
GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 3, 1995, 299-311

ON A SPATIAL PROBLEM OF DARBOUX TYPE
FOR A SECOND-ORDER HYPERBOLIC EQUATION

S. KHARIBEGASHVILI

Abstract. The theorem of unique solvability of a spatial problem of
Darboux type in Sobolev space is proved for a second-order hyperbolic
equation.

In the space of variables x1, x2, t let us consider the second order hy-
perbolic equation

Lu ≡ �u + aux1 + bux2 + cut + du = F, (1)

where � ≡ ∂2

∂t2 −
∂2

∂x2
1
− ∂2

∂x2
2

is a wave operator; the coefficients a, b, c, d and
the right-hand side F of equation (1) are given real functions, and u is an
unknown real function.

Denote by D : kt < x2 < t, 0 < t < t0, −1 < k = const < 1, the domain
lying in a half-space t > 0, which is bounded by a time-type plane surface
S1 : kt − x2 = 0, 0 ≤ t ≤ t0, a characteristic surface S2 : t − x2 = 0,
0 ≤ t ≤ t0 of equation (1), and a plane t = t0.

Let us consider the Darboux type problem formulated as follows: find in
the domain D the solution u(x1, x2, t) of equation (1) under the boundary
conditions

u
∣

∣

Si
= fi, i = 1, 2, (2)

where fi, i = 1, 2, are given real functions on Si; moreover (f1−f2)|S1∩S2 =
0.

Note that in the class of analytic functions the problem (1),(2) is con-
sidered in [1]. In the case where S1 is a characteristic surface t + x2 = 0,
0 ≤ t ≤ t0, the problem (1),(2) is studied in [1–3]. Some multidimensional
analogues of the Darboux problems are treated in [4–6]. In the present
paper the problem (1),(2) is investigated in the Sobolev space W 1

2 (D).
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Below we shall obtain first the solution of problem (1),(2) when equation
(1) is a wave equation

�u ≡ ∂2u
∂t2

− ∂2u
∂x2

1
− ∂2u

∂x2
2

= F (3)

and then using the estimates for that solution we shall prove the solvability
of the problem (1),(2) in the Sobolev space W 1

2 (D).
Using the method suggested in [7], we can get an integral representation

of the regular solution of the problem (3),(2). Moreover, without loss of
generality we can assume that for the domain D the value k = 0, i.e.,
D : 0 < x2 < t, 0 < t < t0, since the case k 6= 0 is reduced to the case
k = 0 by a suitable Lorentz transform for which the wave operator � is
invariant. To this end we denote by Dεδ a part of the domain D : 0 <
x2 < t, 0 < t < t0, bounded by the surfaces S1 and S2, the circular cone
Kε : r2 = (t − t0)(1 − ε) with vertex at the point (x0, t0) ∈ D, and the
circular cylinder Hδ : r2 = δ2, where r2 = (x1 − x0

1)
2 + (x2 − x0

2)
2 while ε

and δ are sufficiently small positive numbers.
For any two twice continuously differentiable functions u and v we have

an obvious identity

u�v − v�u =
2

∑

i=1

∂
∂xi

(

v
∂u
∂xi

− u
∂v
∂xi

)

− ∂
∂t

(

v
∂u
∂t
− u

∂v
∂t

)

. (4)

Integrating equality (4) with respect to Dεδ, where u ∈ C1(D̄) ∩ C2(D)
is a regular solution of the equation (3) and

v = E(r, t, t0) =
1
2π

log
t− t0 −

√

(t− t0)2 − r2

r
,

we have
∫

∂Dεδ

[

E(r, t, t0)
∂u
∂N

− ∂E(r, t, t0)
∂N

u
]

ds +
∫

Dεδ

F ·E(r, t, t0)dxdt = 0, (5)

where N is the unit conormal vector at the point (x, t) = (x1, x2, t) ∈ ∂Dεδ

with direction cosines cos ̂Nx1 = cos n̂x1, cos ̂Nx2 = cos n̂x2, cos ̂Nt =
− cos ̂nt and n is a unit vector of an outer normal to ∂Dεδ.

