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FIRST ORDER PARTIAL FUNCTIONAL DIFFERENTIAL
EQUATIONS WITH UNBOUNDED DELAY


Z. KAMONT AND S. KOZIEÃL


Abstract. The phase space for nonlinear hyperbolic functional differential
equations with unbounded delay is constructed. The set of axioms for gener-
alized solutions of initial problems is presented. A theorem on the existence
and continuous dependence upon initial data is given. The Cauchy problem
is transformed into a system of integral functional equations. The existence
of solutions of this system is proved by the method of successive approxi-
mations and by using theorems on integral inequalities. Examples of phase
spaces are given.
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1. Introduction


For any metric spaces U and V we denote by C(U, V ) the class of all continu-
ous functions from U to V . We use vectorial inequalities with the understanding
that the same inequalities hold between their corresponding components. Let
us denote by Mk×n the set of all k×n matrices with real elements. For x ∈ Rn,
Y ∈ Mk×n, where x = (x1, . . . , xn), Y = [yij]i=1,...,k, j=1,...,n, we define the norms


‖x‖ =
n∑


i=1


|xi|, ‖Y ‖ = max
{ n∑


j=1


|yij| : 1 ≤ i ≤ k
}


.


We will denote by L([0, c], R+), c > 0, R+ = [0, +∞), the class of all functions
γ : [0, c] → R+, which are integrable on [0, c]. Let B = (−∞, 0]× [−r, r] where
r = (r1, . . . , rn) ∈ Rn


+, R+ = [0, +∞). For a function z : (−∞, a] × Rn → R,
a > 0, and for a point (t, x) ∈ (−∞, a]×Rn we define a function z(t,x) : B → R
as follows: z(t,x)(s, y) = z(t + s, x + y), (s, y) ∈ B. Suppose that the functions
ψ0 : [0, a] → R and ψ′ = (ψ1, . . . , ψn) : [0, a] × Rn → Rn are given. The
requirement on ψ0 is that ψ0(t) ≤ t for t ∈ [0, a]. For (t, x) ∈ R1+n we write
ψ(t, x) = (ψ0(t), ψ


′(t, x)).
The phase space X for equations with unbounded delay is a linear space


with the norm ‖ · ‖X consisting of functions mappings the set B into R. Write
Ω = [0, a]×Rn ×X ×Rn and suppose that the functions


f : Ω → R and ϕ : (−∞, 0]×Rn → R


are given. We consider the nonlinear functional equation


∂tz(t, x) = f
(
t, x, zψ(t,x), ∂xz(t, x)


)
, (1)
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with the initial condition


z(t, x) = ϕ(t, x), (t, x) ∈ (−∞, 0]×Rn, (2)


where ∂xz(t, x) = (∂x1z(t, x), . . . , ∂xnz(t, x)). Note that the symbol zψ(t,x) de-
notes the restriction of z to the set (−∞, ψ0(t)]× [ψ′(t, x)− r, ψ′(t, x) + r] and
this restriction is shifted to the set B.


We consider weak solutions of problem (1), (2). A function z̄ : (−∞, c]×Rn→
R, 0<c≤a, is a solution to the above problem if


(i) z̄ψ(t,x) ∈ X for (t, x) ∈ [0, c]×Rn and ∂xz̄ exists on [0, c]×Rn,
(ii) the function z̄(·, x) : [0, c] → R is absolutely continuous on [0, c] for each


x ∈ Rn,
(iii) for each x ∈ Rn equation (1) is satisfied for almost all t ∈ [0, c] and


condition (2) holds.
Numerous papers have been published concerning functional differential equa-


tions of the form


∂tz(t, x) = F
(
t, x, z(t,x), ∂xz(t, x)


)
,


where ∂xz = (∂x1z, . . . , ∂xnz), and for adequate weakly coupled systems. The
following questions have been considered: functional differential inequalities
generated by initial or mixed problems ([3]–[5]), uniqueness of classical or gen-
eralized solutions ([12], [24], [25]), existence theory of classical and different
classes of weak solutions ([2], [6], [7], [9], [11], [16], [18], [20], [22], [23], [26]–
[28]), approximate solutions of initial or mixed problems ([17], [30]), difference
inequalities and applications ([13], [19]). All these problems have the prop-
erty that the initial or boundary functions are given on bounded sets. The
theory of hyperbolic functional differential problems has been developed in the
monograph [14].


The paper [8] initiated the investigation of nonlinear hyperbolic functional
differential equations with unbounded delay. The main assumptions in the
existence theorem concern the space X and the space C([0, a]×Rn, R) and their
suitable subspaces. The assumptions are formulated in the form of inequalities
for norms in some functional spaces. They are strictly connected with initial
problems and are not applicable to initial boundary value problems.


The purpose of this paper is to give sufficient conditions for the existence of
generalized solutions to problem (1), (2). The Cauchy problem is transformed
into a system of integral functional equations. The method of bicharacteristics
is used. It consists of linearization of the right-hand side of equation (1) with
respect to the last variable. In the second step a quasilinear system is con-
structed for unknown functions and for their spatial derivatives. The system
obtained in this way is equivalent to a system of integral functional equations of
the Volterra type. The classical solution of this system generates a generalized
solution of the original problem. A result on continuous dependence is proved
by using the method of integral inequalities. Note that our results are new also
in the case where the set B is bounded. It is important in our considerations
that all the assumptions on the phase space can be adapted to initial boundary
value problems.







FIRST ORDER PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS 511


Existence results for a class of parabolic differential integral equations with
unbounded delay can be found in [1]. The theory of ordinary functional dif-
ferential equations with unbounded delay is studied in [10], [15]. For further
bibliography concerning functional partial differential equations see the mono-
graphs [14], [21], [29].


2. Definitions and Fundamental Axioms


Assume that c > 0, w : (−∞, c] × [−r, r] → R and t ∈ (−∞, c]. We define
a function w(t) : B → R by w(t)(s, y) = w(t + s, y), (s, y) ∈ B. For each
t ∈ (−∞, c] the function w(t) is the restriction of w to the set (−∞, t]× [−r, r]
and this restriction is shifted to the set B. If w : (−∞, c]× [−r, r] → R, c > 0,
and w|[0,c]×[−r,r] is continuous, then we write


‖w‖[0,t] = max
{|w(s, y)| : (s, y) ∈ [0, t]× [−r, r]


}
,


where t ∈ [0, c].
Assumption H[X]. Suppose that (X, ‖ · ‖X) is a Banach space and
1) there is χ ∈ R+ independent of w such that for each function w ∈ X we


have
|w(0, x)| ≤ χ‖w‖X , x ∈ [−r, r], (3)


2) if w : (−∞, c] × [−r, r] → R, c > 0, is a function such that w(0) ∈ X and
w|[0,c]×[−r,r] is continuous, then w(t) ∈ X for t ∈ [0, c] and


(i) the function t → w(t) is continuous on [0, c],
(ii) there are K,K0 ∈ R+ independent of w such that


‖w(t)‖X ≤ K‖w‖[0,t] + K0‖w(0)‖X , t ∈ [0, c]. (4)


Now we give examples of phase spaces


Example 1. Let X be the class of all functions w : B → R which are
uniformly continuous and bounded on B. For w ∈ X we put


‖w‖X = sup
{|w(s, y)| : (s, y) ∈ B


}
. (5)


Then Assumption H[X] is satisfied with all the constants equal to 1.


Example 2. Let X be the class of all functions w : B → R+ such that
w ∈ C(B,R) and there exists the limit limt→−∞w(t, x) = w0(x) uniformly
with respect to x ∈ [−r, r]. The norm in the space X is defined by (5). Then
Assumption H[X] is satisfied with all the constants equal to 1.


Example 3. Let γ : (−∞, 0] → (0,∞) be a continuous function. Assume
also that γ is nonincreasing on (−∞, 0]. Let X be the space of all continuous
functions w : B → R such that


lim
t→−∞


|w(t, x)|
γ(t)


= 0, x ∈ [−r, r].


