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ON THE UNIFORM CONVERGENCE AND
L-CONVERGENCE OF DOUBLE FOURIER SERIES WITH


RESPECT TO THE WALSH–KACZMARZ SYSTEM
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Abstract. In this paper we study the approximation by rectangular partial
sums of a double Fourier series with respect to the Walsh–Kaczmarz system
in the spaces C and L. From our results we obtain different criteria of the
uniform convergence and L-convergence of a double Fourier–Kaczmarz series.
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1. Introduction


L. Zhizhiashvili ([13], Part. 2, Ch. 3) has established certain approximation
properties of rectangular partial sums of a double trigonometric Fourier series
in the spaces C and L. An analogous question for a double Fourier series with
respect to the Walsh–Paley system were treated in [2], [8].


We will study the approximation of a function f ∈ Lp in the norm of Lp for
p = 1 or p = ∞ by means of rectangular partial sums of a double Fourier series
with respect to the Walsh–Kaczmarz system; see Theorems 1, 2 and 3. From
these theorems one can obtain different criteria for the uniform convergence and
L1-convergence of a double Fourier series with respect to the Walsh–Kaczmarz
system, in particular, establish a two-dimensional version of the Dini–Lipschitz
condition (see Corollaries 1 and 2).


Results of a somewhat different type can be obtained by using the variation
of a function.


Jordan [7] introduced a class of functions of bounded variation and, applying
it to the theory of Fourier series, he proved that if a continuous function has
bounded variation, then its Fourier series converges uniformly. In 1906 Hardy [6]
generalized the Jordan criterion to the double Fourier series and introduced, for
the function of two variables, the notion of bounded variation. He proved that if
the continuous function of two variables has bounded variation (in the sense of
Hardy), then its Fourier series converges uniformly in the sense of Pringsheim
(see, e.g., [13]). An analogous result for a double Walsh–Fourier series was
verified by Moricz [8]. The author proves in [3] that in Hardy’s theorem there
is no need to require the boundedness of nuxed variation (see V1,2 (f) below), in
particular, it is proved that if f is continuous function and has bounded partial
variation, then its double trigonometric Fourier series converges uniformly on
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[0, 2π]2 in the sense of Pringsheim. An analogous result for a double Walsh–
Fourier series is established in [4]. In this paper we study a similar question in
the case of the Walsh–Kaczmarz system (see Theorem 4).


2. Definitions and Notation


We denote the sets of all non-negative integers by N, the set of real numbers
by R and the set of dyadic rational numbers in the unit interval [0,1] by Q. In
particular, each element of Q has the form p


2n for some p, n ∈ N, 0 ≤ p ≤ 2n.
Let r0 (x) be the function


r0 (x) =


{
1 if x ∈ [0, 1/2)


−1 if x ∈ [1/2, 1)
, r0 (x + 1) = r0 (x) .


The Rademacher system is defined by rn (x) = r0 (2n x), n ≥ 1 and x ∈ [0, 1).
The Walsh system in the Paley enumeration {wn(x) : n ∈ N} is defined by


wn(x) =
m∏


j=0


(rj(x))nj ,


where nj, j = 1, . . . , m, are the binary coefficients of n.
Now we recall the definition of the Walsh–Kaczmarz system {ψn(x) : n ∈ N} .


Set ψ0 (x) = 1, while for n ≥ 1 with the binary coefficients nk, k = 1, . . . ,m,
set


ψn(x) = rm (x)
m−1∏
j=0


(rm−j−1(x))nj .


Let us consider the Dirichlet kernels


Dn (x) =
n−1∑
j=0


ωj (x) , Kn (x) =
n−1∑
j=0


ψj (x)


for the Walsh–Paley system and for the Walsh–Kaczmarz system, respectively.
We need the well-known equality for the Dirichlet kernel of the Walsh–Paley


system (see [5], p. 27)


D2n (x) =


{
2n if x ∈ [0, 1/2n) ;


0 if x ∈ [1/2n, 1) .
(1)


The transformation τn for x ∈ [0, 1) is defined by


τn (x) =
n−1∑


k=0


xn−k−1 2−(k+1) +
∞∑


j=n


xj 2−(j+1),


where x =
∞∑


k=1


xk2
−(k+1) is the dyadic expansion of x (for x ∈ Q we choose the


expansion for which xk → 0 as k →∞).