Passing in the equality (5) to the limit for ε → 0, δ → 0, we get

t0
∫

x0
2

u(x0
1, x

0
2, t)dt =

∫

S∗1∪S∗2

[∂E(r, t, t0)
∂N

u− E(r, t, t0)
∂u
∂N

]

ds−

−
∫

D∗

F · E(r, t, t0)dxdt,
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where D∗ is a domain of Dεδ for ε = δ = 0, and S∗i = Si ∩ ∂D∗, i = 1, 2.
Differentiation gives

u(x0
1, x

0
2, t

0) =
d

dt0

[

∫

S∗1∪S∗2

[∂E(r, t, t0)
∂N

u−E(r, t, t0)
∂u
∂N

]

ds−

−
∫

D∗

F · E(r, t, t0)dxdt
]

. (6)

Remark. Since on the characteristic surface S∗2 the direction of the conor-
mal N coincides with that of a bicharacteristic lying on S∗2 , we can, along
with u|S∗2 = f2, calculate also ∂u

∂N over S∗2 . At the same time, since the
surface S∗1 is a part of the plane x2 = 0, the direction of the conormal N
coincides with that of an outer normal to ∂D∗, i.e., ∂

∂N = − ∂
∂x2

. Therefore,
to obtain an integral representation of the regular solution of the problem
(3),(2), we should eliminate the value ∂u

∂N |S∗1 on the right-hand side of the
representation (6).

For this let us introduce a point P ′(x0
1,−x0

2, t
0) symmetric to the point

P (x0
1, x

0
2, t

0) with respect to the plane x2 = 0. Denote by Dε a part of the
domain D bounded by the cone K0

ε : (x1−x0
1)

2+(x2+x0
2)

2 = (t−t0)2(1−ε)
with vertex at P ′ and a boundary ∂D. Obviously, ∂Dε∩S1 ⊂ S∗1 and ∂D0∩
S1 = S∗1 . Put ∂D0 ∩ S2 = ˜S2, r̃ =

√

(x1 − x0
1)2 + (x2 + x0

2)2. Integrating
now the equality (4) with respect to Dε, where u ∈ C1(D) ∩ C2(D) is a
regular solution of equation (3) and

v = E(r̃, t, t0) =
1
2π

log
t− t0 −

√

(t− t0)2 − r̃2

r̃
,

and taking into account the fact that the function E(r̃, t, t0) in D0 is non-
singular, after passing to the limit for ε → 0 we get the equality

d
dt0

[

∫

S∗1∪S∗2

[∂E(r̃, t, t0)
∂N

u− E(r̃, t, t0)
∂u
∂N

]

ds−

−
∫

D0

F · E(r̃, t, t0)dxdt
]

= 0. (7)

Since r = r̃ for x2 = 0, we have E(r̃, t, t0) = E(r, t, t0) on S∗1 . Therefore,
eliminating the value ∂u

∂N |S∗1 from equalities (6) and (7), we finally get the
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integral representation of the regular solution of the problem (3),(2):

u(x0
1, x

0
2, t

0) =
d

dt0

[

∫

S∗1

[∂E(r, t, t0)
∂N

− ∂E(r̃, t, t0)
∂N

]

uds +

+
∫

S∗2

[∂E(r, t, t0)
∂N

u− E(r, t, t0)
∂u
∂N

]

ds−
∫

S̃2

[∂E(r̃, t, t0)
∂N

u−

−E(r̃, t, t0)
∂u
∂N

]

ds +
∫

D0

F · E(r̃, t, t0)dxdt−
∫

D∗

F ·E(r, t, t0)dxdt
]

. (8)

Denote by C∞∗ (D) the space of functions of the class C∞(D) having
bounded supports, i.e.,

C∞∗ (D) = {u ∈ C∞(D) : diam supp u < ∞}.