Put


‖w‖X = sup


{ |w(t, x)|
γ(t)


: (t, x) ∈ B


}
.


Then Assumption H[X] is satisfied with K = 1
γ(0)


, K0 = 1, χ = γ(0).
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Example 4. Let p ≥ 1 be fixed. Denote by V the class of all w : B → R
such that


(i) w is continuous on {0} × [−r, r] and
∫ 0


−∞
|w(τ, x)|pdτ < +∞ for x ∈ [−r, r],


(ii) for each t ∈ (−∞, 0] the function w(t, ·) : [−r, r] → R is continuous.
We define the norm in the space V by


‖w‖V = max
{|w(t, x)| : (t, x) ∈ {0} × [−r, r]


}


+ sup


{( ∫ 0


−∞
|w(τ, x)|pdτ


)1/p


: x ∈ [−r, r]


}
. (6)


Write X = V̄ where V̄ is the closure of V with the norm (6). Then Assumption
H[X] is satisfied with K = 1 + c1/p, K0 = 1, χ = 1.


Example 5. Denote by V the set of all functions w : B → R which are
bounded and


(i) w is continuous on {0} × [−r, r] and


I(x) = sup


{∫ −(m−1)


−m


|w(τ, x)|dτ : m ∈ N


}
< +∞,


where x ∈ [−r, r] and N is the set of natural numbers;
(ii) for each t ∈ (−∞, 0] the function w(t, ·) : [−r, r] → R is continuous.
The norm in the space V is defined by


‖w‖V = max
{|w(t, x)| : (t, x) ∈ {0} × [−r, r]


}
+ sup


{
I(x) : x ∈ [−r, r]


}
.


Put X = V̄ where V̄ is the closure on V with the above given norm. Then
Assumption H[X] is satisfied with K = 1 + c, K0 = 2, χ = 1.


If z : (−∞, c]×Rn → R, c > 0, is a function such that z|[0,c]×Rn is continuous
and (t, x) ∈ [0, c]×Rn, then we put


‖z‖[0,t;x] = max
{|z(s, y)| : (s, y) ∈ [0, t]× [x− r, x + r]


}
.


Suppose additionally that the function z|[0,c]×Rn satisfies the Lipschitz condition
with respect to x. Then we write


Lip[z]|[0,t;Rn] =sup


{ |z(s, y)−z(s, ȳ)|
‖y − ȳ‖ : (s, y), (s, ȳ)∈ [0, t]×Rn, y 6= ȳ


}
.


Lemma 1. Suppose that Assumption H[X] is satisfied and z : (−∞, c]×Rn →
R, 0 < c ≤ a. If z(0,x) ∈ X for x ∈ Rn and z|[0,c]×Rn is continuous, then
z(t,x) ∈ X for (t, x) ∈ (0, c]×Rn and


‖z(t,x)‖X ≤ K‖z‖[0,t;x] + K0‖z(0,x)‖X . (7)


If we assume additionally that the function z|[0,c]×Rn satisfies the Lipschitz con-
dition with respect to x, then


‖z(t,x) − z(t,x̄)‖X ≤ K Lip[z]|[0,t;Rn]‖x− x̄‖+ K0‖z(0,x) − z(0,x̄)‖X , (8)
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where (t, x), (t, s̄) ∈ [0, c]×Rn.


Proof. Inequality (7) is a consequence of (4) for w : (−∞, c] × [−r, r] → R
given by w(s, y) = z(s, x + y) with fixed x ∈ Rn. We prove (8). Suppose that
(t, x), (t, x̄) ∈ [0, c] × Rn and the function z̃ : (−∞, c] × Rn → R is defined by
z̃(s, y) = z(s, y + x̄− x), (s, y) ∈ (−∞, c]×Rn. Then z̃(t,x) = z(t,x̄) and


‖z(t,x) − z(t,x̄)‖X = ‖(z − z̃)(t,x)‖ ≤ K‖z − z̃‖[0,t;x] + K0‖(z − z̃)(0,x)‖X


≤ K Lip[z]|[0,t;Rn]‖x− x̄‖+ K0‖z(0,x) − z(0,x̄)‖X ,


which proves (8). ¤


Our basic assumption on the initial functions is the following.
Assumption H[ϕ]. Suppose that ϕ : (−∞, 0]×Rn → R and there exist the


derivatives (∂x1ϕ, . . . , ∂xnϕ) = ∂xϕ on (−∞, 0]×Rn and
1) ϕ(0,x) ∈ X and (∂xi


ϕ)(0,x) ∈ X, 1 ≤ i ≤ n, for x ∈ Rn,
2) there are b0, b1, c0, c1 ∈ R+ such that


‖ϕ(0,x)‖X ≤ b0, ‖ϕ(0,x) − ϕ(0,x̄)‖X ≤ b1‖x− x̄‖,
‖(∂xϕ)(0,x)‖X ≤ c0, ‖(∂xϕ)(0,x) − (∂xϕ)(0,x̄)‖X ≤ c1‖x− x̄‖,


where x, x̄ ∈ Rn and


‖(∂xϕ)(0,x)‖X =
n∑


i=1


‖(∂xi
ϕ)(0,x)‖X ,


∥∥(∂xϕ)(0,x) − (∂xϕ)(0,x̄)


∥∥
X


=
n∑


i=1


∥∥(∂xi
ϕ)(0,x) − (∂xi


ϕ)(0,x̄)


∥∥
X


.


Let us denote by I[X] the class of all initial functions ϕ : (−∞, 0] × Rn → R
satisfying Assumption H[ϕ]. We define some function spaces. Let ϕ ∈ I[X] and
let 0 < c ≤ a, d = (d0, d1, d2) ∈ R3


+, λ = (λ0, λ1), where λ0, λ1 ∈ L([0, c], R+).
Let us denote by C1.L


ϕ.c [d, λ] the class of all functions z : (−∞, c]×Rn → R such
that


(i) z(t, x) = ϕ(t, x) for (t, x) ∈ (−∞, 0]×Rn;
(ii) the derivatives (∂x1z, . . . , ∂xnz) = ∂xz exist on [0, c]×Rn and


|z(t, x)| ≤ d0, |z(t, x)− z(t̄, x)| ≤
∣∣∣∣
∫ t̄


t


λ0(τ)dτ


∣∣∣∣,


and


‖∂xz(t, x)‖ ≤ d1,
∥∥∂xz(t, x)− ∂xz(t̄, x̄)


∥∥ ≤
∣∣∣∣
∫ t̄


t


λ1(τ)dτ


∣∣∣∣ + d2‖x− x̄‖


on [0, c]×Rn.
Let ϕ ∈ I[X] be given and p = (p0, p1) ∈ R2


+, µ ∈ L([0, c], R+), 0 < c ≤ a.
We will denote by CL


∂ϕ.c[p, µ] the class of all functions u : (−∞, c] × Rn → Rn


such that
(i) u(t, x) = ∂xϕ(t, x) for (t, x) ∈ (−∞, 0]×Rn;
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(ii) for (t, x) ∈ [0, c]×Rn we have


‖u(t, x)‖ ≤ p0,
∥∥u(t, x)− u(t̄, x̄)


∥∥ ≤
∣∣∣∣
∫ t̄


t


µ(τ)dτ


∣∣∣∣ + p1‖x− x̄‖].


We will prove that under suitable assumptions on f and ψ and for sufficiently
small c, 0 < c ≤ a, there exists a solution z̄ to problem (1), (2) such that
z̄ ∈ C1.L


ϕ.c [d, λ] and ∂xz̄ ∈ CL
∂ϕ.c[p, µ].


Let us fix our notations on vectors and matrices. The product of two matrices
is denoted by ¦. If Y ∈ Mk×k then Y T is the transposed matrix. We use
the symbol ◦ to denote the scalar product in Rn. If y = (y1, . . . , yn) ∈ Rn,
w = (w1, . . . , wn) and wi ∈ X for 1 ≤ i ≤ n then y ◦ w is the function defined
by y ◦ w = y1w1 + . . . + ynwn. In the sequel we will need the following lemma.


