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REPRESENTATION OF SOLUTIONS OF SOME BOUNDARY
VALUE PROBLEMS OF ELASTICITY BY A SUM OF THE
SOLUTIONS OF OTHER BOUNDARY VALUE PROBLEMS

N. KHOMASURIDZE

Abstract. Basic static boundary value problems of elasticity are considered
for a semi-infinite curvilinear prism Ω = {ρ0 < ρ < ρ1, α0 < α < α1, 0 <
z < ∞} in generalized cylindrical coordinates ρ, α, z with Lamé coefficients
hρ = hα = h(ρ, α), hz = 1. It is proved that the solution of some boundary
value problems of elasticity can be reduced to the sum of solutions of other
boundary value problems of elasticity. Besides its cognitive significance, this
fact also enables one to solve some non-classical elasticity problems.
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Introduction. When some boundary value problems of elasticity are solved in
generalized cylindrical coordinates ρ, α, z for a semi-infinite curvilinear prism
Ω = {ρ0 < ρ < ρ1, α0 < α < α1, 0 < z < ∞} it turns out that the solution of
some boundary value problems for a semi-infinite prism can be represented as
a sum of solutions of some other boundary value problems for the same prism.
This fact is stated in the paper in the form of two theorems, which underlie some
non-classical elasticity problems for semi-infinite curvilinear prisms in Remarks
1, 2, 3 and 4. A solution method of some usual and mixed boundary value
problems is also given.

Generalized cylindrical coordinates ρ, α, z are coordinates where ρ, α form
a curvilinear orthogonal system of coordinates on the plane and z is a linear
coordinate (−∞ < z < ∞), with Lamé coefficients hρ = hα = h(ρ, α), hz = 1
of the system. The main coordinates of this type are listed below [1].

1. Cartesian coordinates x, y, z (−∞ < x < ∞, −∞ < y < ∞, −∞ < z <
∞).

2. Circular cylindrical coordinates r, α, z (0 ≤ r < ∞, 0 ≤ α < 2π,
−∞ < z < ∞); x = r cos α, y = r sin α, h = r. If ρ, α, z imply circular
cylindrical coordinates, then ∂

∂ρ
is substituted by r ∂

∂r
.

3. Cylindrical elliptical coordinates ρ, α, z (0 ≤ ρ < ∞, 0 ≤ α < 2π,

−∞ < z < ∞); x = c cosh ρ cos α, y = c sinh ρ sin α, h = c
√

cosh2 ρ− cos2 α,
where c is a scale factor.

4. Cylindrical parabolic coordinates ρ, α, z (−∞ < ρ < ∞, 0 ≤ α < ∞,

−∞ < z < ∞); x = c ρ2−α2

2
, y = cρα, h = c

√
ρ2 + α2.
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5. Cylindrical bipolar coordinates ρ, α, z (−∞ < ρ < ∞, 0 ≤ α < 2π,

−∞ < z < ∞); x =
c sinh ρ

cosh ρ + cos α
, y =

c sin α

cosh ρ + cos α
, h =

c

cosh ρ + cos α
.

Some particular cases of semi-infinite curvilinear prisms are the following: a
semi-infinite tetrahedral prism Ω = {0 < x < x1, 0 < y < y1, 0 < z < ∞},
semi-infinite circular cylinders Ω = {0 ≤ r < r1, 0 ≤ α < 2π, 0 < z < ∞} and
Ω = {r0 < r < r1, 0 ≤ α < 2π, 0 < z < ∞}, semi-infinite elliptical cylinders
Ω = {0 < ρ < ρ1, 0 ≤ α < 2π, 0 < z < ∞} and Ω = {ρ0 < ρ < ρ1, 0 ≤ α < 2π,
0 < z < ∞}, etc.

1. In the generalized cylindrical coordinates consider the elastic equilibrium of
a homogeneous and isotropic semi-infinite curvilinear prism Ω = {ρ0 < ρ < ρ1,
α0 < α < α1, 0 < z < ∞} with the following boundary conditions

with ρ = ρj we have : a) u = 0, ωz = 0, Zρ = 0 or

b) e = 0, v = 0, w = 0,
(1)

with α = αj we have : a) v = 0, Zα = 0, ωz = 0 or

b) e = 0, w = 0, u = 0.
(2)

In (1) and (2) we have

ωz = rotz
~U =

1

h2

[
∂(hv)

∂ρ
− ∂(hu)

∂α

]
,

e = div ~U =
1

h2

[
∂(hu)

∂ρ
+

∂(hv)

∂α

]
+

∂w

∂z
.

With z = 0 we have:

a) Zz = F1(ρ, α), hZρ = F2(ρ, α), hZα = F3(ρ, α) or

b) Zz = F1(ρ, α), hu = f2(ρ, α), hv = f3(ρ, α), or

c) w = f1(ρ, α), hZρ = F2(ρ, α), hZα = F3(ρ, α), or

d) w = f1(ρ, α), hu = f2(ρ, α), hv = f3(ρ, α).

