C∗(X)⊗ (C∗(X)⊗q) → C∗(X), q = 1, 2, . . . }.
These operations in fact define the multiplication in the bar construction
BC∗(X). They are represented by the following elements of χ [11]:

E1,k = (1, 2, 1, 3, 1, . . . , 1, k, 1, k + 1, 1). (2)

Below we present the next line cochain operations. We introduce the notion of
an extended homotopy G-algebra. This is a DG-algebra with a certain additional
structure which defines ^i-s on the bar construction. The main example of such
an object is again C∗(X). This structure consists of multioperations

{Ei
p,q : (C∗(X)⊗p)⊗ (C∗(X)⊗q) → C∗(X), i = 0, 1, . . . , p, q = 1, 2, . . . }.

We present particular elements {Ei
p,q ∈ χ} representing these operations. In

particular, E0
p,q coincides with the homotopy G-algebra structure;

E1
p,q = (1; p + 1, 1, p + 2, 1, . . . , p + q − 1, 1, p + q;

1, p + q, 2, p + q, 3, . . . , p; p + q);

and
E2

p,q =
∑q−1

k=0 (1; p + 1, 1, p + 2, 1, . . . , 1, p + k + 1;
1, p + k + 1, 2, p + k + 1, 3, . . . , p + k + 1, p;
p + k + 1, p, p + k + 2, p, . . . , p + q; p).

In Section 1 we recall the notion of a homotopy G-algebra and show that this
structure defines a product in the bar construction. In Section 2 the notion
of an extended homotopy G-algebra is introduced and it is shown that this
structure defines ^i-products in the bar construction. Section 3 is dedicated to
the construction of an extended homotopy G-algebra structure on the cochain
complex C∗(X).

1. Homotopy G-Algebras

In this section we recall the notion of a homotopy G-algebra from [4] in order
to extend it in the next section.

1.1. The notion of homotopy G-algebra.

Definition 1. A homotopy G-algebra is a differential graded algebra (DG-
algebra) (A, d, ·) together with a given sequence of multioperations

E1,k : A⊗ A⊗k → A, k = 1, 2, 3, . . . ,

satisfying the following conditions:
deg E1,k = −k, E1,0 = id;
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dE1,k(a; b1, . . . , bk) + E1,k(da; b1, . . . , bk) +
∑

i E1k(a; b1, . . . , dbi, . . . , bk)

= b1E1k(a; b2, . . . , bk) +
∑

i E1k(a; b1, . . . , bibi+1, . . . , bk)

+ E1k(a; b1, . . . , bk−1)bk; (3)

a1E1,k(a2; b1, . . . , bk) + E1,k(a1 · a2; b1, . . . , bk) + E1,k(a1; b1, . . . , bk)a2

=
∑

p=1,...,k−1 E1,p(a1; b1, . . . , bp) · E1,m−p(a2; bp+1, . . . , bk); (4)

E1,n(E1,m(a; b1, . . . , bm); c1, . . . , cn)

=
∑

E1,n−P li+m(a; c1, . . . , ck1 , E1,l1(b1; ck1+1, . . . , ck1+l1), ck1+l1+1, . . . , ckm ,

E1,lm(bm; ckm+1, . . . , ckm+lm), ckm+lm+1, . . . , cn). (5)

Let us analyze these conditions in low dimensions.
For the operation E1,1 the condition (3) gives

dE1,1(a; b) + E1,1(da; b) + E1,1(a; db) = a · b + b · a, (6)

i.e., the operation E1,1 is sort of ^1 product, which measures the noncommu-
tativity of A. Below we use the notation E1,1 =^1.

The condition (4) gives

(a · b) ^1 c + a · (b ^1 c) + (a ^1 c) · b = 0, (7)

i.e., our E1,1 =^1 satisfies the so-called Hirsch formula which states that the
map fb : A → A defined as fb(x) = x ^1 b is a derivation.

The condition (3) gives

a ^1 (b · c) + b · (a ^1 c) + (a ^1 b) · c
= dE1,2(a; b, c) + E1,2(da; b, c) + E1,2(a; db, c) + E1,2(a; b, dc), (8)

so the “left Hirsch formula” is satisfied just up to a chain homotopy and a
suitable homotopy is the operation E1,2, so this operation measures the lack of
“left Hirsch formula”.