Lemma 2. Suppose that Assumption H[X] is satisfied and ϕ ∈ I[X], z ∈
C1.L


ϕ.c [d, λ], where 0 < c ≤ a. Then


∥∥ϕ(0,ȳ) − ϕ(0,y) − (∂xϕ)(0,y) ◦ (ȳ − y)
∥∥


X
≤ c1‖y − ȳ‖2, (9)


where y, ȳ ∈ Rn, and


∥∥z(t,ȳ) − z(t,y) − (∂xz)(t,y) ◦ (ȳ − y)
∥∥


X
≤ (Kd2 + K0c1)‖y − ȳ‖2, (10)


where (t, y), (t, ȳ) ∈ [0, c]×Rn.


Proof. Suppose that y, ȳ ∈ Rn and the function ϕ̄ : (−∞, 0]×Rn → R is defined
by ϕ̄(τ, x) = ϕ(τ, ȳ − y + x), (τ, x) ∈ (−∞, 0]×Rn. Write β = ϕ̄− ϕ− (∂xϕ) ◦
(ȳ − y). Then inequality (9) is equivalent to ‖β(0,y)‖X ≤ c1‖ȳ − y‖2. It follows
that there is s ∈ [0, 1] such that


β(0,y) =
[
(∂xϕ)(0,y+s(ȳ−y)) − (∂xϕ)(0,y)


] ◦ (ȳ − y).


Then we obtain (9) from condition 2) of Assumption H[ϕ].
We prove inequality (10). Let z̄ : (−∞, c]×Rn → R be the function given by


z̄(τ, x) = z(τ, ȳ − y + x), (τ, x) ∈ (−∞, c]×Rn


and v = z̄ − z − (∂xz) ◦ (ȳ − y). Assertion (10) is equivalent to


‖v(t,y)‖X ≤ (Kd2 + K0c1)‖y − ȳ‖2.


According to Lemma 1, we have


‖v(t,y)‖X ≤ K‖v‖[0,t;y] + K0‖v(0,y)‖X ≤ Kd2‖y − ȳ‖2


+K0


∥∥ϕ(0,ȳ) − ϕ(0,y) − (∂xϕ)(0,y) ◦ (ȳ − y)
∥∥ ≤ (Kd2 + K0c1)‖y − ȳ‖2,


which completes the proof of (10). ¤
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3. Bicharacteristics of Nonlinear Functional Differential
Equations


We will need the following assumptions.
Assumption H[∂qf ]. Suppose that f : Ω → R and
1) the derivatives


(
∂q1f(P ), . . . , ∂qnf(P )


)
= ∂qf(P )


exist for P = (t, x, w, q) ∈ Ω and the function ∂qf(·, x, w, q) : [0, a] → Rn is
measurable for every (x, w, q) ∈ Rn × X × Rn and there is a function α ∈
L([0, a], R+) such that


∥∥∂qf(t, x, w, q)
∥∥ ≤ α(t) on Ω,


2) there is a function γ ∈ L([0, a], R+) such that
∥∥∂qf(t, x, w, q)− ∂qf(t, x̄, w̄, q̄)


∥∥ ≤ γ(t)
[‖x− x̄‖+ ‖w − w̄‖X + ‖q − q̄‖]


on Ω.
Assumption H[ψ]. Suppose that the functions ψ0 : [0, a] → R and ψ′ =


(ψ1, . . . , ψn) : [0, a]×Rn → Rn are continuous and ψ0(t) ≤ t for t ∈ (0, a].
Assume that the partial derivatives


[
∂xj


ψi(t, x)
]
i,j=1,...,n


= ∂xψ
′(t, x)


exist on [0, a]×Rn and there are s0, s1 ∈ R+ such that
∥∥∂xψ


′(t, x)
∥∥ ≤ s0,


∥∥∂xψ
′(t, x)− ∂xψ


′(t, x̄)
∥∥ ≤ s1‖x− x̄‖ on [0, a]×Rn.


Suppose that Assumptions H[X], H[∂qf ], H[ψ] are satisfied and ϕ ∈ I[X],
z ∈ C1.L


ϕ.c [d, λ], u ∈ CL
∂ϕ.c[p, µ]. Consider the Cauchy problem


η′(τ) = −∂qf
(
τ, η(τ), zψ(τ,η(τ)), u(τ, η(τ)


)
, η(t) = x, (11)


where (t, x) ∈ [0, c] × Rn. Let us denote by g[z, u](·, t, x) the solution to (11).
The function g[z, u] is the bicharacteristic of equation (1) corresponding to z and
u. We prove a theorem on the existence and uniqueness and on the regularity
of bicharacteristics. For functions ϕ ∈ I[X] and z ∈ C1.L


ϕ.c [d, λ], u ∈ CL
∂ϕ.c[p, µ]


we write


‖ϕ‖X,Rn = sup
{‖ϕ(0,x)‖X : x ∈ Rn


}


and


‖z‖t = sup
{|z(s, y)| : (s, y) ∈ [0, t]×Rn


}
,


‖u‖t = sup
{‖u(s, y)‖ : (s, y) ∈ [0, t]×Rn


}
,


where t ∈ [0, c].


Theorem 1. Suppose that Assumptions H[X], H[∂qf ], H[ψ] are satisfied
and ϕ, ϕ̄ ∈ I[X], z ∈ C1.L


ϕ.c [d, λ], z̄ ∈ C1.L
ϕ̄.c [d, λ], u ∈ CL


∂ϕ.c[p, µ], ū ∈ CL
∂ϕ̄.c[p, µ],
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where 0 < c ≤ a. Then the solutions g[z, u](·, t, x) and g[z̄, ū](·, t, x) exist on
[0, c], they are unique and we have the estimates


∥∥g[z, u](τ, t, x)− g[z, u](τ, t̄, x̄)
∥∥ ≤ Θ(τ, t)


[∣∣∣
∫ t


t̄


α(ξ)dξ
∣∣∣ + ‖x− x̄‖


]
(12)


for (t, x), (t̄, x̄) ∈ [0, c]×Rn, τ ∈ [0, c], where


Θ(τ, t) = exp


[
A


∣∣∣
∫ τ


t


γ(ξ)dξ
∣∣∣
]
, A = 1 + p1 + s0(Kd1 + K0b1),


and ∥∥g[z, u](τ, t, x)− g[z̄, ū](τ, t, x)
∥∥


≤Θ(τ, t)


∣∣∣∣
∫ τ


t


γ(ξ)


∣∣∣∣
[
K‖z−z̄‖ξ+‖u− ū‖ξ+K0‖ϕ−ϕ̄‖X,Rn


]
dξ, (13)


where (τ, t, x) ∈ [0, c]× [0, c]×Rn.


Proof. We begin by proving that problem (11) has exactly one solution. It fol-
lows from Assumptions H[ψ], H[∂qf ] and Lemma 1 that the following Lipschitz
condition is satisfied:∥∥∂qf(τ, y, zψ(τ,y), u(τ, y))− ∂qf(τ, ȳ, zψ(τ,ȳ), u(τ, ȳ))


∥∥ ≤ γ(τ)A‖y − ȳ‖,
where τ ∈ [0, c], y, ȳ ∈ Rn. It follows that there exists exactly one Carathéodory
solution to problem (11) and the solution is defined on the interval [0, c].


Now we prove estimate (12). We transform (11) into an integral equation.
Write


P [z, u](ξ, t, x) =
(
ξ, g[z, u](ξ, t, x), zψ(ξ,g[z,u](ξ,t,x)), u(ξ, g[z, u](ξ, t, x))


)
.