(3)

In (1), (2) and (3): j = 0, 1; u, v, w are components of the displacement vector
~U along the tangents to the coordinate lines ρ, α, z; Rρ, Aα, Zz are normal
stresses and Zρ = Rz, Rα = Aρ, Az = Zα are tangential stresses. The functions
F1, F2, F3 and f1, f2, f3 are chosen so that the compatibility conditions hold
on the edges of the semi- infinite prism and their differential properties ensure
regularity of the solutions of boundary value problems of elastic equilibrium for
a semi-infinite prism (regularity of the solutions implies the same as in [2] but,
in addition, the displacements and stresses vanish when z →∞).

Hooke’s law in generalized cylindrical coordinates can be written as

1 + ν

E
Rρ =

ν

(1− 2ν)
e +

(
1

h

∂u

∂ρ
+

1

h2

∂h

∂α
v

)
,

1 + ν

E
Aα =

ν

(1− 2ν)
e +

(
1

h

∂v

∂α
+

1

h2

∂h

∂ρ
u

)
,
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1 + ν

E
Zz =

ν

(1− 2ν)
e +

∂w

∂z
,

1 + ν

E
Zρ =

1

2

(
∂u

∂z
+

1

h

∂w

∂ρ

)
,

1 + ν

E
Zα =

1

2

(
1

h

∂w

∂α
+

∂v

∂z

)
,

1 + ν

E
Aρ =

1

2

[
∂

∂ρ

(v

h

)
+

∂

∂α

(u

h

)]
,

where E is the elasticity modulus and ν is the Poisson coefficient.
We shall give a short technical interpretation of the boundary conditions:

(1a), (2a), (3c) with f1 = 0, F2 = F3 = 0 are symmetry-type conditions (SM)
and (1b), (2b), (3b) with F1 = 0, f2 = f3 = 0 are antisymmetry-type conditions
(ASM).

In the case of SM conditions it can be assumed that the cylindrical or plane
boundary S of the semi-finite curvilinear prism is connected to the absolutely
smooth cylindrical or plane boundary surface S, respectively, of an absolutely
rigid body (S does not denote the whole boundary surface of the prism, but
only its part, in particular, ρ = ρj, α = αj or z = 0). By virtue of the absolute
rigidity of the body, the component of the displacement vector normal to S
vanishes and because of the absolute smoothness of S we have ωz|ρ=ρj

= 0,

Zρ|ρ=ρj
= 0 or Zα|α=αj

= 0, ωz|α=αj
= 0, or Zρ|z=0 = 0, Zα|z=0 = 0.

In the case of ASM conditions we can assume that an absolutely flexible, but
absolutely nontensile and noncompressible thin plate is glued onto the cylindri-
cal or plane boundary surface S. Since the plate is absolutely nontensile and
noncompressible we have v|ρ=ρj

= 0, w|ρ=ρj
= 0 or w|α=αj

= 0, u|α=αj
= 0,

or u|z=0 = 0, v|z=0 = 0, and since it is absolutely flexible we have e = 0 (with
z = 0 the conditions e = 0, u = 0, v = 0 are equivalent to the conditions
Zz = 0, u = 0, v = 0).

If with ρ = ρj and α = αj, in addition to conditions (1) and (2), we also
consider the conditions

a) u|ρ=ρj
= 0, Aρ|ρ=ρj

= 0, Zρ|ρ=ρj
= 0 or

b) Rρ|ρ=ρj
= 0, v|ρ=ρj

= 0, w|ρ=ρj
= 0;

c) v|α=αj
= 0, Zα|α=αj

= 0, Rα|α=αj
= 0 or

d) Aα|α=αj
= 0, w|α=αj

= 0, u|α=αj
= 0,

(4)

then it can be easily shown that conditions (1a) and (1b) are equivalent to
conditions (4a) and (4b), respectively, in the case when ρ = ρj is a plane, while
conditions (2a) and (2b) are equivalent to conditions (4c) and (4d), respectively,
when α = αj is a plane. If ρ = ρj and α = αj are planes, then (4a) and (4c)
are simmetry conditions while (4b) and (4c) are antisymmetry conditions.

Write the elastic equilibrium equation as [3]

∆~U +
1

1− 2ν
grad div ~U = 0, (5)

where ∆ = 1
h2

(
∂2

∂ρ2 + ∂2

∂α2

)
+ ∂2

∂z2 .
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Denote boundary value problem (5), (1), (2), (3a) by A(F1, F2, F3), problem
(5), (1), (2), (3b) by B(F1, f2, f3), problem (5), (1), (2), (3c) by C(f1, F2, F3),
problem (5), (1), (2), (3d) by D(f1, f2, f3). In particular, if in problem (5), (1),
(2), (3a) we have F2 = 0 and F3 = 0, then the notation will have the form
A(F1, 0, 0), while if F1 = 0, then A(0, F2, F3), etc.