Besides, the condition (5) gives

(a ^1 b) ^1 c− a ^1 (b ^1 c) = E1,2(a; b, c) + E1,2(a; c, b), (9)

so this ^1 is not strictly associative, but the operation E1,2 somehow measures
the lack of associativity too.

1.2. Homotopy G-algebra structure and a multiplication in the bar
construction. For a homotopy G-algebra (A, d, ·, {E1,k}) the sequence {E1,k}
defines, in the bar construction BA of a DG-algebra (A, d, ·), the multiplication
turning BA into a DG-Hopf algebra. In fact, this means that a homotopy
G-algebra is a B(∞)-algebra in the sense of [5].

The sequence of operations {E1,k} defines a homomorphism E : BA⊗BA →
A by E([]⊗ [a]) = E([a]⊗ []) = a, E([a]⊗ [b1| · · · |bn]) = E1,n(a; b1, . . . , bn) and
E([a1| · · · |am]⊗ [b1| · · · |bn]) = 0 if m > 1.
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Since the bar construction BA is a cofree coalgebra, a homomorphism E
induces a graded coalgebra map µE : BA⊗BA → BA.

Then the conditions (3) and (4) are equivalent to the condition

dE + E(dBA ⊗ id + id⊗ dBA) + E ^ E = 0,

i.e., E is a twisting cochain, and this is equivalent to µE being a chain map.
Besides, the condition (5) is equivalent to µE being associative. Finally we have

Proposition 1. For a homotopy G-algebra (A, d, ·, {E1,k}) the bar construc-
tion BA is a DG-Hopf algebra with respect to the standard coproduct ∇B :
BA → BA⊗BA and the multiplication µE : BA⊗BA → BA.

2. Extended Homotopy G-Algebras

In this section we introduce the notion of an extended homotopy G-algebra.
This is a DG-algebra with a certain additional structure which defines ^i-s in
the bar construction.

2.1. The notion of an extended homotopy G-algebra.

Definition 2. We define an extended homotopy G-algebra as an object

(A, d, ·, {Ek
p,q : A⊗p ⊗ A⊗q → A, k = 0, 1, . . . ; p, q = 1, 2, . . . })

such that
E0

p>1,q = 0 and (A, d, ·, {E0
1,q}) is a homotopy G-algebra

and

dEk
m,n(a1, . . . , am; b1, . . . , bn) +

∑
i E

k
m,n(a1, . . . , dai, . . . , am; b1, . . . , bn)

+
∑

i E
k
m,n(a1, . . . , am; b1, . . . , dbi, . . . , bn)

+
∑

i E
k
m−1,n(a1, . . . , ai · ai+1, . . . , am; b1, . . . , bn)

+
∑

i E
k
m,n−1(a1, . . . , am; b1, . . . , bi · bi+1, . . . , bn)

+a1E
k
m−1,n(a2, . . . , am; b1, . . . , bn) + Ek

m−1,n(a1, . . . , am−1; b1, . . . , bn)am

+b1E
k
m,n−1(a1, . . . , am; b2, . . . , bn) + Ek

m,n−1(a1, . . . , am; b1, . . . , bn−1)bn

+
∑k

i=0

∑
p,q T iEk−i

p,q (a1, . . . , ap; b1, . . . , bq) · Ei
m−p,n−q(ap+1, . . . , am; bq+1, . . . , bn)

= Ek−1
m,n (a1, . . . , am; b1, . . . , bn) + Ek−1

n,m (b1, . . . , bn; a1, . . . , am). (10)

Here TEi
p,q(x1, . . . , xp; y1, . . . , yq) = Ei

q,p(y1, . . . , yq; x1, . . . , xp).

Let us analyze this condition in low dimensions.
For the operation Ek

1,1 the condition (10) gives

dEk
1,1(a; b) + Ek

1,1(da; b) + Ek
1,1(a; db) = Ek−1

1,1 (a; b) + Ek−1
1,1 (b; a),

i.e., the operation Ek
1,1 is the homotopy which measures the lack of commuta-

tivity of Ek−1
1,1 . Keeping in mind that E0

1,1 =^1, we can say that Ek
1,1 is sort of

^k+1 product on A. Below we use the notation Ek
1,1 =^k+1.
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Besides, the condition (10) also gives

(a · b) ^k c + a · (b ^k c) + (a ^k c) · b + Ek−2
2,1 (a, b; c) + Ek−2

1,2 (c; a, b)