It follows from Assumptions H[ψ], H[∂qf ] and Lemma 1 that


∥∥g[z, u](τ, t, x)− g[z, u](τ, t̄, x̄)
∥∥ ≤ ‖x− x̄‖+


∣∣∣∣
∫ t̄


t


α(ξ)dξ


∣∣∣∣


+


∣∣∣∣
∫ t


τ


∥∥∂qf(P [z, u](ξ, t, x))− ∂qf(P [z, u](ξ, t̄, x̄))
∥∥dξ


∣∣∣∣


≤ ‖x−x̄‖+
∣∣∣∣
∫ t̄


t


α(ξ)dξ


∣∣∣∣+A


∣∣∣∣
∫ τ


t


γ(ξ)
∥∥g[z, u](ξ, t, x)−g[z, u](ξ, t̄, x̄)


∥∥dξ


∣∣∣∣,


where (t, x), (t̄, x̄) ∈ [0, c]×Rn, τ ∈ [0, c]. Now we obtain (12) from the Gronwall
inequality. Our next aim is to prove (13). For z ∈ C1.L


ϕ.c [d, λ], z̄ ∈ C1.L
ϕ̄.c [d, λ] and


u ∈ CL
∂ϕ.c[p, µ] ū ∈ CL


∂ϕ̄.c[p, µ] we have
∥∥g[z, u](τ, t, x)− g[z̄, ū](τ, t, x)


∥∥


≤
∣∣∣∣
∫ τ


t


∥∥∂qf(P [z, u](ξ, t, x))− ∂qf(P [z̄, ū](ξ, t, x))
∥∥dξ


∣∣∣∣. (14)


It follows from Assumption H[X] and Lemma 1 that∥∥zψ(ξ,g[z,u](ξ,t,x)) − z̄ψ(ξ,g[z̄,ū](ξ,t,x))


∥∥
X
≤


∥∥zψ(ξ,g[z,u](ξ,t,x))−zψ(ξ,g[z̄,ū](ξ,t,x))


∥∥
X
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+
∥∥zψ(ξ,g[z̄,ū](ξ,t,x))−z̄(ξ,g[z̄,ū](ξ,t,x))


∥∥
X
≤ s0(Kd1 + K0b1)


∥∥g[z, u](ξ, t, x)


−g[z̄, ū](ξ, t, x)
∥∥ + K‖z − z̄‖ξ + K0‖ϕ− ϕ̄‖X,Rn ,


where (ξ, t, x) ∈ [0, c]× [0, c]×Rn. In a similar way we obtain
∥∥u(ξ, g[z, u](ξ, t, x))− ū(ξ, g[z̄, ū](ξ, t, x))


∥∥
≤ ‖u− ū


∥∥
ξ
+ p1‖g[z, u](ξ, t, x)− g[z̄, ū](ξ, t, x)


∥∥,


where (ξ, t, x) ∈ [0, c] × [0, c] × Rn. The above estimates and (14) imply the
integral inequality ∥∥g[z, u](τ, t, x)− g[z̄, ū](τ, t, x)


∥∥


≤
∣∣∣∣
∫ τ


t


γ(ξ)
[
K‖z − z̄‖ξ + ‖u− ū‖ξ + K0‖ϕ− ϕ̄‖X,Rn


]
dξ


∣∣∣∣


+A


∣∣∣∣
∫ τ


t


γ(ξ)
∥∥g[z, u](ξ, t, x)− g[z̄, ū](ξ, t, x)


∥∥dξ


∣∣∣∣,


where (ξ, t, x) ∈ [0, c] × [0, c] × Rn. Now we obtain (13) from the Gronwall
inequality. ¤


4. Functional integral equations


Let us denote by CL(X, R) the set of all linear and continuous operators
from X to R. The norm in the space CL(X,R) will be denoted by ‖ · ‖∗. We
formulate further assumptions on f .


Assumption H[f ]. Suppose that Assumption H[∂qf ] is satisfied and
1) there is γ̃ ∈ L([0, a], R+) such that |f(t, x, w, q)| ≤ γ̃(t) on Ω,
2) for every P = (t, x, w, q) ∈ Ω there exist the derivatives


(
∂x1f(P ), . . . , ∂xnf(P )


)
= ∂xf(P )


and the Fréchet derivative ∂wf(P ) ∈ CL(X, R) and the estimates


‖∂xf(P )‖, ‖∂wf(P )‖∗ ≤ α(t)


are satisfied on Ω,
3) the Lipschitz conditions
∥∥∂xf(t, x, w, q)− ∂xf(t, x̄, w̄, q̄)


∥∥ ≤ γ(t)
[‖x− x̄‖+ ‖w − w̄‖X + ‖y − ȳ‖],∥∥∂wf(t, x, w, q)− ∂wf(t, x̄, w̄, q̄)


∥∥
∗ ≤ γ(t)


[‖x− x̄‖+ ‖w − w̄‖X + ‖y − ȳ‖],
are satisfied on Ω.


Remark 1. To simplify the formulation of the existence result we have assumed
the same estimate for the derivatives ∂xf , ∂qf and ∂wf . We have also assumed
the Lipschitz condition for these derivatives with the same coefficient.


If Assumption H[f ] if satisfied and P = (t, x, w, q) ∈ Ω, w̃ = (w̃1, . . . , w̃n)
and w̃i ∈ C(X,R) for 1 ≤ i ≤ n, then we write


∂wf(P ) ∗ w̃ =
(
∂wf(P )w̃1, . . . , ∂wf(P )w̃n


)
.
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Now we formulate the system of integral functional equations corresponding
to problem (1), (2). Suppose that ϕ ∈ I[X] and z ∈ C1.L


ϕ.c [d, λ], u ∈ CL
∂ϕ.c[p, µ].


Write


F [z, u](t, x) = ϕ
(
0, g[z, u](0, t, x)


)


+


∫ t


0


[
f(P [z, u](ξ, t, x))− ∂qf(P [z, u](ξ, t, x)) ◦ u(ξ, g[z, u](ξ, t, x))


]
dξ (15)


and


G[z, u](t, x) = ∂xϕ
(
0, g[z, u](0, t, x)


)
+


∫ t


0


[
∂xf(P [z, u](ξ, t, x))


+
[
∂wf(P [z, u](ξ, t, x)) ∗ uψ(ξ,g[z,u](ξ,t,x))


] ¦ ∂xψ
′(ξ, g[z, u](ξ, t, x))


]
dξ, (16)


where uψ(s,y) = ((u1)ψ(s,y), . . . , (un)ψ(s,y)) for (s, y) ∈ [0, c] × Rn and G[z, u] =
(G1[z, u], . . . , Gn[z, u]).


We will consider the following system of functional integral equations:


z = F [z, u], u = G[z, u], and z = ϕ, u = ∂xϕ on (−∞, 0]×Rn. (17)


The proof of the existence of a solution of problem (17) is based on the following
method of successive approximations. Suppose that ϕ ∈ I[X] and that Assump-
tions H[X], H[f ] and H[ψ] are satisfied. We define the sequence {z(m), u(m)} in
the following way. Write


z(0)(t, x) = ϕ(t, x) on (−∞, 0]×Rn, z(0)(t, x) = ϕ(0, x) on (0, c]×Rn (18)


and


u(0)(t, x) = ∂xϕ(t, x) on (−∞, 0]×Rn, u(0)(t, x) = ∂xϕ(0, x) on (0, c]×Rn. (19)


Then z(0) ∈C1.L
ϕ.c [d, λ] and u(0) ∈CL


∂ϕ.c[p, µ]. Suppose now that z(m) ∈C1.L
ϕ.c [d, λ]


and u(m) ∈ CL
∂ϕ.c[p, µ] are known functions. Then


(i) u(m+1) is a solution of the problem


u = G(m)[u], u(t, x) = ∂xϕ(t, x) on (−∞, 0]×Rn, (20)


where G(m) = (G
(m)
1 , . . . , G


(m)
n ) and


G(m)[u](t, x) = ∂xϕ
(
0, g[z(m), u](0, t, x)


)


+


∫ t


0


{
∂xf(P [z(m), u](ξ, t, x))+


[
∂wf(P [z(m), u](ξ, t, x)) ∗ (u(m))ψ(ξ,g[z(m),u](ξ,t,x))


]


¦ ∂xψ
′(ξ, g[z(m), u](ξ, t, x))


}
dξ; (21)


(ii) the function z(m+1) is given by


z(m+1)(t, x) = F [z(m), u(m+1)](t, x) on [0, c]×Rn,


z(m+1)(t, x) = ϕ(t, x) on (−∞, 0]×Rn.
(22)
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The problem of the existence of the sequence {z(m), u(m)} is the main difficulty in
our method. We prove that this sequence exists provided c ∈ (0, a] is sufficiently
small.