ON THE UNIFORM CONVERGENCE AND L-CONVERGENCE 225


We apply the transformation τn also for integers p ≥ 0 given by


τn (p) =
n−1∑
j=0


xn−j−1 2j,


where


p =
n−1∑
j=0


xj 2j.


Given n ≥ 0 and 0 ≤ p < 2n, we set


In (p) = [p 2−n, (p + 1) 2−n).


It is evident that the transformation τn (x) maps the segment In (p) on the
segment In (τn (p)) .


It is known [11] that


Kn (x) = D2k (x) + rk (x) Dm (τk (x)) for n = 2k + m, 0 ≤ m < 2k, (2)


and


|Dm (τk (x))| ≤ 2k


τk (p)
for x ∈ Ik (p) , p = 1, 2, . . . , 2k − 1. (3)


We consider the double system {ψn(x)× ψm(y) : n,m ∈ N} on the unit
square I2 = [0, 1)× [0, 1) . If f ∈ L (I2) , then


f̂ (n, m) =


1∫


0


1∫


0


f (x, y) ψn(x)ψm(y) dx dy


is the (n,m)-th Fourier coefficient of f.
The rectangular partial sums of double Fourier series with respect to the


Walsh–Kaczmarz system are defined by


SM,N (f ; x, y) =
M−1∑
m=0


N−1∑
n=0


f̂ (m,n) ψm(x)ψn(y).


As usual, denote by L (I2) the set of all measurable functions defined on I2,
for which ‖f‖1, the integral of |f(x, y)| on I2, is finite. Furthermore, let C (I2)
be the set of all functions f : I2 → R that are uniformly continuous from the
dyadic topology of I2 to the usual topology of R with the norm (see [9], pp.
9–11)


‖f‖C = sup
x,y∈I2


|f (x, y)| (
f ∈ C


(
I2


))
.


The total modulus of continuity and the total integrated modulus of conti-
nuity are respectively defined by


ω (f ; δ1, δ2)C = sup
{∥∥f (x⊕ u, y ⊕ v)− f (x, y)


∥∥
C


: 0 ≤ u < δ1, 0 ≤ v < δ2


}
,


ω (f ; δ1, δ2)1 = sup
{∥∥f (x⊕ u, y ⊕ v)− f (x, y)


∥∥
1


: 0 ≤ u < δ1, 0 ≤ v < δ2


}
,
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where ⊕ denotes the dyadic addition (see, e.g., [5], [9]), while the partial moduli
of continuity and the partial integrated moduli of continuity are respectively
defined by


ω1 (f ; δ)C = ω (f ; δ, 0)C and ω2 (f ; δ)C = ω (f ; 0, δ)C , f ∈ C
(
I2


)
,


ω1 (f ; δ)1 = ω (f ; δ, 0)1 and ω2 (f ; δ)1 = ω (f ; 0, δ)1 , f ∈ L
(
I2


)
.


We also use the notion of the mixed modulus of continuity, and the mixed
integrated modulus of continuity which are respectively defined as follows:


ω1,2 (f ; δ1, δ2)C = sup
{∥∥f (x⊕ u, y ⊕ v)− f (x⊕ u, y)


−f (x, y ⊕ v) + f (x, y)
∥∥


C
: 0 ≤ u < δ1, 0 ≤ v < δ2


}
, f ∈ C


(
I2


)
,


ω1,2 (f ; δ1, δ2)1 = sup
{∥∥f (x⊕ u, y ⊕ v)− f (x⊕ u, y)


−f (x, y ⊕ v) + f (x, y)
∥∥


1
: 0 ≤ u < δ1, 0 ≤ v < δ2


}
, f ∈ L


(
I2


)
.