It should be noted that in the boundary value problems under consideration
the principal vector and the principal moment are assumed to be equal to zero
(to ensure correctness of the problems).

It follows from [2] that for each of the boundary problems A(F1, F2, F3),
B(F1, f2, f3), C(f1, F2, F3) and D(f1, f2, f3), a unique solution can be effectively
constructed (the solution of problems B(F1, 0, 0) and C(0, F2, F3) is given in
Section 2).

The validity of the following representation

a) A(F1, 0, 0) = B(F1, 0, 0)− C(0, F2B, F3B) + A(F1C , 0, 0), (6)

can be easily verified, it implies that the components of the displacement vector
and the stress tensor in the problem A(F1, 0, 0) can be obtained by summing up
the corresponding displacements and the corresponding stresses of the problem
B(F1, 0, 0) and A(F1C , 0, 0) and by subtraction of the corresponding displace-
ments and the corresponding stresses of the problem C(0, F2B, F3B). The func-
tions F2B and F3B which are tangential stresses in the problem C(0, F2B, F3B)
with z=0, are at the same time the tangential stresses in the problem B(F1, 0, 0)
with z = 0 and are taken from the latter after its solution. In quite a similar
way the function F1C in the problem A(F1C , 0, 0) is taken from the problem
C(0, F2B, F3B) after its solution.

It may seem that Equality (6a) makes no sense since the problem A(F1, 0, 0)
can be represented as a difference of the problems B(F1, 0, 0) and C(0, F2B, F3B)
and the problem A(F1C , 0, 0), which is similar to the problem A(F1, 0, 0), but
further on proportionality of the stresses in the problems A(F1, 0, 0) and
A(F1C , 0, 0), is established, which gives meaning to Equality (6a).

Similarly to Equality (6a), we can write

b) B(F1, 0, 0) = A(F1, 0, 0)−D(0, f2A, f3A) + B(F1D, 0, 0),

c) C(f1, 0, 0) = D(f1, 0, 0)− A(0, F2D, F3D) + C(f1A, 0, 0),

d) D(f1, 0, 0) = C(f1, 0, 0)−B(0, f2C , f3C) + D(f1B, 0, 0).

(6)

Note that Equalities (6) can be also written in the following form:

A(F1, 0, 0) = B(F1, 0, 0) + C(0,−F2B,−F3B) + A(−F1C , 0, 0),

B(F1, 0, 0) = A(F1, 0, 0) + D(0,−f2A,−f3A) + B(−F1D, 0, 0),

C(f1, 0, 0) = D(f1, 0, 0) + A(0,−F2D,−F3D) + C(−f1A, 0, 0),

D(f1, 0, 0) = C(f1, 0, 0) + B(0,−f2C ,−f3C) + D(−f1B, 0, 0).
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2. For the considered class of boundary value problems of elasticity the general
solution is given in [2], which has the following form

κhu = z
∂2Φ3

∂z∂ρ
+ κ

∂Φ3

∂ρ
+ 2

∂Φ2

∂ρ
+

4(1− ν2)

E

∂Φ1

∂α
,

κhv = z
∂2Φ3

∂z∂α
+ κ

∂Φ3

∂α
+ 2

∂Φ2

∂α
− 4(1− ν2)

E

∂Φ1

∂ρ
,

κw = z
∂2Φ3

∂z2
− (κ − 1)

∂Φ3

∂z
+ 2

∂Φ2

∂z
,

(7)

where κ = 2(1−ν), (since 0 < ν < 1
2
, we have 1 < κ < 2), ∆Φi = 0 (i = 1, 2, 3).

Using (7) in Hooke’s law we can write

Zz =
E

1− ν2

(
z

2

∂3Φ3

∂z3
+

∂2Φ2

∂z2

)
,

hZρ =
E

1− ν2

∂2

∂ρ∂z

(
z

2

∂Φ3

∂z
+ Φ2

)
+

∂2Φ1

∂α∂z
,

hZα =
E

1− ν2

∂2

∂α∂z

(
z

2

∂Φ3

∂z
+ Φ2

)
− ∂2Φ1

∂ρ∂z
.

(8)

If we apply the method of separation of variables, the harmonic functions Φ1,
Φ2, and Φ3, will take the following form

Φ1 =
∞∑

n=0

∞∑
m=0

A1mne
−p1zψ̃mn,

Φ2 =
∞∑

n=0

∞∑
m=0

A2mne
−pzψmn,

Φ3 =
∞∑

n=0

∞∑
m=0

A3mne
−pzψmn

(9)

for the considered type of problems. In (9) ψmn are eigenfunctions of the fol-
lowing regular Sturm–Liouville problem [4]:

1

h2

(
∂2ψmn

∂ρ2
+

∂2ψmn

∂α2

)
+ p2(m,n) · ψmn = 0;

with ρ = ρj we have : ψmn = 0 or
∂ψmn

∂ρ
= 0,

with α = αj we have ψmn = 0 or
∂ψmn

∂α
= 0.