5. The existence of the sequence of successive approximations


We begin with the construction of function spaces C1.L
ϕ.c [d, λ] and CL


∂ϕ.c[p, µ],


where ϕ ∈ I[X] and 0 < c ≤ a. Let us denote by Γ, Γ̃ : [0, a] → R+ the
functions given by


Γ(t) = Θ(0, t)


[
χc1 + b̃


∫ t


0


γ(ξ)dξ + b̄


∫ t


0


α(ξ)dξ


]
,


Γ̃(t) = Θ(0, t)


[
χb1 + (A + p1)


∫ t


0


α(ξ)dξ + p0A


∫ t


0


γ(ξ)dξ


]
,


where


b̃ = A
[
1 + s0(Kp0 + K0c0)


]
, b̄ = s1(Kp0 + K0c0) + s2


0(Kp1 + K0c1).


Write


c̃ = Γ(c) + 1 + s0(Kp0 + K0c0),


λ0(t) = [Γ̃(a) + p0]α(t) + γ̃(t), λ1(t) = µ(t) = c̃α(t).


Assumption H0[c]. Suppose that


p0 ≥ χc0 +
[
1 + s0(Kp0 + K0c0)


] ∫ c


0


α(τ)dτ, p1 ≥ Γ(c),


d0 ≥ χb0 +


∫ c


0


[
γ̃(s) + p0α(s)


]
ds, d1 = p0, , d2 = p1.


Remark 2. If we assume that p0 > χc0, p1 > χc1 and d0 > χb0, then there is
c ∈ [0, a] such that Assumption H0[c] is satisfied.


Theorem 2. Suppose that ϕ ∈ I[X] and that Assumptions H[X], H[ψ], H[f ]
and H0[c] are satisfied. Then there are d ∈ R3


+, p ∈ R2
+, λ0, λ1, µ ∈ L([0, c], R+)


such that for m ≥ 0 we have
(Im) z(m) and u(m) are defined on (−∞, c]×Rn and z(m) ∈C1.L


ϕ.c [d, λ], u(m) ∈
CL


∂ϕ.c[p, µ],


(IIm) ∂xz
(m)(t, x) = u(m)(t, x) on [0, c]×Rn.


Proof. We will prove (Im) and (IIm) by induction. It follows from (18), (19)
that conditions (I0) and (II0) are satisfied. Supposing now that conditions (Im)
and (IIm) hold for a given m ≥ 0, we will prove that there exists a solution
u(m+1) ∈ CL


∂ϕ.c[p, µ] to problem (20) and that the function z(m+1) given by (22)


is an element of the space C1.L
ϕ.c [d, λ]. We have divided the proof into a sequence


of steps.
I. We first show that


G(m) : CL
∂ϕ.c[p, µ] → CL


∂ϕ.c[p, µ]. (23)
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Write


w
(m)
i [u; τ, t, x] =


n∑
j=1


∂xi
ψj


(
τ, g[z(m), u](τ, t, x)


)
(u


(m)
j )ψ(τ,g[z(m),u](τ,t,x)), 1 ≤ i ≤ n.


It follows from Assumptions H[X] and H[ψ] that for u ∈ CL
∂ϕ.c[p, µ] and y =


g[z(m), u](τ, t, x) we have
n∑


i=1


∥∥w
(m)
i [u; τ, t, x]


∥∥
X


≤ s0


n∑
j=1


∥∥(u
(m)
j )ψ(τ,y)


∥∥
X
≤ s0


n∑
j=1


[
K‖u(m)


j ‖[0,τ ;y] + K0‖(u(m)
j )(0,y)‖X


]


≤ s0(Kp0 + K0c0), 1 ≤ i ≤ n. (24)


Therefore it follows that
∥∥G(m)[u](t, x)


∥∥ ≤ χc0 +
[
1 + s0(Kp0 + K0c0)


] ∫ t


0


α(τ)dτ ≤ p0 (25)


for (t, x) ∈ [0, c]×Rn.
Our next goal is to estimate the number ‖G(m)[u](t, x)−G(m)[u](t̄, x̄)‖. It is


easily seen that for y, ȳ ∈ Rn we have∥∥∂xϕ(0, y)− ∂xϕ(0, ȳ)
∥∥ ≤ χc1‖y − ȳ‖.


Using Theorem 1 and the above inequality, we get∥∥∂xϕ(0, g[z(m), u](0, t, x))− ∂xϕ(0, g[z(m), u](0, t̄, x̄))
∥∥


≤ χc1Θ(0, c)


[
‖x− x̄‖+


∣∣∣∣
∫ t̄


t


α(τ)dτ


∣∣∣∣
]


on [0, c]×Rn. (26)


From Assumptions H[X] and H[f ] it follows that the terms
∥∥∂xf


(
P [z(m), u](ξ, t, x)


)− ∂xf
(
P [z(m), u](ξ, t̄, x̄)


)∥∥,∥∥∂wf
(
P [z(m), u](ξ, t, x)


)− ∂wf
(
P [z(m), u](ξ, t̄, x̄)


)∥∥
∗


can be estimated from above by


Aγ(ξ)
∥∥g[z(m), u](ξ, t, x)− g[z(m), u](ξ, t̄, x̄)


∥∥.


We conclude from Assumption H[ψ] and Lemma 1 that
n∑


i=1


∥∥w
(m)
i [u; ξ, t, x]−w


(m)
i [u; ξ, t̄, x̄]


∥∥
X
≤ b̄


∥∥g[z(m), u](ξ, t, x)−g[z(m), u](ξ, t̄, x̄)
∥∥.


The above estimates and Theorem 1 imply∥∥G(m)[u](t, x)−G(m)[u](t̄, x̄)
∥∥


≤ Γ(c)


[∣∣∣∣
∫ t̄


t


α(s)ds


∣∣∣∣ + ‖x− x̄‖
]


+
[
1 + s0(Kp0 + K0b0)


]∣∣∣∣
∫ t̄


t


α(s)ds


∣∣∣∣
on [0, c]×Rn. By the above inequality and (25) we obtain (23).
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II. Our next claim is that


∥∥G(m)[u](t, x)−G(m)[ũ](t, x)
∥∥ ≤ c̃


∫ t


0


γ(τ)‖u− ũ‖τdτ, (27)


where u, ũ ∈ CL
∂ϕ.c[p, µ] and (t, x) ∈ [0, c] × Rn. The proof starts with the


observation that
∥∥G(m)[u](t, x)−G(m)[ũ](t, x)


∥∥
≤


∥∥∂xϕ(0, g[z(m), u](0, t, x))− ∂xϕ(0, g[z(m), ũ](0, t, x))
∥∥


+


∫ t


0


∥∥∂xf(P [z(m), u](τ, t, x))− ∂xf(P [z(m), ũ](τ, t, x))
∥∥dτ


+


∫ t


0


∥∥∂wf(P [z(m), u](τ, t, x))−∂wf(P [z(m), ũ](τ, t, x))
∥∥
∗


n∑
i=1


∥∥w
(m)
i [u; τ, t, x]


∥∥
X


dτ


+


∫ t


0


∥∥∂wf(P [z(m), u](τ, t, x))
∥∥
∗


n∑
i=1


∥∥w
(m)
i [u; τ, t, x]− w


(m)
i [ũ; τ, t, x]


∥∥
X


dτ.


