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ON THE ASYMPTOTICS OF SOLUTIONS OF ELLIPTIC
EQUATIONS IN A NEIGHBORHOOD OF A CRACK WITH


NONSMOOTH FRONT
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Abstract. Two terms of asymptotics near crack are obtained for solutions
of the Dirichlet boundary value problem for second-order elliptic equations
in divergent form. The front of a crack is from C1+s and the coefficients of
the equations belong to Cs (0.5 < s < 1).
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A second-order elliptic equation in G \ Ω is considered, where G ⊂ Rn is a
domain with a smooth boundary, Ω is an (n− 1)-dimensional manifold with a
boundary from C1+s, 0 < s < 1.


We study solutions of the equation
n∑


i,j=1


∂


∂xi


(
aij(x)


∂u


∂xj


)
= 0, x ∈ G \ Ω, (1)


that belong to the Sobolev space W 1
2 (G) and satisfy the condition


u(x) = 0, x ∈ Ω. (2)


Let L be the boundary of Ω, r be the distance from x to L, xL be a point
on L nearest to x, ϕ be the polar angle in the plane normal to L and passing
through xL.


Singularities of solutions of elliptic equations near a nonsmooth boundary
were studied by many authors, see, e.g., [1]–[4].


In [4], the following representation was obtained for the plane (n− 1)-dimen-
sional domain Ω:


u(x) = C(xL)r1/2Φ(ϕ) + u1(x),


where Φ(ϕ) is a smooth function,


|u1| ≤ C0r
1/2+ε, 0 < ε < min{s, 0.5},


|C(xL)|+ |C0| ≤ const · ‖u‖W 1
2 (G).


The following result is the main theorem of our paper.


Theorem 1. Let u(x) ∈ W 1
2 (G) be a solution of problem (1), (2), and let


aij ∈ Cs(G) (i, j = 1, . . . , n), Ω ∈ C1+s,


where 0 < s < 1.
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Then:
if 0 < s ≤ 0.5, then


u(x) = C(xL)r1/2Φ(ϕ) + u1(x),


where Φ(ϕ) is a smooth function,


|u1| ≤ C0r
1/2+ε, 0 < ε < s,


|C(xL)|+ |C0| ≤ const · ‖u‖W 1
2 (G);


if 0.5 < s < 1, then


u(x) = C1(xL)r1/2Φ1(ϕ) + C2(xL)rΦ2(ϕ) + u1(x),


where Φ1(ϕ), Φ1(ϕ) are smooth functions


|u1| ≤ C0r
1+ε, 0 < ε < s− 0.5,


|C1(xL)|+ |C2(xL)|+ |C0| ≤ const · ‖u‖W 1
2 (G).


Straightening of the boundary. Let P be an arbitrary point of the set L.
Consider a neighborhood U of P in which Ω admits a one-to-one projection to
the tangent plane. Assume that P is the origin and that in this neighborhood
we have


Ω = {x | x1 = F (x2, . . . , xn), (x2, . . . , xn) ∈ Ω1}, O ∈ ∂Ω1.


∂Ω1 is given in a neighborhood of the origin by the equation


x2 = h(x3, . . . , xn) ∈ C1+s.


Let us extend F (x2, . . . , xn) ∈ C1+s in a neighborhood of the origin so that
the class of smoothness be prescribed. Let F (0),∇F (0) = 0.


Introduce an averaging kernel K(τ) such that K(τ) ∈ C∞(R1), K(τ) is even,
K(τ) ≡ 0 for | τ |≥ 1, and


1∫


−1


K(τ)dτ = 1.


The straightening of the boundary consists of two steps.
The first transformation of the coordinates has the form:


x1 = x′1 + H(x′), x2 = x′2, . . . , xn = x′n,


where


H(x′) =


∫


Rn−1


F (t)
n∏


l=2


(
1


|x1| K
(


tl − z′l
|x1|


))
dt.


The second transformation of the coordinates is the same as that in [4].
Under the above transformations, equation (1) becomes an equation in diver-


gent form with coefficients in Cs.
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Dirichlet problem in a dihedral angle for an equation with constant
coefficients. Let G0 be a dihedral angle


G0 = {x | 0 < x2
1 + x2


2 < ∞, 0 < ϕ < ω},
where ϕ is the polar angle in the plane (x1, x2).


Set


ρ =


√√√√
n∑


i=1


x2
i , r′ =


√
x2


1 + x2
2


ρ
.


We need the weighted Sobolev spaces Ẇ 0
α,β and Ẇ 1


α,β in which the norms are
defined as follows:


‖u‖2
Ẇ 0


α,β
=


∫


G0


u2ρα(r′)βdx,


‖u‖2
Ẇ 1


α,β
=


∫


G0


ρα(r′)β grad2 udx +


∫


G◦


u2ρα−2(r′)β−2dx.


Let u(x) ∈ W 1
2 (G0) be a generalized solution (here and below, in the sense of


distributions) of the following Dirichlet problem:


∆u(x) = f0(x) +
n∑


i=1


∂fi(x)


∂xi


, x ∈ G0, (3)


u(x) = 0, x ∈ ∂G0. (4)


The following two assertions can be proved by the method developed in [1].