A function f : I2 → R is said to be of bounded variation in the sense of
Hardy(f ∈ HBV (I2)) if there exists a constant K such that for any partition


∆1 : 0 ≤ x0 < x1 < x2 < · · · < xn ≤ 1,


∆2 : 0 ≤ y0 < y1 < y2 < · · · < ym ≤ 1,


we have


V1,2 (f) = sup
∆1×∆2


n−1∑
i=0


m−1∑
j=0


∣∣f (xi, yj)− f (xi+1, yj)


− f (xi, yj+1) + f (xi+1, yj+1)
∣∣ ≤ K,


V1 (f) = sup
y


sup
∆1


n−1∑
i=0


∣∣f (xi, y)− f (xi+1, y)
∣∣ ≤ K,


V2 (f) = sup
x


sup
∆2


m−1∑
j=0


∣∣f (x, yj)− f (x, yj+1)
∣∣ ≤ K.


Definition 1 ([4]). We say that the function f : I2 → R is of bounded
partial variation (f ∈ PBV (I2)) if V1 (f) and V2 (f) are finite.


Given a function f (x, y) , periodic in both variables with period 1, for 0 ≤
j < 2m and 0 ≤ i < 2n and integers m,n ≥ 0 we set


∆m
j f (x, y)1 = f


(
x⊕ 2j2−m−1, y


)− f
(
x⊕ (2j + 1) 2−m−1, y


)
,


∆n
i f (x, y)2 = f


(
x, y ⊕ 2i2−n−1


)− f
(
x, y ⊕ (2i + 1) 2−n−1


)
,


∆mn
ji f (x, y) = ∆n


i


(
∆m


j f (x, y)1


)
2


= ∆m
j (∆n


i f (x, y)2)1


= f
(
x⊕ 2j2−m−1, y ⊕ 2i2−n−1


)− f
(
x⊕ (2j + 1) 2−m−1, y ⊕ 2i2−n−1


)


− f
(
x⊕ 2j2−m−1, y ⊕ (2i + 1) 2−n−1


)


+ f
(
x⊕ (2j + 1) 2−m−1, y ⊕ (2i + 1) 2−n−1


)
.
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Furthermore, set λm
0 = 1 and λm


j = (τm (j))−1 for 1 ≤ j < 2m and


W (1)
m (f ; x, y) =


2m−1∑
j=0


λm
j


∣∣∆m
j f (x, y)1


∣∣ ,


W (2)
n (f ; x, y) =


2n−1∑
i=0


λn
i |∆n


i f (x, y)2| ,


Wmn (f ; x, y) =
2m−1∑
j=0


2n−1∑
i=0


λm
j λn


i


∣∣∆mn
ji f (x, y)


∣∣ .


2.1. Main Results.


Theorem 1. Let M, N be positive integers such that M = 2m+j, 0 ≤ j < 2m,
and N = 2n + i, 0 ≤ i < 2n, for some integers m,n ≥ 0. If f ∈ C (I2) , then


‖SM,N (f)− f‖C


≤ ω


(
f ;


1


2m
,


1


2n


)


C


+
1


2


∥∥W (1)
m (f)


∥∥
C


+
1


2


∥∥W (2)
n (f)


∥∥
C


+
1


4
‖Wmn (f)‖C .


Theorem 2. Let M, N be positive integers such that M = 2m+j, 0 ≤ j < 2m,
and N = 2n + i, 0 ≤ i < 2n, for some integers m,n ≥ 0. If f ∈ C (I2); then


‖SM,N (f)− f‖C


≤ c


{
ω1


(
f ;


1


2m


)


C


m + ω2


(
f ;


1


2n


)


C


n + ω1,2


(
f ;


1


2m
,


1


2n


)


C


mn


}
.1


Corollary 1. Let f ∈ C (I2) and


ω1


(
f ;


1


2m


)


C


m → 0 as m →∞,


ω2


(
f ;


1


2n


)


C


n → 0 as n →∞,


ω1,2


(
f ;


1


2m
,


1


2n


)


C


mn → 0 as n,m →∞;


then the double Fourier series with respect to Walsh–Kaczmarz system converges
uniformly on I2.