= dEk−1
2,1 (a, b; c) + Ek−1

2,1 (da, b; c) + Ek−1
2,1 (a, db; c) + Ek−1

2,1 (a, b; dc) (11)

and

a ^k (b · c) + b · (a ^k c) + (a ^k b) · c + Ek−2
1,2 (a; b, c) + Ek−2

2,1 (b, c; a)

= dEk−1
1,2 (a; b, c) + Ek−1

1,2 (a; db, c) + Ek−1
1,2 (a; b, dc), (12)

these are up to homotopy Hirsch type formulae connecting ^k and ·. We
remark here that the homotopy G-algebra structure controls the connection
between · and ^1, while the extended homotopy G-algebra structure controls
the connections between · and ^k-s (but not between ^m and ^n, in general).

As we already know, the homotopy G-algebra structure defines the multipli-
cation in the bar construction. Below we are going to show that the extended
homotopy G-algebra structure defines Steenrod ^i products in the bar con-
struction. But before we need some preliminary notions.

2.2. DG-Hopf algebras with Seenrod coproducts. Let a DG-coalgebra
with Steenrod coproducts be an object

(A; d;∇0,∇1,∇2, . . . ),

where (A; d;∇0) is a DG-coalgebra (with deg d = −1), and ∇i : A → A ⊗
A, i > 0, are cooperations, dual to Steenrods ^i products, i.e., they satisfy the
conditions (1).

Suppose now that A is additionally equipped with a multiplication · : A⊗A →
A which turns (A, d, ·) into a DG-algebra. We are interested in what kind of
compatibility of ∇i-s with the multiplication · it is natural to require.

The following notion was introduced in [6], the dual notion was introduced
by V. Smirnov in [12] and called a ^∞-Hopf algebra.

Definition 3. We define a DG-Hopf algebra with Steenrod coproducts as an
object

(A, d, ·,∇0,∇1,∇2, . . . ),

where (A, d, ·) is a DG-algebra, ∇i-s satisfy (1) and, additionally, we require the
following connections between ∇i-s and the product · (decomposition rule):

∇n(a · b) =
n∑

k=0

∇k(a) · T k∇n−k(b), (13)

where T : A⊗ A → A⊗ A is the permutation map T (a⊗ b) = b⊗ a and T k is
its iteration.

In particular, (13) gives that ∇0 is a multiplicative map, i.e., (A, d, ·,∇0) is
a DG-Hopf algebra; ∇1 is a (∇0, T∇0)-derivation, etc.

The decomposition rule (13) has the following sense: if (A, ·) is a free (i.e
tensor) algebra, i.e., A = T (V ) (for example, the cobar construction), then (13)
allows us to construct the cooperations ∇i on the generating vector space V
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and after that to extend them onto whole A by a suitable extension rule which
follows from the above decomposition rule (13).

Let (C, d, ∆) be a DG-coalgebra and ΩC be its cobar construction. By defi-
nition, ΩC is the tensor algebra T (s−1C̄) generated by the desuspension s−1C̄
of the coaugmentation coideal C̄.

A sequence of coproducts ∇i : ΩC → ΩC ⊗ΩC satisfying (13) is determined
by the restrictions Ei : C → ΩC ⊗ ΩC which are homomorphisms of degree
i− 1.

For ∇i to satisfy (1) Ei must satisfy the condition

dEi + Eid +
∑i

k=0 Ek ^ T kEi−k = Ei−1 + TEi−1 (14)

which is the restriction of (1) on C.
So if we want to construct, on ΩC, a sequence ∇i forming the structure of a

DG-Hopf algebra with Steenrod coproducts we have to construct a sequence of
higher twisting cochains – homomorphisms {Ei, i = 0, 1, . . . ; deg Ei = i − 1}
satisfying (14). Note that E0 is an ordinary twisting cochain

dE0 + E0d + E0 ^ E0 = 0.

2.3. DG-Hopf algebras with Steenrod products. Here we dialyze the pre-
vious section.

Let us define a DG-algebra with Steenrod products as an object

(A; d; ^0,^1,^2, . . . ),

where (A; d; ^0) is a DG-algebra (with deg d = +1), and ^i: A⊗A → A, i > 0,
are Steenrods ^i products, i.e., they satisfy the conditions

d(a ^i b) = da ^i b + a ^i db + a ^i−1 b + b ^i−1 b. (15)

Suppose now that A is additionally equipped with the diagonal∇ : A → A⊗A
which turns (A, d,∇) into a DG-coalgebra. We are interested in what kind of
compatibility of ^i-s with the diagonal ∇ must be required.