The spaces C∞∗ (Si), i = 1, 2, are defined analogously.
According to the remark above and using the formula (8), the solution

u(x1, x2, t) of the problem (3),(2) will be defined uniquely; moreover, as is
easily seen, for any F ∈ C∞∗ (D), fi ∈ C∞∗ (Si), i = 1, 2, this solution belongs
to the class C∞∗ (D).

Denote by W 1
2 (D), W 2

2 (D) and W 1
2 (Si), i = 1, 2, the well-known Sobolev

spaces.

Definition. Let fi ∈ W 1
2 (Si), i = 1, 2, F ∈ L2(D). The function

u ∈ W 1
2 (D) is said to be a strong solution of the problem (3),(2) of the class

W 1
2 if there is a sequence un ∈ C∞∗ (D) such that un → u, �un → F and

un|Si → fi in the spaces W 1
2 (D), L2(D) and W 1

2 (Si), i = 1, 2, respectively,
i.e., for n →∞

‖un − u‖W 1
2 (D) → 0, ‖�un − F‖L2(D) → 0,

‖un|Si − fi‖W 1
2 (Si) → 0, i = 1, 2.

Lemma 1. For −1 < k < 0 the a priori estimate

‖u‖W 1
2 (D) ≤ C

(
2

∑

i=1

‖fi‖W 1
2 (Si) + ‖F‖L2(D)

)

(9)

is valid for any u ∈ C∞∗ (D), where fi = u|Si , i = 1, 2, F = �u, and the
positive constant C does not depend on u.
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Proof. Introduce the notations:

Dτ = {(x, t) ∈ D : t < τ}, D0τ = ∂Dτ ∩ {t = τ}, 0 < τ ≤ t0,

Siτ = ∂Dτ ∩ Si, i = 1, 2, Sτ = S1τ ∪ S2τ , α1 = cos (̂n, x1),

α2 = cos (̂n, x2), α3 = cos (̂n, t).

Here n = (α1, α2, α3) is the unit vector of an outer normal to ∂Dτ ; moreover,
as is easily seen,

n|S1τ =
(

0,
−1√
1 + k2

,
k√

1 + k2

)

, n|S2τ =
(

0,

√
2

2
,
−
√

2
2

)

, n|D0τ =(0, 0, 1).

Hence, for −1 < k < 0

α3|Siτ < 0 i = 1, 2, α−1
3 (α2

3 − α2
1 − α2

2)|S1 > 0,

(α2
3 − α2

1 − α2
2)|S2 = 0.

(10)

Multiplying both parts of equation (3) by 2ut, where u ∈ C∞∗ (D), F =
�u, integrating the obtained expression over the region to Dτ , and taking
into account (10), we get

2
∫

Dτ

Fuτdxdt =
∫

Dτ

(∂u2
t

∂t
+ 2ux1utx1 + 2ux2utx2

)

dxdt−

−2
∫

Sτ

(ux1utα1 + ux2utα2)ds =
∫

D0τ

(u2
t + u2

x1
+ u2

x2
)dx +

+
∫

Sτ

[(u2
t + u2

x1
+ u2

x2
)α3 − 2(ux1utα1 + ux2utα2)]ds =

=
∫

D0τ

(u2
t + u2

x1
+ u2

x2
)dx +

∫

Sτ

α−1
3

[

(α3ux1 − α1ut)2 + (α3ux2 − α2ut)2 +

+(α2
3 − α2

1 − α2
2)u

2
t

]

ds ≥
∫

D0τ

(u2
t + u2

x1
+ u2

x2
)dx +

+
∫

Sτ

α−1
3

[

(α3ux1 − α1ut)2 + (α3ux2 − α2ut)2
]

ds. (11)

Putting

W (τ) =
∫

D0τ

(u2
t + u2

x1
+ u2

x2
)dx, ũi = α3uxi − αiut, i = 1, 2,
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from (11) we have