Theorem 3. Let M, N be positive integers such that M = 2m+j, 0 ≤ j < 2m,
and N = 2n + i, 0 ≤ i < 2n, for some integers m,n ≥ 0. If f ∈ L (I2); then


‖SM,N (f)− f‖1


≤ c


{
ω1


(
f ;


1


2m


)


1


m + ω2


(
f ;


1


2n


)


1


n + ω1,2


(
f ;


1


2m
,


1


2n


)


1


mn


}
.


1Here and below the constant c is an absolute constant and may be different in different
places.
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Corollary 2. Let f ∈ L (I2) and


ω1


(
f ;


1


2m


)


1


m → 0 as m →∞,


ω2


(
f ;


1


2n


)


1


n → 0 as n →∞,


ω1,2


(
f ;


1


2m
,


1


2n


)


1


mn → 0 as n,m →∞;


then the double Fourier series with respect to Walsh–Kaczmarz system converges
to f in L-norm.


Theorem 4. Let f ∈ C (I2)∩PBV (I2) .Then the double Fourier series with
respect to Walsh–Kaczmarz system converges uniformly on I2.


2.2. Proof of the Main Results.
Proof of Theorem 1. By (2) we write


SM,N (f ; x, y)− f (x, y)


=


1∫


0


1∫


0


[f (x⊕ u, y ⊕ v)− f (x, y)] KM (u) KN (v) du dv


=


1∫


0


1∫


0


[f (x⊕ u, y ⊕ v)− f (x, y)] D2m (u) D2n (v) du dv


+


1∫


0


1∫


0


[f (x⊕ u, y ⊕ v)− f (x, y)] D2m (u) rn (v) Di (τn (v)) du dv


+


1∫


0


1∫


0


[f (x⊕ u, y ⊕ v)− f (x, y)] D2n (v) rm (u) Dj (τm (u)) du dv


+


1∫


0


1∫


0


[f (x⊕ u, y ⊕ v)−f (x, y)] rn (v) rm (u) Dj (τm (u)) Di (τn (v)) dudv


= I + II + III + IV. (4)


We find by (1) that


‖I‖C = 2n+m


∥∥∥∥
1/2m∫


0


1/2n∫


0


[f (x⊕ u, y ⊕ v)− f (x, y)] du dv


∥∥∥∥
C


≤ ω


(
f ;


1


2m
,


1


2n


)


C


. (5)


It is well-known (see, e.g., [5]) that







ON THE UNIFORM CONVERGENCE AND L-CONVERGENCE 229


a) w2m (u) =


{
1 if u ∈ Im+1 (2j)


−1 if u ∈ Im+1 (2j + 1) ,
m ∈ N, 0 ≤ j < 2m;


b) t = u⊕ 2−m−1 is a one-to-one mapping of Im+1 (2j) onto Im+1 (2j + 1) .
Thus, by (1) and (a)–(b) ,


II = 2m


∫


Im(0)


1∫


0


[f (x⊕ u, y ⊕ v)− f (x, y)] rn (v) Di (τn (v)) du dv


= 2m


2n−1∑
r=0


∫


Im(0)


( ∫


In(r)


[f (x⊕ u, y ⊕ v)− f (x, y)] rn (v) Di (τn (v)) dv
)
du


= 2m


2n−1∑
r=0


∫


Im(0)


( ∫


In+1(2r)


[f (x⊕ u, y ⊕ v)− f (x, y)] Di (τn (v)) dv


−
∫


In+1(2r+1)


[f (x⊕ u, y ⊕ v)− f (x, y)] Di (τn (v)) dv
)
du


= 2m


2n−1∑
r=0


∫


Im(0)


∫


In+1(2r)


[
f (x⊕ u, y ⊕ v)− f


(
x⊕ u, y ⊕ v ⊕ 2−n−1


)]


×Di (τn (v)) du dv


= 2m


∫


Im(0)


∫


In+1(0)


[
f (x⊕ u, y ⊕ v)− f


(
x⊕ u, y ⊕ v ⊕ 2−n−1


)]


×Di (τn (v)) du dv


+ 2m


2n−1∑
r=1


Di (τn (r))


∫


Im(0)


∫


In+1(0)


[
f


(
x⊕ u, y ⊕ v ⊕ 2r2−n−1


)


−f
(
x⊕ u, y ⊕ v ⊕ (2r + 1) 2−n−1


)]
du dv.