Definition 4. We define a DG-Hopf algebra with Steenrod products as an
object (A, d,∇,^0,^1,^2, . . . ) where (A, d,∇) is a DG-coalgebra, the prod-
ucts ^i: A ⊗ A → A satisfy (15) and additionally we require the following
connections between ^i-s and the diagonal ∇:

∇· ^n=
n∑

k=0

(^k ⊗ ^n−k ·T k)∇A⊗A. (16)

In particular, ^0 is a coalgebra map, i.e., (A, d,∇,^0) is a DG-Hopf algebra.
Let (C, d, ·) be a DG-algebra and BC be its bar construction. By definition,

BC is the tensor coalgebra T c(s−1C̄) generated by the desuspension s−1C̄ of
the augmentation ideal C̄.

Since T c is cofree, the sequence of products ^i: BC ⊗ BC → BC satisfying
(16) is determined by the projections Ei : BC ⊗ BC → BC → C which are
homomorphisms of degree 1− i.
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For ^i to satisfy (15) Ei must satisfy the condition

dEi + Ei(dBC ⊗ id + id⊗ dBC) +
∑i

k=0 Ek ^ Ei−kT k

= Ei−1 + Ei−1T, (17)

which is the projection of (15) on C.
So if we want to construct, on BC, a sequence of ^i-s forming the structure

of a DG-Hopf algebra with Steenrod products, we have to construct a sequence
of higher twisting cochains – homomorphisms {Ei, i = 0, 1, . . . ; deg Ei = 1− i}
satisfying (17). Note that E0 is an ordinary twisting cochain

dE0 + E0d + E0 ^ E0 = 0.

2.4. Structure of an extended homotopy G-algebra and Steenrod prod-
ucts in the bar construction. As we already know, the part of extended
homotopy G-algebra – the sequence of operations {E0

p,q} (which in fact is a
homotopy G-algebra structure) defines, in the bar construction BA, the mul-
tiplication turning BA into a DG-Hopf algebra. Here we show that for an
extended homotopy G-algebra (A, d, ·, {Ek

p,q}) the sequence {Ek>0
p,q } defines, in

the bar construction BA of a DG-algebra (A, d, ·), the ^i-products turning BA
into a DG-Hopf algebra with Steenrod products.

Indeed, sequences of operations {Ek
p,q} define homomorphisms

{Ek : BA⊗BA → A, k = 0, 1, . . . }
by Ek([a1| · · · |am]⊗ [b1| · · · |bn]) = Ek

m,n(a1, . . . , am; b1, . . . , bn).

The condition (10), which verifies our {Ek
p,q}-s, is equivalent to the condition

(17) for the sequence {Ek} and thus {Ek
p,q} define the correct ^k-s on BC.

Finally we have

Proposition 2. For an extended homotopy G-algebra (A, d, ·, {Ek
p,q}) the bar

construction BA is a DG-Hopf algebra with Steenrod products.

3. Cochain Complex C∗(X) as an Extended Homotopy G-Algebra

The main example of an extended homotopy G-algebra is given by the fol-
lowing

Theorem 1. The cochain complex of a topological space C∗(X) carries the
structure of an extended homotopy G-algebra.

Proof. In [10] it is shown that the bar construction BC∗(X) is actually the
cochain complex of a certain cubical set Q, and in [6] the explicit formulae for
the Steenrods ^i products are constructed in the cochains of a cubical set. So
we have ^i-s on BC∗(X) = C∗(Q). Moreover, these ^i-s are well connected
with the standard comultiplication of BC∗(X) in the sense of (16) and thus
these ^i-s are determined by the compositions

Ei
p,q : C∗(X)⊗p ⊗ C∗(X)⊗q → BC∗(X)⊗BC∗(X)

^i→ BC∗(X) → C∗(X)

which form the needed structure. ¤
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The rest of the paper will be dedicated to the description of these operations
in terms of the surjection operad.