W (τ) ≤
√

1 + k2

|k|

∫

S1τ

(ũ2
1 + ũ2

2)ds +
√

2
∫

S2τ

(ũ2
1 + ũ2

2)ds +

+
∫

Dτ

(F 2 + u2
t )dxdt ≤

√
1 + k2

|k|

∫

S1τ

(ũ2
1 + ũ2

2)ds +
√

2
∫

S2τ

(ũ2
1 + ũ2

2)ds +

+

τ
∫

0

dξ
∫

D0ξ

u2
t dx +

∫

Dτ

F 2dxdt ≤
√

1 + k2

|k|

∫

Sτ

(ũ2
1 + ũ2

2)ds +

+

τ
∫

0

W (ξ)dξ +
∫

Dτ

F 2dxdt. (12)

Let (x, τx) be a point of intersection of the surface S1∪S2 with a straight
line parallel to the axis t and passing through the point (x, 0). We have

u(x, τ) = u(x, τx) +

τ
∫

τx

ut(x, t)dt,

whence it follows that
∫

D0τ

u2(x, τ)dx ≤ 2
∫

D0τ

u2(x, τx)dx +

+2|τ − τx| ·
∫

D0τ

dx

τ
∫

τx

u2
t (x, t)dt = 2

∫

Sτ

α−1
3 u2ds +

+2|τ − τx|
∫

Dτ

u2
t dxdt ≤ Ck

(
∫

Sτ

u2ds +
∫

Dτ

u2
t dxdt

)

, (13)

where Ck = 2 max
(√

1+k2

|k| , t0
)

.
Introducing the notation

W0(τ) =
∫

D0τ

(u2 + u2
t + u2

x1
+ u2

x2
)dx

and adding the inequalities (12) and (13) we obtain

W0(τ) ≤ Ck

[

∫

Sτ

(u2 + ũ2
1 + ũ2

2)ds +

τ
∫

0

W0(ξ)dξ +
∫

Dτ

F 2dxdt
]
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from which by Gronwall’s lemma we find that

W0(τ) ≤ C1k

[

∫

Sτ

(u2 + ũ2
1 + ũ2

2)ds +
∫

Dτ

F 2dxdt
]

. (14)

We can easily see that α3
∂

∂xi
− αi

∂
∂t is the interior differential operator

on the surface Sτ . Therefore, by virtue of (2), the inequality

∫

Sτ

(u2 + ũ2
1 + ũ2

2)ds ≤ ˜C3

2
∑

i=1

‖f‖2W 1
2 (Siτ ) (15)

is valid.
It follows from (14) and (15) that

W0(τ) ≤ C2k

(
2

∑

i=1

‖fi‖2W 1
2 (Siτ ) + ‖F‖2L2(Dτ )

)

. (16)

Integrating both parts of the inequality (16) with respect to τ , we obtain
the estimate (9).

Remark. It is easy see that the a priori estimate (9) is also valid for a
function u of the class W 2

2 (D), since the space C∞∗ (D) is everywhere a dense
subset of the space W 2

2 (D). It should be noted that the constant C in (9)
tends to infinity for k → 0 and it becomes, generally speaking, invalid in
the limit for k = 0, i.e. for S1 : x2 = 0, 0 ≤ t ≤ t0. At the same time,
following the proof of Lemma 1, we can see that the estimate (9) is also
valid for k = 0 if f1 = u|S1 = 0.

The following theorem holds.

Theorem 1. Let −1 < k < 0. Then for every fi ∈ W 1
2 (Si), i = 1, 2,

F ∈ L2(D) there exists a unique strong solution of the problem (3), (2) of
the class W 1

2 for which the estimate (9) is valid.

Proof. It is known that the spaces C∞∗ (D) and C∞∗ (Si), i = 1, 2, are dense
everywhere in the spaces L2(D) and W 1

2 (Si), i = 1, 2, respectively. There-
fore there exist sequences Fn ∈ C∞∗ (D) and fin ∈ C∞∗ (Si), i = 1, 2, such
that

lim
n→∞

‖F − Fn‖L2(D) = lim
n→∞

‖fi − fin‖W 1
2 (Si) = 0, i = 1, 2. (17)

Moreover, because of the condition (f1 − f2)|S1∩S2 = 0, the sequences f1n

and f2n can be chosen so that

(f1n − f2n)|S1∩S2 = 0, n = 1, 2, . . . .
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According to the integral representation (8) of the regular solutions of
the problem (3),(2), there exists a sequence un ∈ C∞∗ (D) of solutions of
that problem for F = Fn, fi = fin, i = 1, 2.