(10)

If in (10) the constant p(m,n) is substituted by the constant p1(m,n) and the

function ψmn is replaced by the function ψ̃mn, we shall obtain eigenfunctions
ψ̃mn. The boundary conditions in (10) follow from conditions (1) and (2).

For the Cartesian coordinate system ψmn is the product of trigonometric
functions; in the case of cylindrical coordinates ψmn is the product of trigono-
metric and Bessel functions; for a cylindrical elliptic coordinate system ψmn is
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the product of Mattieu functions; for a cylindrical parabolic coordinate system
ψmn is the product of Weber functions. As for the cylindrical bipolar coordinate
system, even in the Laplace equation the variables cannot be entirely separated
for this system.

Note that although the coordinate surfaces of various coordinate systems
enable us to consider elastic equilibrium of different shapes of bodies, the math-
ematical aggregate of the solution remains unchanged. The geometric shape of
an elastic body and the form of the functions ψmn and ψ̃mn are defined by the
parameter h(ρ, α).

Now we shall consider Equation (6a) in more detail and establish the connec-
tion between the boundary value problems A(F1, 0, 0) and A(F1C , 0, 0). First of
all, we shall need the solutions of the boundary value problems B(F1, 0, 0) and
C(0, F2B, F3B), appearing in (6a), so we shall write them out.

Following [2] , the boundary conditions for the problem B(F1, 0, 0) with z = 0

Zz = F1(ρ, α), u = 0, v = 0

taking into account (7) and (8), can be written in an equivalent form, i.e.,

Zz|z=0 =
E

1− ν2

(
∂2Φ2

∂z2

)

z=0

= F1(ρ, α) =
∞∑

n=0

∞∑
m=0

F1mnψmn,

1

h2

[
∂(hu)

∂ρ
+

∂(hv)

∂α

]

z=0

= −
[(

∂2Φ3

∂z2

)

z=0

+
1

1− ν

(
∂2Φ2

∂z2

)

z=0

]
= 0,

1

h2

[
∂(hv)

∂ρ
− ∂(hu)

∂α

]

z=0

=
2(1 + ν)

E

(
∂2Φ1

∂z2

)

z=0

= 0,

(11)

where F1mn is a Fourier coefficient of the function F1(ρ, α), expanded into a
Fourier series with respect to the eigenfunctions ψmn. The proof of the equiv-
alence of the boundary conditions Zz|z=0 = F1(ρ, α), u|z=0 = 0, v|z=0 = 0 and
(11) is also given in [2].

Taking into account (9), it follows from (11) that

A1mn = 0, A2mn =
1− ν2

E

F1mn

p2
, A3mn = −1 + ν

E

F1mn

p2
.

Therefore

Φ1 = 0, Φ2 =
1− ν2

E

∞∑
n=0

∞∑
m=0

F1mn

p2
e−pzψmn,

Φ3 = −1 + ν

E

∞∑
n=0

∞∑
m=0

F1mn

p2
e−pzψmn.
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Hence the problem B(F1, 0, 0) has been solved. Having the solution of the
problem B(F1, 0, 0), we can define

1

h2

[
∂(hZρ)

∂ρ
+

∂(hZα)

∂α

]

z=0

= − E

1− ν2

(
∂3Φ2

∂z3
+

1

2

∂3Φ3

∂z3

)

z=0

=
1− 2ν

2(1− ν)

∞∑
n=0

∞∑
m=0

pF1mnψmn,

1

h2

[
∂(hZα)

∂ρ
− ∂(hZρ)

∂α

]

z=0

=

(
∂3Φ1

∂z3

)

z=0

= 0.

(12)

As in the previous problem, the boundary conditions

w = 0, hZρ = F2B(ρ, α), hZα = F3B(ρ, α)

with z = 0 are written out for the problem C(0, F2B, F3B), taking into account
(7), (8) and (12), in their equivalent form, i.e., as

w|z=0 = − 1− 2ν

2(1− ν)

(
∂Φ3

∂z

)

z=0

+
1

(1− ν)

(
∂Φ2

∂z

)

z=0

= 0,

1

h2

[
∂(hZρ)

∂ρ
+

∂(hZα)

∂α

]

z=0

= − E

1− ν2

(
∂3Φ2

∂z3
+

1

2

∂3Φ3

∂z3

)

z=0

=
1− 2ν

2(1− ν)

∞∑
n=0

∞∑
m=0

pF1mnψmn,

1

h2

[
∂(hZα)

∂ρ
− ∂(hZρ)

∂α

]

z=0

=

(
∂3Φ1

∂z3

)

z=0

= 0.