It follows from Assumption H[f ] that
∫ t


0


∥∥∂xf(P [z(m), u](τ, t, x))− ∂xf(P [z(m), ũ](τ, t, x))
∥∥dτ


≤
∫ t


0


γ(τ)
[‖u− ũ‖τ + A‖g[z(m), u](τ, t, x)− g[z(m), ũ](τ, t, x)‖]dτ


and the same estimate holds for the Fréchet derivative ∂wf . We conclude from
Assumption H[X] and H[ψ] that


n∑
i=1


∥∥w
(m)
i [u; τ, t, x]− w


(m)
i [ũ; τ, t, x]


∥∥
X


dτ


≤
∥∥∂xψ


′(τ, g[z(m), u](τ, t, x))− ∂xψ
′(τ, g[z(m), ũ](τ, t, x))


∥∥


×
n∑


j=1


∥∥(u
(m)
j )ψ(τ,g[z(m),u](τ,t,x))


∥∥
X


+
∥∥∂xψ


′(τ, g[z(m), ũ](τ, t, x))
∥∥


×
n∑


j=1


∥∥(u
(m)
j )ψ(τ,g[z(m),u](τ,t,x)) − (u


(m)
j )ψ(τ,g[z(m),ũ](τ,t,x))


∥∥
X


≤ b̄
∥∥g[z(m), u](τ, t, x)− g[z(m), ũ](τ, t, x)


∥∥.


The above estimates and (24), (26) imply
∥∥G(m)[u](t, x)−G(m)[ũ](t, x)


∥∥≤c1χ
∥∥g[z(m), u](0, t, x)−g[z(m), ũ](0, t, x)


∥∥


+
[
1 + s0(Kp0 + K0c0)


] ∫ t


0


γ(τ)‖u− ũ‖τdτ


+


∫ t


0


[
b̃γ(τ) + b̄α(τ)


]∥∥g[z(m), u](τ, t, x)− g[z(m), ũ](τ, t, x)
∥∥dτ.
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Then using Theorem 1 we get (27).
III. Write


[|u− ũ|] = sup


{
‖u− ũ‖t exp


[
− 2c̃


∫ t


0


γ(τ)dτ


]
: t ∈ [0, c]


}
,


where u, ũ ∈ CL
∂ϕ.c[p, µ]. We claim that


[|G(m)[u]−G(m)[ũ]|] ≤ 1


2
[|u− ũ|]. (28)


According to (27) we have


∥∥G(m)[u](t, x)−G(m)[ũ](t, x)
∥∥ ≤ [|u− ũ|]c̃


∫ t


0


exp
[
2c̃


∫ τ


0


γ(ξ)dξ
]
dτ


≤ 1


2
[|u− ũ|] exp


[
2c̃


∫ t


0


γ(ξ)dξ


]
, (t, x) ∈ [0, c]×Rn,


and inequality (28) follows. From the Banach fixed point theorem it follows
that there is exactly one u(m+1) ∈ CL


∂ϕ.c[p, µ] satisfying (20).


IV. We next claim that the function z(m+1) given by (22) satisfies condition
(IIm+1). It is sufficient to show that the function


∆(t, x, x̄) = z(m+1)(t, x̄)− z(m+1)(t, x)− u(m+1)(t, x) ◦ (x̄− x)


satisfies the condition
|∆(t, x, x̄)| ≤ C̃‖x− x̄‖2 (29)


with a constant C̃ ∈ R+ independent of (t, x), (t, x̄) ∈ [0, c]×Rn. Write


g(m)(τ, t, x) = g[z(m), u(m+1)](τ, t, x)


and


Λ(m)(τ, t, x, x̄)


=


∫ t


τ


[
∂qf(P [z(m), u(m+1)](ξ, t, x̄))− ∂qf(P [z(m), u(m+1)](ξ, t, x))


]
dξ.


Then we have


Λ(m)(τ, t, x, x̄) = g(m)(τ, t, x̄)− g(m)(τ, t, x)− (x̄− x).


According to (20), (22) we have


∆(t, x, x̄) =F [z(m), u(m+1)](t, x̄)− F [z(m), u(m+1)](t, x)


−G(m)[u(m+1)](t, x) ◦ (x̄− x).


Throughout the proof, Q(m) denotes the intermediate point


Q(m)(s, τ, t, x, x̄)


=
(
τ, y(m)+s[ȳ(m)−y(m)], Z(m)+s[Z̄(m)−Z(m)], U (m)+s[Ū (m)−U (m)]


)
,


where 0 ≤ s ≤ 1 and


y(m) = g(m)(τ, t, x), ȳ(m) = g(m)(τ, t, x̄),
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Z(m) = z
(m)


ψ(τ,g(m)(τ,t,x))
, Z̄(m) = z


(m)


ψ(τ,g(m)(τ,t,x̄))
,


U (m) = u(m+1)(τ, g(m)(τ, t, x), Ū (m) = u(m+1)(τ, g(m)(τ, t, x̄).


The proof of (29) is based on the following observation. Write


∆̄(t, x, x̄) = ϕ(0, g(m)(0, t, x̄))− ϕ(0, g(m)(0, t, x))


−∂xϕ(0, g(m)(0, t, x)) ◦ [
g(m)(0, t, x̄)− g(m)(0, t, x)


]


+


∫ t


0


∫ 1


0


[
∂xf


(
Q(m)(s, ξ, t, x, x̄)


)− ∂xf
(
P [z(m), u(m+1)](ξ, t, x)


)]
ds


◦[g(m)(ξ, t, x̄)− g(m)(ξ, t, x)
]
dξ


+


∫ t


0


∫ 1


0


[
∂wf


(
Q(m)(s, ξ, t, x, x̄)


)− ∂wf
(
P [z(m), u(m+1)](ξ, t, x)


)]
ds


×[
z


(m)


ψ(ξ,g(m)(ξ,t,x̄))
− z


(m)


ψ(ξ,g(m)(ξ,t,x))


]
dξ


+


∫ t


0


∫ 1


0


[
∂qf


(
Q(m)(s, ξ, t, x, x̄)


)− ∂qf
(
P [z(m), u(m+1)](ξ, t, x)


)]
ds


◦[u(m+1)(ξ, g(m)(ξ, t, x̄))− u(m+1)(ξ, g(m)(ξ, t, x))
]
dξ


+


∫ t


0


∂wf
(
P [z(m), u(m+1)](ξ, t, x)


)[
z


(m)


ψ(ξ,g(m)(ξ,t,x̄))
− z


(m)


ψ(ξ,g(m)(ξ,t,x))
−


[
(u(m))ψ(ξ,g(m)(ξ,t,x)) ¦ ∂xψ


′(ξ, g(m)(ξ, t, x))
] ◦ [


g(m)(ξ, t, x̄)− g(m)(ξ, t, x)
]]


dξ


and


∆̃ = ∂xϕ(0, g(m)(0, t, x)) ◦ Λ(m)(0, t, x, x̄)


+


∫ t


0


∂xf
(
P [z(m), u(m+1)](ξ, t, x)


) ◦ Λ(m)(ξ, t, x, x̄)dξ


+


∫ t


0


[
∂wf


(
P [z(m), u(m+1)](ξ, t, x)


) ∗ (u(m))ψ(ξ,g(m)(ξ,t,x))


]
¦ ∂xψ


′(ξ, g(m)(ξ, t, x))


◦Λ(m)(ξ, t, x, x̄)dξ


−
∫ t


0


[
∂qf


(
P [z(m), u(m+1)](s, t, x̄)


)− ∂qf(P [z(m), u(m+1)](s, t, x))
]
ds


◦ u(m+1)(ξ, g(m)(ξ, t, x))dξ.


By applying the Hadamard mean value theorem to the difference


f
(
P [z(m), u(m+1)](ξ, t, x̄)


)− f
(
P [z(m), u(m+1)](ξ, t, x)


)


we get


∆(t, x, x̄) = ∆̄(t, x, x̄) + ∆̃(t, x, x̄) on [0, c]×Rn.