From (3) we have


|II| ≤ 2m i


∫


Im(0)


∫


In+1(0)


|∆n
0f (x⊕ u, y ⊕ v)2| du dv


+ 2m+n


∫


Im(0)


∫


In+1(0)


2n−1∑
r=1


1


τn (r)
|∆n


r f (x⊕ u, y ⊕ v)2| du dv.


Consequently,


‖II‖C ≤
1


2


∥∥W (2)
n (f)


∥∥
C


. (6)
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The estimation of III is analogous to that of II and we have


‖III‖C ≤
1


2


∥∥W (1)
m (f)


∥∥
C


. (7)


Following a similar pattern for the case of II, by (a)–(b) we obtain


IV =
2m−1∑
s=0


2n−1∑
r=0


Di (τn (r)) Dj (τm (s))


( ∫


Im+1(2s)


∫


In+1(2r)


−
∫


Im+1(2s)


∫


In+1(2r+1)


−
∫


Im+1(2s+1)


∫


In+1(2r)


+


∫


Im+1(2s+1)


∫


In+1(2r+1)


)
[f (x⊕ u, y ⊕ v)− f (x, y)] du dv


=
2m−1∑
s=0


2n−1∑
r=0


Di (τn (r)) Dj (τm (s))


×
∫


Im+1(2s)


∫


In+1(2r)


[
f


(
x⊕ u⊕ 2−m−1, y ⊕ v ⊕ 2−n−1


)


− f
(
x⊕ u⊕ 2−m−1, y ⊕ v


)


−f
(
x⊕ u, y ⊕ v ⊕ 2−n−1


)
+ f (x⊕ u, y ⊕ v)


]
du dv


=
2m−1∑
s=0


2n−1∑
r=0


Di (τn (r)) Dj (τm (s))


×
∫


Im+1(0)


∫


In+1(0)


[
f


(
x⊕ u⊕ (2s + 1) 2−m−1, y ⊕ v ⊕ (2r + 1) 2−n−1


)


− f
(
x⊕ u⊕ (2s + 1) 2−m−1, y ⊕ v ⊕ 2r2−n−1


)


− f
(
x⊕ u⊕ 2s2−m−1, y ⊕ v ⊕ (2r + 1) 2−n−1


)


+f
(
x⊕ u⊕ 2s2−m−1, y ⊕ v ⊕ 2r2−n−1


)]
du dv.


By (3) we obtain


|IV | ≤ ij


∫


Im+1(0)


∫


In+1(0)


|∆mn
00 f (x⊕ u, y ⊕ v)| du dv


+ j2n


∫


Im+1(0)


∫


In+1(0)


2n−1∑
r=1


1


τn (r)
|∆mn


0r f (x⊕ u, y ⊕ v)| du dv


+ i2m


∫


Im+1(0)


∫


In+1(0)


2m−1∑
s=1


1


τm (s)
|∆mn


s0 f (x⊕ u, y ⊕ v)| du dv
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+ 2n+m


∫


Im+1(0)


∫


In+1(0)


2n−1∑
r=1


2m−1∑
s=1


1


τn (r)


1


τm (s)
|∆mn


sr f (x⊕ u, y ⊕ v)| du dv


≤ 2n+m


∫


Im+1(0)


∫


In+1(0)


Wmnf (f ; x⊕ u, y ⊕ v) du dv.