Theorem 2. Let u(x) ∈ W 1
2 (G0) be a generalized solution of problem (3),


(4), where


f0 ∈ Ẇ 0
α,β(G0), fi ∈ Ẇ 0


α−2,β−2(G0) (i = 1, . . . , n),


α + 2
(π


ω
− 2


)
+ n > 0, β + 2


(π


ω
− 2


)
+ n− 1 > 0.


Then u ∈ Ẇ 1
α−2,β−2(G0).


Theorem 3. Let u(x) ∈ W 1
2 (G0) be a generalized solution of problem (3),


(4), where


f0 ∈ Ẇ 0
α,β(G0), fi ∈ Ẇ 0


α−2,β−2(G0) (i = 1, . . . , n),


α + 2


(
2π


ω
− 2


)
+ n < 0, β + 2


(π


ω
− 2


)
+ n− 1 > 0,


α + 2


(
3π


ω
− 2


)
+ n > 0.


Then u(x) can be represented in the form


u(x) = C1ρ
π
ω Φ1(θ) + C2ρ


2π
ω Φ2(θ) + u1,
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where θ are the coordinates on the unit sphere, Φ1(θ),Φ1(θ) are the eigenfunc-
tions of the Beltrami operator, and


u1 ∈ Ẇ 1
α−2,β−2(G0).


Dirichlet problem in a dihedral angle for an equation with variable
coefficients. Let u(x) ∈ W 1


2 (G0) be a generalized solution of the Dirichlet
problem


n∑
i,j=1


∂


∂xi


(
aij(x)


∂u(x)


∂xj


)
= f0(x) +


n∑
i=1


∂fi(x)


∂xi


, x ∈ G0, (5)


u(x) = 0, x ∈ ∂G0, (6)


where aij ∈ Cs(G0), aij(0) = δij (without loss of generality) (i, j = 1, . . . , n).


Lemma 1. Let u(x) ∈ W 1
2 (G0) be a generalized solution of problem (5), (6),


where


f0 ∈ Ẇ 0
2−2ks+ε0,2(G0), fi ∈ Ẇ 0


−2ks+ε0,0(G0) (i = 1, . . . , n),


2− 2ks + ε0 + 2
(π


ω
− 2


)
+ n > 0, 2− 2(k + 1)s + ε0 + 2


(π


ω
− 2


)
+ n < 0,


k is a nonnegative integer, and ε0 > 0 is sufficiently small.
Then


u ∈ Ẇ 1
−2ks+ε0,0(G0).


The proof of Lemma 1 follows from Theorem 2 by induction on k1 (0 ≤ k1 ≤
k) and is based on the representation of equation (5) in the form


∆u(x) = f0(x) +
n∑


i=1


∂


∂xi


(
fi(x)−


n∑
j=1


(aij(x)− δij)
∂u


∂xj


)
.


Using this representation, Lemma 1, and Theorem 3, we obtain the following
assertion.


Lemma 2. Let u(x) ∈ W 1
2 (G0) be a generalized solution of problem (5), (6),


where


f0 ∈ Ẇ 0
α,2(G0), fi ∈ Ẇ 0


α−2,0(G0) (i = 1, . . . , n),


α = −4π
ω
− n + 4− ε1, 0 < ε1 < 2s− 2π


ω
.


Then u(x) can be represented in the form


u(x) = C1ρ
π
ω Φ1(θ) + C2ρ


2π
ω Φ2(θ) + u1,


where θ are the coordinates on the unit sphere, Φ1(θ),Φ1(θ) are the eigenfunc-
tions of the Beltrami operator, and


u1 ∈ Ẇ 1
α−2,0(G0).


Remark 1. One can readily see that all conditions of Theorems 2 and 3 are
satisfied for the weights in Lemmas 1 and 2 for 0 < ε1 < 2s− 2π


ω
.
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Bounds for |u1|. Consider the cones K and K̂


K = {x | x2
3 + c · · ·+ x2


n ≥ k2(x2
1 + x2


2)},
K̂ = {x | x2


3 + · · ·+ x2
n ≥ k̂2(x2


1 + x2
2)}


and the domains
G1 = G0 \K, Ĝ1 = G0 \ K̂.


Obviously, Ĝ1 b G1 for k̂ < k.


Lemma 3. Suppose that, in addition to the assumptions of Lemma 2, the
following inequalities hold in the domain G1:


|f0(x)| ≤ C0ρ
2π
ω
−2+ε, |fi(x)| ≤ C0ρ


2π
ω
−1+ε (i = 1 . . . , n),


and let f0(x) and fi(x) be continuous in G1, 0 < ε < s− π
ω
.


Then


|u1| ≤ C1ρ
2π
ω


+ε,


| grad u1(x)| ≤ Cρ
2π
ω
−1+ε


in Ĝ1.


The proof of Lemma 3 is the same as that in [4].


Remark 2. The proof of Theorem 1 is obtained on the basis of the above
assertions.
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