(13)

Taking (9) into account, (13) implies

A1mn = 0, A2mn =
(1 + ν)(1− 2ν)2

4(1− ν)E

F1mn

p2
, A3mn =

(1 + ν)(1− 2ν)

2(1− ν)E

F1mn

p2
,

therefore

Φ1 = 0, Φ2 =
(1 + ν)(1− 2ν)2

4(1− ν)E

∞∑
n=0

∞∑
m=0

F1mn

p2
e−pzψmn,

Φ3 =
(1 + ν)(1− 2ν)

2(1− ν)E

∞∑
n=0

∞∑
m=0

F1mn

p2
e−pzψmn.

Hence the problem C(0, F2B, F3B) has been also solved. Having the solution of
the problem C(0, F2B, F3B), we can define

Zz|z=0 =
E

1− ν2

(
∂2Φ2

∂z2

)

z=0

=

[
1− 2ν

2(1− ν)

]2 ∞∑
n=0

∞∑
m=0

F1mnψmn

=

(
κ − 1

κ

)2

F1(ρ, α)
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Then for the function F1C(ρ, α), appearing in the problem A(F1C , 0, 0), we shall
have

F1C(ρ, α) =

(
κ − 1

κ

)2

F1(ρ, α).

Hence in Equality (6a) the state of stress in the problem A(F1, 0, 0) is propor-
tional to the state of stress in the problem A(F1C , 0, 0). Proportionality of the
stresses in the problems B(F1, 0, 0) and B(F1D, 0, 0), C(f1, 0, 0) and (f1A, 0, 0),
D(f1, 0, 0) and D(f1B, 0, 0), is proved in a similar way, therefore the following
lemma is valid.

3. Lemma. The states of stress of an elastic semi-infinite curvilinear prism in
the problems A(F1, 0, 0) and A(F1C , 0, 0), B(F1, 0, 0) and B(F1D, 0, 0),
C(f1, 0, 0) and (f1A, 0, 0), D(f1, 0, 0) and D(f1B, 0, 0), appearing in equalities
(6) are proportional, in particular, we have

A(F1C , 0, 0) = k1A(F1, 0, 0) = A(k1F1, 0, 0),

B(F1D, 0, 0) = k2B(F1, 0, 0) = B(k2F1, 0, 0),

C(f1A, 0, 0) = k2C(f1, 0, 0) = C(k2f1, 0, 0),

D(f1B, 0, 0) = k1D(f1, 0, 0) = D(k1f1, 0, 0),

where k1 =
({−1
{

)2
, k2 = − ({−1)2

2{−1
.

Lemma with Equalities (6) in mind leads to Theorem 1.

Theorem 1.

a) A(F1, 0, 0) = g[B(F1, 0, 0)− C(0, F2B, F3B)]

= B(gF1, 0, 0)− C(0, gF2B, gF3B),

b) B(F1, 0, 0) =
1

g
[A(F1, 0, 0)−D(0, f2A, f3A)]

= A

(
1

g
F1, 0, 0

)
−D

(
0,

1

g
f2A,

1

g
f3A

)
,

c) C(f1, 0, 0) =
1

g
[D(f1, 0, 0)− A(0, F2D, F3D)]

= D

(
1

g
f1, 0, 0

)
− A

(
0,

1

g
F2D,

1

g
F3D

)
,

d) D(f1, 0, 0) = g[C(f1, 0, 0)−B(0, f2C , f3C)]

= C(gf1, 0, 0)−B(0, gf2C , gf3C),

(14)

where g = {2

2{−1
.

Corollary a.1. On the boundary surface z = 0 the displacements w in the
problems A(F1, 0, 0) and B(gF1, 0, 0) or, which is the same, in the problems

A
(

1
g
F1, 0, 0)

)
and B(F1, 0, 0), appearing in Equality (14a), are equal.
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Corollary a.2. If on the plane part z = 0 of the boundary surface of the
domain Ω the displacement is equal to zero w = 0, then the tangential stresses
Zρ|z=0 and Zα|z=0 can be chosen so that on z = 0 we will have the defined
normal stress Zz|z=0 = F1(ρ, α). Indeed, write (14a) as

C(0, F2B, F3B) = B(F1, 0, 0)− A

(
1

g
F1, 0, 0

)

taking into account that in the problem B(F1, 0, 0) we have Zρ|z=0 = F2B,
Zα|z=0 = F3B and that, according to Corollary a.1, the displacements w|z=0 in

the problems B(F1, 0, 0) and A
(

1
g
F1, 0, 0

)
are equal, then since the tangential

stresses Zρ|z=0 = F2B and Zα|z=0 = F3B in the problem C(0, F2B, F3B) cause

the stress Zz|z=0 =
(
1− 1

g

)
F1 =

({−1
{

)2
F1 = k1F1 in it, the tangential stresses

Zρ|z=0 = 1
k1

F2B and Zα|z=0 = 1
k1

F3B will cause the stress Zz|z=0 = F1(ρ, α) in

the problem C
(
0, 1

k1
F2B, 1

k1
F2B

)
.