3.1. Operations Ek
p,q in the surjection operad. A surjection operad χ [11]

is defined as a sequence of chain complexes χ(r) where χ(r)d is spanned by
nondegenerate surjections u : (1, 2, . . . , r + d) → (1, 2, . . . , r), u(i) 6= u(i + 1).
A surjection u is written as a string (u(1), u(2), . . . , u(r + d)).

For the structure maps of this operad and the filtration F1χ ⊂ · · · ⊂ Fnχ ⊂
· · · ⊂ χ, with Fnχ equivalent to a little n-cub operad, we refer to [2].

Here we briefly recall the definition of the action of χ on C∗(X) (on C∗(X)).
Let us take an interval (0, . . . , n) and cut it into r + d subintervals

0 = n0 ≤ n1 ≤ · · · ≤ nr+d−1 ≤ nr+d = n.

We label the i-th interval (ni−1, . . . , ni) by the integer u(i). Let C(k) be the con-
catenation of all intervals labelled by k. Then the operation AW (u) : C∗(X) →
C∗(X)⊗r determined by the surjection u is defined as

AW (u)(σ(0, . . . , n)) =
∑

σ(C(1))⊗ · · · ⊗ σ(C(r)),

where the summation is taken with respect to all cuttings of (0, . . . , n).
For example, the Alexander–Whitney diagonal

∇σ(0, . . . , n) =
∑

k

σ(0, . . . , k)⊗ σ(k, . . . , n)

is represented by the surjection (1, 2) ∈ F1χ(2)0; the diagonal

∇1σ(0, . . . , n) =
∑

k<l

σ(0, . . . , k, l, l + 1, . . . , n)⊗ σ(k, . . . , l)

is represented by (1, 2, 1) ∈ F2χ(2)1, the diagonal

∇2σ(0, . . . , n) =
∑

k<l<t

σ(0, . . . , k, l, l + 1, . . . , t)⊗ σ(k, . . . , l, t, t + 1, . . . , n)

is represented by (1, 2, 1, 2) ∈ F2χ(2)1, etc.
Here we present particular elements of χ representing operations Ek

p,q. They
are obtained from admissible tables which we define now.

The first row of an admissible table consists of the only number 1. The second
is p+1, 1, p+2, 1, . . . , 1, p+k. As we see, it consists of a stable part (1-s at even
places) and of an increasing part (p + 1, p + 2, . . . , p + k at odd places).

Each next row starts with the stable number of the previous row which gives
rise to an increasing part at odd places. At even places the maximal number
from the previous row serves as a stable part. For example, if the previous row
ends with . . . , i−2, s, i−1, s, i, then the next row is s, i, s+1, i, s+2, i, . . . , i, s+t.
Each row consists of an odd number of terms. An important remark: the stabile
part of a row may be empty, in this case under the stabile part of this row we
mean the maximal number of the previous row.

As we see, the table consists of two increasing sequences of integers 1, 2, . . .
and p + 1, p + 2, . . . (of course, with repetitions and permutations). The main
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restriction is that the first sequence should necessarily end with p. The table
always ends with a one term row.

Next, we put all rows of an admissible table in one string and obtain an
admissible string in χ. We say that this string belongs to Ek

p,q if: its table
consists of k + 3 rows; the first element of the second row is p + 1 and the
maximal number which occurs in the string is p + q.

Here are some examples (by ‘;’ we indicate the ends of rows in admissible
tables). The admissible strings

(1; 5, 1, 6, 1, 7; 1, 7, 2, 7, 3, 7, 4; 7, 4, 8, 4, 9; 4)

and

1; 5, 1, 6, 1, 7, 1, 8; 1, 8, 2, 8, 3, 8, 4; 8, 4, 9; 4

both belong to E2
4,5, while

(1; 4, 1, 5, 1, 6; 1, 6, 2; 6; 2, 6, 3; 6; 3)

belongs to E4
3,3.

We define an element Ek
p,q ∈ χ as the sum of all admissible strings belonging

to it.
In particular, E2k

1,1 = (1; 2; 1; . . . ; 1; 2) and E2k−1
1,1 = (1; 2; 1; . . . ; 1; 2; 1). They

correspond to ^2k+1 and ^2k, respectively.
Moreover, E0

1,q = (1; 2, 1, 3, . . . 1, q + 1; 1). These elements generate F2χ [11]
and they determine on C∗(X) a structure of homotopy G-algebra..