V. We prove that


∆̃(t, x, x̄) = 0 for (t, x), (t, x̄) ∈ [0, c]×Rn. (30)
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It follows easily that


∆̃(t, x, x̄) =


∫ t


0


[
∂qf


(
P [z(m), u(m+1)](ξ, t, x̄)


)− ∂qf
(
P [z(m), u(m+1)](ξ, t, x)


)]


◦[W (m)(τ, t, x)− u(m+1)(τ, g(m)(τ, t, x))
]
dτ,


where


W (m)(τ, t, x) = ∂xϕ(0, g(m)(0, t, x)) +


∫ τ


0


∂xf
(
P [z(m), u(m+1)](ξ, t, x)


)
dξ


+


∫ τ


0


[
∂wf


(
P [z(m), u(m+1)](ξ, t, x)


) ∗ (u(m))ψ(ξ,g(m)(ξ,t,x))


]
¦∂xψ


′(ξ, g(m)(ξ, t, x)
)
dξ.


The equality


g(m)(ξ, τ, g(m)(τ, t, x)) = g(m)(ξ, t, x), (t, x) ∈ [0, c]×Rn, ξ, τ ∈ [0, c],


which is a consequence of Assumption H[∂qf ], implies that


u(m+1)(τ, g(m)(τ, t, x)) = W (m)(τ, t, x), (t, x) ∈ [0, c]×Rn, τ ∈ [0, c],


which completes the proof of (30). Thus we have proved that ∆(t, x, x̄) =
∆̄(t, x, x̄) on [0, c]×Rn.


VI. It remains to prove (29) for ∆̄. It follows from Assumption H[f ] and
from Lemma 1 that∥∥∂xf(Q(m)(s, ξ, t, x, x̄))− ∂xf(P [z(m), u(m+1)](ξ, t, x))


∥∥
≤ Aγ(ξ)


∥∥g(m)(ξ, t, x̄)− g(m)(ξ, t, x)
∥∥


and the same estimate holds for the derivative ∂qf and the Fréchet derivative
∂wf . According to Assumptions H[ψ], H[ϕ] and Lemma 1, we have that
∥∥z


(m)


ψ(s,g(m)(ξ,t,x̄))
− z


(m)


ψ(s,g(m)(ξ,t,x))


∥∥ ≤ s0(Kd1 + K0d1)
∥∥g(m)(ξ, t, x̄)− g(m)(ξ, t, x)


∥∥.


An easy computation shows that∥∥ϕ(0, g(m)(0, t, x̄))− ϕ(0, g(m)(0, t, x))− ∂xϕ(0, g(m)(0, t, x))


◦[g(m)(0, t, x̄)− g(m)(0, t, x)]
∥∥ ≤ χc1


∥∥g(m)(0, t, x̄)− g(m)(0, t, x)
∥∥2


.


Since ∂xz
(m) = u(m), we have that there is C̄ ∈ R+ such that


∥∥z
(m)


ψ(ξ,g(m)(ξ,t,x̄))
− z


(m)


ψ(ξ,g(m)(ξ,t,x))
− [


(u(m))ψ(ξ,g(m)(ξ,t,x)) ¦ ∂xψ
′(ξ, g(m)(ξ, t, x))


]◦
[
g(m)(ξ, t, x̄)− g(m)(ξ, t, x)


]∥∥ ≤ C̄
∥∥g(m)(ξ, t, x̄)− g(m)(ξ, t, x)


∥∥2
.


It follows from the above estimates and the definition of ∆̄ that there is C0 ∈ R+


such that


|∆(t, x, x̄)| ≤ χc1


∥∥g(m)(0, t, x̄)− g(m)(0, t, x)
∥∥2


+C0


∫ t


0


[γ(ξ) + α(ξ)]
∥∥g(m)(ξ, t, x̄)− g(m)(ξ, t, x)


∥∥2
dξ on [0, c]×Rn.


Thus it follows from Theorem 1 that there is C̃ ∈ R+ such that estimate (29)
holds and consequently ∂xz


(m+1) = u(m+1).
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VII. Now we prove that z(m+1) ∈ C1.L
ϕ.c [c, λ]. From (IIm+1) it follows that


‖∂xz
(m+1)(t, x)‖ ≤ d1 and


∥∥∂xz
(m+1)(t, x)− ∂xz


(m+1)(t̄, x̄)
∥∥ ≤


∣∣∣∣
∫ t̄


t


λ1(ξ)dξ


∣∣∣∣ + d2‖x− x̄‖


on [0, c]×Rn. Assumptions H[ψ] and H[f ] imply


|z(m+1)(t, x)| ≤ χb0 +


∫ t


0


[γ̃(ξ) + p0α(ξ)]dξ ≤ d0


and


∣∣z(m+1)(t, x)− z(m+1)(t̄, x)
∣∣ ≤ Γ̃(c)


∣∣∣∣
∫ t̄


t


α(ξ)dξ


∣∣∣∣ +


∣∣∣∣
∫ t̄


t


[
γ̃(ξ) + p0α(ξ)


]
dξ


∣∣∣∣


=


∣∣∣∣
∫ t̄


t


[
(Γ̃(c) + p0)α(ξ) + γ̃(ξ)


]
dξ


∣∣∣∣ =


∣∣∣∣
∫ t̄


t


λ0(ξ)dξ


∣∣∣∣.


This completes the proof of the theorem. ¤


6. Convergence of the sequence {z(m), u(m)}
We prove that the sequences {z(m)} and {u(m)} are uniformly convergent if


the constant c ∈ [0, a] is sufficiently small. Write


Θ̃(t) = exp


[
c̃


∫ t


0


γ(ξ)dξ


]
·
[
1 +


∫ t


0


[Γ̃(c)γ(ξ) + p0γ(ξ) + 2α(ξ)]dξ


]
,


η0(t) = s0KΘ̃(a)α(t), η(t) = γ(t)
[
Kc̃Θ̃(a) + KΓ̃(a) + p0


]
+ α(t).


Assumption H[c]. Suppose that Assumption H0[c] is satisfied and c is such
a small constant that


q = max


{ ∫ c


0


η(ξ)dξ,


∫ c


0


η0(ξ)dξ


}
< 1. (31)


Theorem 3. If Assumptions H[X], H[ψ], H[f ] and H[c] are satisfied and
ϕ ∈ I[X], then the sequences {z(m)} and {u(m)} are uniformly convergent on
[0, c]×Rn.


Proof. An easy computation shows that the integral inequality


∥∥u(m+1) − u(m)
∥∥


t
≤ c̃


∫ t


0


γ(ξ)
∥∥u(m+1) − u(m)


∥∥
ξ
dξ


+K


∫ t


0


[
c̃γ(ξ)


∥∥z(m) − z(m−1)
∥∥


ξ
+ s0α(ξ)


∥∥u(m) − u(m−1)
∥∥


ξ


]
dξ, t ∈ [0, c],


is satisfied. This gives


∥∥u(m+1) − u(m)
∥∥


t
≤ K


∫ t


0


[
c̃γ(ξ)


∥∥z(m) − z(m−1)
∥∥


ξ
+ s0α(ξ)


∥∥u(m) − u(m−1)
∥∥


ξ


]
dξ


× exp


[
c̃


∫ t


0


γ(ξ)dξ


]
, m ≥ 0, t ∈ [0, c]. (32)
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It is easily seen that


∥∥z(m+1) − z(m)
∥∥


t
≤


∫ t


0


[
Γ̃(c)γ(ξ) + p0γ(ξ) + α(ξ)


]


×
[
K


∥∥z(m) − z(m−1)
∥∥


ξ
+


∥∥u(m+1) − u(m)
∥∥


ξ


]
dξ


+


∫ t


0


α(ξ)
∥∥u(m+1) − u(m)


∥∥
ξ
dξ, m ≥ 0, t ∈ [0, c]. (33)


Combining (32) and (33) we deduce that


∥∥z(m+1) − z(m)
∥∥


t
≤ K


∫ t


0


[
Γ̃(c)γ(ξ) + p0γ(ξ) + α(ξ)


]∥∥z(m) − z(m−1)
∥∥


ξ
dξ


+K


{
Θ̃(t)− exp


[
c̃


∫ t


0


γ(ξ)dξ


]}


×
∫ t


0


[
c̃γ(ξ)


∥∥z(m) − z(m−1)
∥∥


ξ
+ s0α(ξ)


∥∥u(m) − u(m−1)
∥∥


ξ


]
dξ, (34)


where t ∈ [0, c], m ≥ 1. Adding inequalities (32) and (34), we conclude that


∥∥u(m+1) − u(m)
∥∥


t
+


∥∥z(m+1) − z(m)
∥∥


t
≤


∫ t


0


η0(ξ)
∥∥u(m) − u(m−1)


∥∥
ξ
dξ


+


∫ t


0


η(ξ)
∥∥z(m) − z(m−1)


∥∥
ξ
dξ, t ∈ [0, c], m ≥ 1,


and consequently ∥∥u(m+1) − u(m)
∥∥


t
+


∥∥z(m+1) − z(m)
∥∥


t


≤ q
[∥∥u(m) − u(m−1)


∥∥
t
+


∥∥z(m) − z(m−1)
∥∥


t


]
, t ∈ [0, c], m ≥ 1.