Remark 1. On the surface z = 0 of the domain Ω the problem of determination
of tangential stresses Zρ|z=0 and Zα|z=0, such that they cause the defined stress
Zz|z=0 = F1(ρ, α) with w|z=0 = 0, is reduced to the solution of the boundary

value problem B
(

1
k1

F1, 0, 0
)
, or to be more exact, to the determination of the

tangential stresses Zρ|z=0 and Zα|z=0 in this problem.

Corollary b.1. The displacements w|z=0 in the problems B(F1, 0, 0) and

A
(

1
g
F1, 0, 0

)
or, which is the same, in the problems B(gF1, 0, 0) and A(F1, 0, 0),

appearing in Equality (14b), are equal.

Corollary b.2. If on z = 0 we have w = 0, then the tangential displacements
u|z=0 and v|z=0 can be chosen so that on z = 0 we will have the defined normal
stress Zz|z=0 = F1(ρ, α). Indeed, if (14b) is represented as

D(0, f2A, f3A) = A(F1, 0, 0)−B(gF1, 0, 0)

and if we keep in mind that in the problem A(F1, 0, 0) we have u|z=0 = f2A,
v|z=0 = f3A and that, according to Corollary b.1, the displacements w|z=0 in
the problems A(F1, 0, 0) and B(gF1, 0, 0) are equal, then since the tangential
displacements u|z=0 = f2A and v|z=0 = f2A in the problem D(0, f2A, f3A) cause

here the stress Zz|z=0 = (1− g)F1 = − ({−1)2

2{−1
F1 = k2F1, the tangential stresses

u|z=0 = 1
k2

f2A and v|z=0 = 1
k2

f3A will cause the stress Zz|z=0 = F1(ρ, α) in the

problem D
(
0, 1

k2
f2A, 1

k2
f3A

)
.

Remark 2. On the surface z = 0 of the domain Ω the problem of determi-
nation of tangential displacements u|z=0 and v|z=0, such that with w|z=0 = 0
they will cause the defined stress Zz|z=0 = F1(ρ, α), is reduced to the solution

of the boundary value problem A
(

1
k2

F1, 0, 0
)

, or, to be more precise, to the

determination of the tangential displacements u|z=0 and v|z=0 in this problem.
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Corollary c.1. The stresses Zz|z=0 in the problems C(f1, 0, 0) and

D
(

1
g
f1, 0, 0

)
or, which is the same, in the problems C(gf1, 0, 0) and D(f1, 0, 0),

appearing in (14c), are equal.

Corollary c.2. The stresses Zρ|z=0 and Zα|z=0 can be applied to the free
of stress plane part z = 0 of the boundary surface of the domain Ω so that
on z = 0 we will have the defined normal displacement w|z=0 = f1(ρ, α) (with
Zz|z=0 = 0). Indeed, if (14c) is represented as

A(0, F2D, F3D) = D(f1, 0, 0)− C(gf1, 0, 0)

and if we take into account that in the problem D(f1, 0, 0) we have Zρ|z=0 =
F2D, Zα|z=0 = F3D and that ,according to Corollary .1, the stresses Zz|z=0 in
the problems D(f1, 0, 0) and C(gf1, 0, 0) are equal, then since the tangential
stresses Zρ|z=0 = F2D and Zα|z=0 = F3D in the problem A(0, F2D, F3D) cause
the displacement w|z=0 = (1−g)f1 = k2f1 in it , the tangential stresses Zρ|z=0 =
1
k2

F2D and Zα|z=0 = 1
k2

F3D will cause the displacement w|z=0 = f1(ρ, α) in the

problem A
(
0, 1

k2
F2D, 1

k2
F3D

)
.

Remark 3. The problem of determination of the tangential stresses Zρ|z=0

and Zα|z=0, on the surface z = 0 of the domain Ω which with Zz|z=0 = 0
cause the defined displacement w|z=0 = f1(ρ, α), is reduced to the solution

of the boundary value problem D
(

1
k2

f1, 0, 0
)

or, to be more precise, to the

determination of the tangential stresses Zρ|z=0 and Zα|z=0 in this problem.

Corollary d.1.The stresses Zz|z=0 in the problems D(f1, 0, 0) and C(gf1, 0, 0)

or, which is the same, in the problems D
(

1
g
f1, 0, 0

)
and C(f1, 0, 0), appearing

in (14d) are equal.

Corollary d.2. On the free of stress plane part z = 0 of the boundary surface
of the domain Ω, the displacements u|z=0 and v|z=0 can be applied so that on
z = 0 we will have the defined normal displacement w|z=0 = f1(ρ, α) (with
Zz|z=0 = 0). Indeed, if (14d) is represented as

B(0, f2C , f3C) = C(f1, 0, 0)−D

(
1

g
f1, 0, 0

)

and if we keep in mind that in the problem C(f1, 0, 0) we have u|z=0 = f2C,
v|z=0 = f3C and that according to Corollary d.1, the stresses Zz|z=0 in the

problems C(f1, 0, 0) and D
(

1
g
f1, 0, 0

)
are equal, then since the displacements

u|z=0 = f2C and v|z=0 = f3C cause the displacement w|z=0 =
(
1− 1

g

)
f1 = k1f1

in the problem B(0, f2C , f3C), the displacements u|z=0 = 1
k1

f2C and

v|z=0 = 1
k1

f3C will cause the displacement w|z=0 = f1(ρ, α) in the problem

B
(
0, 1

k1
f2C , 1

k1
f3C

)
.