Consequently,


‖IV ‖C ≤
1


4
‖Wmn (f)‖C . (8)


Combining (4)–(8), we complete the proof of Theorem 1. ¤
Proof of Theorem 2. Since


2n−1∑
r=0


λn
r = 1 +


2n−1∑
r=1


1


τn (r)
= 1 +


2n−1∑
r=1


1


r
≤ cn


and


W (1)
m (f ; x, y) ≤ ω1


(
f ;


1


2m


)


C


2m−1∑
r=0


λm
r ≤ cω1


(
f ;


1


2m


)
m,


W (2)
n (f ; x, y) ≤ ω2


(
f ;


1


2n


)


C


2n−1∑
i=0


λn
i ≤ cω2


(
f ;


1


2n


)
n,


Wmn (f ; x, y) ≤ ω1,2


(
f ;


1


2m
,


1


2n


)


C


2n−1∑
r=0


2m−1∑
i=0


λn
r λm


i ≤ cω1,2


(
f ;


1


2m
,


1


2n


)
nm,


the validity of Theorem 2 follows from Theorem 1. ¤
Calculations similar to those that were performed in the proofs of Theorems


1, 2 and the application of the Minkowski inequality yield the validity of The-
orem 3.


Proof of Theorem 4. On the basis of Theorem 1 it suffices to show that
∥∥W (1)


m (f)
∥∥


C
→ 0 as m →∞,∥∥W (2)


n (f)
∥∥


C
→ 0 as n →∞,


‖Wmn (f)‖C → 0 as n,m →∞.


Let


Am
r =


{
j : j = 1, 2m − 1, 2r ≤ τm (j) < 2r+1


}
, r = 0, 1, . . . , m− 1.


Then it is evident that


|Am
r | < 2r (9)


and
m−1⋃
r=0


Am
r = {1, 2, . . . , 2m − 1} . (10)
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By the condition of the theorem and (9), (10) we get


W (1)
m (f ; x, y) = |∆m


0 f (x, y)1|+
2m−1∑
j=1


1


τm (j)


∣∣∆m
j f (x, y)1


∣∣


≤ ω1


(
f ;


1


2m


)


C


+
m−1∑
r=0


∑
j∈Am


r


1


τm (j)


∣∣∆m
j f (x, y)1


∣∣


≤ ω1


(
f ;


1


2m


)


C


+
m−1∑
r=0


1


2r


∑
j∈Am


r


∣∣∆m
j f (x, y)1


∣∣


≤ ω1


(
f ;


1


2m


)


C


+


η(m)−1∑
r=0


1


2r


∑
j∈Am


r


∣∣∆m
j f (x, y)1


∣∣


+
m−1∑


r=η(m)


1


2r


∑
j∈Am


r


∣∣∆m
j f (x, y)1


∣∣


≤ ω1


(
f ;


1


2m


)


C


+ ω1


(
f ;


1


2m


)


C


η(m)−1∑
r=0


1


2r
|Am


r |+ V1 (f)
m−1∑


r=η(m)


1


2r


≤ c


{
ω1


(
f ;


1


2m


)


C


η (m) +
1


2η(m)


}
→ 0 as m →∞,


where


min
1≤η≤2m−1


{
ω1


(
f ;


1


2m


)


C


η +
1


2η


}
= ω1


(
f ;


1


2m


)


C


η (m) +
1


2η(m)
;


consequently, ∥∥W (1)
m (f)


∥∥
C
→ 0 as m →∞. (11)


Analogously, ∥∥W (2)
n (f)


∥∥
C
→ 0 as n →∞. (12)


We write


Wmn (f ; x, y) = |∆mn
00 f (x, y)|+


2n−1∑
i=1


1


τn (i)
|∆mn


0i f (x, y)|


+
2m−1∑
j=1


1


τm (j)


∣∣∆mn
j0 f (x, y)


∣∣ +
2m−1∑
j=1


2n−1∑
i=1


1


τn (i)


1


τm (j)


∣∣∆mn
ji f (x, y)


∣∣


= I + II + III + IV. (13)


It is evident that


|∆mn
00 f (x, y)| ≤ ω1,2


(
f ;


1


2m
,


1


2n


)


C


→ 0 as n,m →∞. (14)


Since ∣∣∆mn
j0 f (x, y)