There is c̄ ∈ R+ such that∥∥u(1) − u(0)
∥∥


t
+


∥∥z(1) − z(0)
∥∥


t
≤ c̄ for t ∈ [0, c].


Finally, the convergence of the sequences {z(m)} and {u(m)} follows from con-
dition (31). This is our claim. ¤


7. The Main Theorem


We state the main result on the existence and continuous dependence of
solutions on initial functions. For a function ϕ ∈ I[X] we write


‖ϕ(0, ·)‖ = sup
{|ϕ(0, x)| : x ∈ Rn


}
, ‖∂xϕ(0, ·)‖ = sup


{‖∂xϕ(0, x)
∥∥ : x ∈ Rn}.


Theorem 4. If Assumptions H[X], H[ψ], H[f ] and H[c] are satisfied and
ϕ ∈ I[X], then there is a solution v : (−∞, c] × Rn → R to problem (1), (2).
Moreover, v ∈ C1.L


ϕ.c [d, λ] and ∂xv ∈ CL
∂ϕ.c[p, µ]. If ϕ̄ ∈ I[X] and v̄ ∈ C1.L


ϕ̄.c [d, λ] is
a solution of equation (1) with the initial condition z(t, x) = ϕ̄(t, x) for (t, x) ∈
(−∞, 0]×Rn, then there are Q, Λ ∈ C([0, c], R+) such that


‖v − v̄‖t + ‖∂xv − ∂xv̄‖t ≤ Λ(t)
[∥∥ϕ(0, ·)− ϕ̄(0, ·)


∥∥ +
∥∥∂xϕ(0, ·)− ∂xϕ̄(0, ·)


∥∥
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+Q(t)
(‖ϕ− ϕ̄‖X,Rn + ‖∂xϕ− ∂xϕ̄‖X,Rn


)]
, t ∈ [0, c]. (35)


Proof. It follows from Theorem 3 that there are functions v ∈ C1.L
ϕ.c [d, λ] and


ū ∈ CL
∂ϕ.c[d, µ] such that


v(t, x) = lim
m→∞


z(m)(t, x) and ū(t, x) = lim
m→∞


u(m)(t, x)


uniformly on [0, c] × Rn. Furthermore, we have that ∂xv exists on [0, c] × Rn


and ∂xv(t, x) = ū(t, x) for (t, x) ∈ [0, c] × Rn. The passage to the limit in (22)
implies that


v(t, x) = ϕ
(
0, g[v, ∂xv](0, t, x)


)
+


∫ t


0


[
f
(
P [v, ∂xv](ξ, t, x)


)


−∂qf
(
P [v, ∂xv](ξ, t, x)


)◦∂xv(ξ, g[v, ∂xv](ξ, t, x)
)]


dξ, (t, x)∈ [0, c]×Rn. (36)


For x ∈ Rn let us put y = g[v, ∂xv](0, t, x). It follows that g[v, ∂xv](τ, t, x) =
g[v, ∂xv](τ, 0, y] for t, τ ∈ [0, c] and x = g[v, ∂xv](t, 0, y). Write g̃(t, 0, y) =
g[v, ∂xv](t, 0, y), (t, y) ∈ [0, c]×Rn. Then relation (36) is equivalent to


v(t, g̃(t, 0, y)) = ϕ(0, y) +


∫ t


0


[
f
(
ξ, g̃(ξ, 0, y), vψ(ξ,g̃(ξ,0,y)), ∂xv(ξ, g̃(ξ, 0, y))


)


−∂qf
(
ξ, g̃(ξ, 0, y), vψ(ξ,g̃(ξ,0,y)), ∂xv(ξ, g̃(ξ, 0, y))


) ◦ ∂xv(ξ, g̃(ξ, 0, y))
]
dξ,


where (t, x) ∈ [0, c]×Rn. Differentiating the above relation with respect to t and
making use of the inverse transformation x = g̃(t, 0, y), we see that v satisfies
equation (1) for almost all t ∈ [0, c] with fixed x ∈ Rn.


Now we prove inequality (35). It follows that the functions (v, ∂xv) satisfy
the functional integral equations (17), and (v̄, ∂xv̄) is a solution of an adequate
system with ϕ̄ and ∂xϕ̄ instead of ϕ and ∂xϕ. Analysis similar to that in the
proof of Theorem 2 shows that


‖v − v̄‖t ≤ ‖ϕ(0, ·)− ϕ̄(0, ·)‖


+(Γ̃(t) + p0)


∫ t


0


γ(ξ)
[
K‖v − v̄‖ξ + ‖∂xv − ∂xv̄‖ξ + K0‖ϕ− ϕ̄‖X,Rn


]
dξ


+


∫ t


0


α(ξ)
[
K‖v−v̄‖ξ+‖∂xv−∂xv̄‖ξ+K0‖ϕ−ϕ̄‖X,Rn


]
dξ+


∫ t


0


α(ξ)‖∂xv−∂xv̄‖ξdξ


and


‖∂xv − ∂xv̄‖t ≤ ‖∂xϕ(0, ·)− ∂xϕ̄(0, ·)‖


+c̃


∫ t


0


γ(ξ)
[
K‖v − v̄‖ξ + ‖∂xv − ∂xv̄‖ξ + K0‖ϕ− ϕ̄‖X,Rn


]
dξ


+s0


∫ t


0


α(ξ)
[
K‖∂xv − ∂xv̄‖ξ + K0‖∂xϕ− ∂xϕ̄‖X,Rn


]
dξ,
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where t ∈ [0, c]. Write


Λ̃ = K̃(Γ̃(a) + p0 + c̃)γ(t) + (K̃ + 1 + Ks0)α(t), K̃ = max{1, K},


Q(t) = K0(Γ̃(a) + p0 + c̃)


∫ t


0


γ(ξ)dξ + K0s̄


∫ t


0


α(ξ)dξ, s̄ = max{1, s0}.


According to the above estimates, we have the integral inequality


‖v − v̄‖t + ‖∂xv − ∂xv̄‖t ≤ ‖ϕ(0, ·)− ϕ̄(0, ·)‖+ ‖∂xϕ(0, ·)− ∂xϕ̄(0, ·)‖


+Q(t)
[‖ϕ−ϕ̄‖X,Rn +‖∂xϕ−∂xϕ̄‖X,Rn


]
+


∫ t


0


Λ̃(ξ)
[‖v − v̄‖ξ+‖∂xv−∂xv̄‖ξ


]
dξ


for t ∈ [0, c] and we get (35) with


Λ(t) = exp


[ ∫ t


0


Λ̃(ξ)dξ


]
, t ∈ [0, c].


This is our claim. ¤
Remark 3. The results of the paper can be extended to nonlinear weakly


coupled systems


∂tzi(t, x) = fi


(
t, x, zψ(t,x), ∂xzi(t, x)


)
, i = 1, . . . , k,


with the initial condition


z(t, x) = ϕ(t, x) for (t, x) ∈ (−∞, 0]×Rn,


where z = (z1, . . . , zk). These systems are of special hyperbolic type because
each equation contains the vector of unknown functions z = (z1, . . . , zk) and
first order derivatives of only one scalar function.
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