REPRESENTATION OF SOLUTIONS OF SOME BVPs OF ELASTICITY 267

Remark 4. On the surface z = 0 of the domain Ω the problem of determina-
tion of the displacements u|z=0 and v|z=0, which with Zz|z=0 = 0 will cause the
defined displacement w|z=0 = f1(ρ, α), is reduced to the solution of the bound-

ary value problem C
(

1
k1

f1, 0, 0
)

or, to be more precise, to the determination of

the displacements u|z=0 and v|z=0 in this problem.

To illustrate the above-stated remarks, in particular, Remark 1, in the Carte-
sian coordinate system for a semi-infinite tetrahedral prism Ω = {0 < x <
x1, 0 < y < y1, 0 < z < ∞}, on the sides x = 0 and x = x1 of which the condi-
tion Xx = 0, v = 0, w = 0 is satisfied while on the sides y = 0, y = y1 the condi-
tion Yy = 0, w = 0, u = 0 is fulfilled, consider the following problem: choose on

z = 0 stresses Zx and Zy so that Zz|z=0 = a sin
(

π
x1

x
)

sin
(

π
y1

y
)

(a = const),

while w|z=0 = 0. The solution of this problem, according to Corollary a.2, is
reduced to the solution of a boundary value problem where with x = 0 and
x = x1 we have Xx = 0, v = 0, w = 0, with y = 0 and y = y1 we have Yy = 0,

w = 0, u = 0, and with z = 0 we have Zz|z=0 =
( {
{−1

)2
a sin

(
π
x1

x
)

sin
(

π
y1

y
)
,

u = 0, v = 0. After the solution of the latter problem (see Section 2) we shall
have the required tangential stresses

Zx|z=0 = − κa

κ − 1

y1√
x2

1 + y2
1

cos

(
π

x1

x

)
sin

(
π

y1

y

)
,

Zy|z=0 = − κa

κ − 1

x1√
x2

1 + y2
1

sin

(
π

x1

x

)
cos

(
π

y1

y

)
.

Remark 5. Although in our opinion Theorem 1 is of a cognitive interest, the
main aim of the given paper is neither the theorem itself, nor the solution of the
boundary value problems A(F1, 0, 0), B(F1, 0, 0), C(f1, 0, 0) and D(f1, 0, 0). The
main aim of the article is to state and solve some non-traditional boundary value
problems of elasticity given in Remarks 1, 2, 3, 4, which follow from Theorem
1. In particular, the statement of the problem is: to choose stresses Zρ|z=0 and
Zα|z=0 or displacements u|z=0 and v|z=0, so that both the displacement and
stress along the normal to the plane z = 0, i.e., along the axis Oz, would satisfy
certain conditions, or to be more precise, to obtain the desired stress Zz|z=0 for
w|z=0 = 0 or the desired displacement w|z=0 for Zz|z=0 = 0.

4. Now let us go back to the general case when F1 6= 0, F2 6= 0, F3 6= 0, f1 6= 0,
f2 6= 0, f3 6= 0 and write the following obvious equalities:

A(F1, F2, F3) = A(0, F2, F3) + A(F1, 0, 0),

A(0, F2, F3) = C(0, F2, F3)− A(F1C , 0, 0).

If we introduce the notation A(F1, 0, 0)− A(F1C , 0, 0) = A(F1AC , 0, 0), then

A(F1, F2, F3) = C(0, F2, F3) + A(F1AC , 0, 0).
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Quite similarly we can write

B(F1, f2, f3) = D(0, f2, f3) + B(F1BD, 0, 0),

C(f1, F2, F3) = A(0, F2, F3) + C(f1CA, 0, 0),

D(f1, f2, f3) = B(0, f2, f3) + D(f1DB, 0, 0).

The last four equalities and Theorem 1 result in Theorem 2.

Theorem 2.

a) A(F1, F2, F3) = C(0, F2, F3) + g [B(F1AC , 0, 0)− C(0, F2B, F3B)] ,

b) B(F1, f2, f3) = D(0, f2, f3) +
1

g
[A(F1BD, 0, 0)−D(0, f2A, f3A)] ,

c) C(f1, F2, F3) = A(0, F2, F3) +
1

g
[D(f1CA, 0, 0)− A(0, F2D, F3D)] ,

d) D(f1, f2, f3) = B(0, f2, f3) + g [C(f1DB, 0, 0)−B(0, f2C , f3C)] .