∣∣ ≤
∣∣∆m


j f (x, y)1


∣∣ +
∣∣∆m


j f
(
x, y ⊕ 2−n−1


)
1


∣∣ ,
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from (11) we get


‖II‖C ≤ 2
∥∥W (2)


n (f)
∥∥


C
→ 0 as m →∞. (15)


Analogously,


‖III‖C → 0 as m →∞. (16)


From (9) and (10) we get


IV =
m−1∑
r=0


n−1∑
s=0


∑
j∈Am


r


∑
i∈An


s


1


τn (i)


1


τm (j)


∣∣∆mn
ji f (x, y)


∣∣


≤
m−1∑
r=0


1


2r


n−1∑
s=0


1


2s


∑
j∈Am


r


∑
i∈An


s


∣∣∆mn
ji f (x, y)


∣∣ . (17)


Since
∑


j∈Am
r


∑
i∈An


s


∣∣∆mn
ji f (x, y)


∣∣ ≤ 2 |Am
r | sup


x∈[0,1]


∑
i∈An


s


|∆n
i f (x, y)2| ,


∑
j∈Am


r


∑
i∈An


s


∣∣∆mn
ji f (x, y)


∣∣ ≤ 2 |An
s | sup


y∈[0,1]


∑
j∈Am


r


∣∣∆m
j f (x, y)1


∣∣ ,


we have


∑
j∈Am


r


∑
i∈An


s


∣∣∆mn
ji f (x, y)


∣∣ =


( ∑
j∈Am


r


∑
i∈An


s


∣∣∆mn
ji f (x, y)


∣∣ )1/2


×
( ∑


j∈Am
r


∑
i∈An


s


∣∣∆mn
ji f (x, y)


∣∣
)1/2


≤ 2


[
|Am


r | |An
s |


× sup
x∈[0,1]


∑
i∈An


s


|∆n
i f (x, y)2| sup


y∈[0,1]


∑
j∈Am


r


∣∣∆m
j f (x, y)1


∣∣
]1/2


. (18)


After substituting (18) in (17), we obtain by (9) and the condition of the
theorem that


IV ≤ 2
m−1∑
r=0


1


2r/2


(
sup


y∈[0,1]


∑
j∈Am


r


∣∣∆m
j f (x, y)1


∣∣
)1/2


×
n−1∑
s=0


1


2s/2


(
sup


x∈[0,1]


∑
i∈An


s


|∆n
i f (x, y)2|


)1/2


= 2


{ ϕ(m)−1∑
r=0


1


2r/2


(
sup


y∈[0,1]


∑
j∈Am


r


∣∣∆m
j f (x, y)1


∣∣
)1/2


+
m−1∑


r=ϕ(m)


1


2r/2


(
sup


y∈[0,1]


∑
j∈Am


r


∣∣∆m
j f (x, y)1


∣∣
)1/2


}
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×
{ ψ(n)−1∑


s=0


1


2s/2


(
sup


x∈[0,1]


∑
i∈An


s


|∆n
i f (x, y)2|


)1/2


+
n−1∑


s=ψ(n)


1


2r/2


(
sup


x∈[0,1]


∑
i∈An


s


|∆n
i f (x, y)2|


)1/2
}


≤ c


{√
ω1


(
f ;


1


2m


)


C


ϕ (m) +
1


2ϕ(m)/2


}


×
{√


ω2


(
f ;


1


2n


)


C


ψ (n) +
1


2ψ(n)/2


}
→ 0 as m,n →∞, (19)


where


min
1≤ϕ≤2m−1


{√
ω1


(
f ;


1


2m


)


C


ϕ +
1


2ϕ/2


}
=


√
ω1


(
f ;


1


2m


)


C


ϕ (m) +
1


2ϕ(m)/2


and


min
1≤ψ≤2n−1


{√
ω2


(
f ;


1


2n


)


C


ψ +
1


2ψ/2


}
=


√
ω2


(
f ;


1


2n


)


C


ψ (n) +
1


2ψ(n)/2
.


Combining (13)–(16) and (19) we have


‖Wmn (f)‖C → 0 as n,m →∞. (20)


From (11), (12) and (20) we complete the proof of Theorem 4. ¤
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