Here are the examples of higher operations:

E1
p,q =(1; p + 1, 1, p + 2, 1, . . . , p + q − 1, 1, p + q;

1, p + q, 2, p + q, 3, . . . , p; p + q);

E2
p,q =

∑q−1
k=0(1; p + 1, 1, p + 2, 1, . . . , 1, p + k + 1;

1, p + k + 1, 2, p + k + 1, 3, . . . , p + k + 1, p;

p + k + 1, p, p + k + 2, p, . . . , p + q; p).

Generally, Ek
p,q belong to the filtration Fk+2χ.

Remark 1. The elements E0
1,q-s satisfy the defining conditions of a homotopy

G-algebra already in χ. So do Ek>0
p,q -s: they satisfy (10) already in χ. For

example, the condition (7) is a result of

(1, 2, 1) ◦1 (1, 2) + (1, 2) ◦2 (1, 2, 1) + (id× T )(1, 2) ◦1 (1, 2, 1) = 0 (18)

(which is not the case in, say, of the Barrat–Eccles operad: a suitable combina-
tion is just homological to zero. Note also that the Barrat–Eccles operad acts
on C(X) via χ, see [2]). The condition (8) is a result of

(1, 2, 1) ◦2 (1, 2) + (T × id)(1, 2) ◦2 (1, 2, 1) + (1, 2) ◦1 (1, 2, 1) = d(1, 2, 1, 3, 1).

Remark 2. The extended homotopy G-algebra structure, consisting of the
operations Ek

p,q, establishes connections just between ^k and ^ (equivalently,

between ∇k and ∇ or between Ek
1,1 and 1, 2 in χ), but not connections between
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^m and ^n generally. Here are two operations establishing connections be-
tween ^2 and ^1: G1,2 = (1, 2, 1, 3, 1, 3, 2), G2,1 = (1, 2, 3, 2, 3, 1, 3) ∈ F3χ(3)4

satisfy the conditions

dG2,1(a, b; c) + G2,1(da, b; c) + G2,1(a, db; c) + G2,1(a, b; dc)

= (a ^1 b) ^2 c + a ^1 (b ^2 c) + (a ^2 c) ^2 b

+E1
2,1(a, b; c) + E1

2,1(b, a; c)

and

dG1,2(a; b, c) + G1,2(da; b, c) + G1,2(a; db, c) + G1,2(a; b, dc)

= a ^2 (b ^1 c) + b ^1 (a ^2 c) + (a ^2 c) ^1 b

+E1
1,2(a; b, c) + E1

1,2(a; c, b)

already in the operad χ. Note that the element (1, 2) ∈ F1χ generates the operad
F1χ. Furthermore, (1, 2) and E1

1,k = (1, 2, 1, 3, 1, . . . , 1, k, 1, k + 1, 1) ∈ F2χ
generate the operad F2χ [11] (but not freely: for example (18) is a relation).
The elements E1

p,q belong to the suboperad F3χ but they, together with (1, 2)

and E0
1,k, do not generate F3χ: it is possible to check that the elements G1,2 =

(1, 2, 1, 3, 1, 3, 2), G2,1 = (1, 2, 3, 2, 3, 1, 3) ∈ F3χ(3)4 cannot be obtained.

Remark 3. Besides C∗(X), the elements E0
1,q ∈ F2χ act also on the Hochschild

cochain complex of an associative algebra C∗(U,U) (they determine the oper-
ations described in [7] and [5]). This action answers the so-called Deligne con-
jecture about the action of the operad F2χ on C∗(U,U) since it is generated
by (1, 2) ∈ F1χ and E0

1,q ∈ F2χ [11]. It follows from (9) that for a homotopy

G-algebra (A, d, ·, {E0
1,k}) the commutator [a, b] = a ^1 b + b ^1 a satisfies

the Jacobi identity. Together with (6) it implies on the H(A) a Lie bracket of
degree -1. Besides, (7) and (8) imply that [a,−] : H(A) → H(A) is a derivation
so that H(A) becomes a Gerstenhaber algebra [3]. This structure is generally
nontrivial for A = C∗(U,U) but the trivial for A = C∗(X) because of the
existence of ^2 there. The nontriviality of the Gerstenhaber bracket on the
Hochschild cohomology also implies that C∗(U,U) is not an extended homo-
topy G-algebra in general: here E1

1,1 =^2 cannot act. One more example of a
homotopy G-algebra is the cobar construction of a DG-Hopf algebra [8].
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