(15)

It should be noted that Lemma, Theorem 1 (with its 8 corollaries and Re-
marks 1, 2,3 and 4) and Theorem 2 besides a semi-infinite curvilinear prism also
hold for a half-space. Indeed, the proof of Lemma and Theorems 1 and 2 can
be extended to a half-space if we consider the half-space, say, in the Cartesian
coordinate system and assume that the function ψmn is represented by formu-
las of double integral Fourier transform (in the case of a half-space we have

ψmn = ψ̃mn).

5. It follows from (15a) and (15d) that the solution of the boundary value
problems A(F1, F2, F3) and D(f1, f2, f3) is reduced to a superposition of the
solutions of the boundary value problems B(F1, f2, f3) and C(f1, F2, F3). In
some cases this circumstance can simplify the solution of problems A(F1, F2, F3)
and D(f1, f2, f3), since the solution of the boundary value problems B(F1, f2, f3)
and C(f1, F2, F3) can be reduced to the solution of classical boundary value
problems for the Laplace equation in the domain Ω. The above mentioned can
be confirmed by an example which is more general than just a reduction of the
problem B(F1, f2, f3) or the problem C(f1, F2, F3) to classical problems for the
Laplace equation. In particular, a mixed boundary value problem of elasticity
for a semi-infinite curvilinear prism when on a part of its side z = 0 conditions
(3b) are given while on the other we have conditions (3c) can be reduced to the
solution of classical mixed boundary value problems for the Laplace equation.

Consider a boundary value problem illustrating Remark 1, with the difference
that on one part S1 of the side z = 0 we assume that Zz = F1(x, y), u = 0,
v = 0 and on the other part S2 of the side z = 0 we assume w = 0, Zx = 0,
Zy = 0. In order to reduce this problem to mixed boundary value problems for
the Laplace equation write the equilibrium equations for a semi-infinite elastic
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prism in the following form

a) ∆e = 0,

b) ∆ωz = 0,

c) ∆

(
w +

z

2(κ − 1)
e

)
= 0,

d)
∂2u

∂z2
=

∂2w

∂x∂z
−

(
κ

κ − 1

∂e

∂x
− ∂ωz

∂y

)
,

e)
∂2v

∂z2
=

∂2w

∂y∂z
−

(
κ

κ − 1

∂e

∂y
+

∂ωz

∂x

)
.

(16)

The boundary conditions for the functions G, K and w will have the following
form

a) e = 0 with x = 0, x = x1, y = 0, y = y1;

b)
∂e

∂z
= 0 on S2 and e =

2(κ − 1)(1 + ν)

κE
F1(x, y) on S1;

c)
∂ωz

∂x
= 0 with x = 0 and x = x1,

∂ωz

∂y
= 0 with y = 0 andy = y1;

d) ωz = 0 on S1 and
∂ωz

∂z
= 0 on S2;

e) w = 0 with x = 0, x = x1, y = 0, y = y1;

f) w = 0 on S2 and
∂w

∂z
=

2(κ − 1)(1 + ν)

κE
F1(x, y) on S1.

(17)

It follows from (16) and (17) that for the functions e, ωz and w we have mixed
boundary value problems for the Laplace equation. Moreover (16b), (17c) and
(17d) imply that in the entire domain Ω we have ωz = 0. If we assume that the
functions e and w have been found then we can determine the displacements
u and v integrating Equalities (16d) and (16e) with respect to z. The four
functions of the variables x and y resulting from the double integration with
respect to z of Equalities (16d) and (16e) and which are two pairs of conjugate
harmonic functions, vanish by virtue of the boundary conditions for u and v on
the sides x = 0, x = x1, y = 0 and y = y1.

Unfortunately Theorem 2 does not hold has not been proved for finite bod-
ies. If Theorem 2 could be extended, say, onto the case of the rectangular
parallelepiped Ω = {0 < x < x1, 0 < y < y1, 0 < z < z1} (z1 = const)
with non-homogenous boundary conditions on the six sides, then it would be
possible to give an analytical (precise) solution of all basic boundary value
problems of elasticity for the rectangular parallelepiped. Indeed, the bound-
ary value problem of elastic equilibrium of the rectangular parallelepiped with
non-homogenous symmetry and antisymmetry conditions on the sides (that is:
conditions (3b, c), similar conditions on z = z1 and non-homogenous conditions
(1), (2)) allows an analytical solution, since it can be reduced to the integration
of Laplace equations with classical boundary conditions [5]. In particular, it
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would be possible to give an analytical solution of Lamé’s problem (stated in
1852) on the elastic equilibrium of the rectangular parallelepiped with stresses
defined on its surface [6].
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6. G. Lamé, Leçons sur la théorie mathématique de l’élasticite des corps solides. Paris, 1852.

(Received 23.04.2002)

Author’s address:

I. Vekua Institute of Applied Mathematics
I. Javakhishvili Tbilisi State University
2, University St., Tbilisi 0143
Georgia
E-mail: natzira@viam.hepi.edu.ge