By virtue of the inequality (9) we have

‖un − um‖W 1
2 (D) ≤

≤ C
(

2
∑

i=1

‖fin − fim‖W 1
2 (Si) + ‖Fn − Fm‖L2(D)

)

. (18)

It follows from (17) and (18) that the sequence un of the functions is fun-
damental in the space W 1

2 (D). Therefore, since the space W 1
2 (D) is com-

plete, there exists a function u ∈ W 1
2 (D) such that un → u, �un → F ,

and un|Si → fi in W 1
2 (D), L2(D), and W 1

2 (Si), i = 1, 2, respectively, for
n →∞. Hence the function u is the strong solution of the problem (3),(2) of
the class W 1

2 . The uniqueness of the strong solution of the problem (3),(2)
of the class W 1

2 follows from the inequality (9).

Remark. Theorem 1 remains also valid for k = 0, i.e., for S1 : x2 = 0,
0 ≤ t ≤ t0 if f1 = u|S1 = 0.

Now for the problem (3),(2) let us introduce the notion of a weak solution
of the class W 1

2 . Put S3 = ∂D ∩ {t = t0}, V = {v ∈ W 1
2 (D) : v|S1∪S3 = 0}.

Definition. Let fi ∈ W 1
2 (Si), i = 1, 2, F ∈ L2(D). The function

u ∈ W 1
2 (D) is said to be a weak solution of the problem (3),(2) of the class

W 1
2 if it satisfies both the boundary conditions (2) and the identity

∫

D

(utvt − ux1vx1 − ux2vx2)dxdt +
∫

S2

∂f2

∂N
vds +

∫

D

Fvdxdt = 0 (19)

for any v ∈ V , where ∂
∂N is a derivative with respect to a conormal to S2.

Obviously, every strong solution of the problem (3),(2) of the class W 1
2

is a weak solution of the same class.

Lemma 2. For k = 0, i.e., for S1 : x2 = 0, 0 ≤ t ≤ t0 the problem (3),
(2) cannot have more than one weak solution of the class W 1

2 .

Proof. Let the function u ∈ W 1
2 (D) satisfy the identity (19) for u|Si = fi =

0, i = 1, 2, F = 0. In this identity we take as v the function

v(x1, x2, t) =















0 for t ≥ τ,
t

∫

τ

u(x1, x2, σ)dσ for |x2| ≤ t ≤ τ,
(20)
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where 0 < τ ≤ t0.
Obviously, v ∈ V and

vt = u, vxi =

t
∫

τ

uxi(x1, x2, σ)dσ, i = 1, 2,

vtxi = uxi , vtt = ut.

(21)

By virtue of (20) and (21), the identity (19) for f2 = 0, F = 0 takes the
form

∫

Dτ

(vttvt − vtx1vx1 − vtx2vx2)dxdt = 0

or
∫

Dτ

∂
∂t

(v2
t − v2

x1
− v2

x2
)dxdt = 0, (22)

where Dτ = D ∩ {t < τ}.
Using the Gauss–Ostrogradsky formula on the left-hand side of (22), we

obtain
∫

∂Dτ

(v2
t − v2

x1
− v2

x2
) cos ̂ntds = 0. (23)

Since ∂Dτ = S1τ ∪ S2τ ∪ S3τ , where Siτ = ∂Dτ ∩ Si, i = 1, 2, S3τ =
∂Dτ ∩ {t = τ} and

cos ̂nt|S1τ = 0, cos ̂nt|S2τ = − 1√
2
, cos ̂nt|S3τ = 1,

u|Siτ = fi = 0, i = 1, 2, vxi |S3τ = 0, i = 1, 2, vt = u,

it follows from (23) that
∫

S3τ

u2dx1dx2 +
1√
2

∫

S2τ

(v2
x1

+ v2
x2

)ds = 0.

Hence, u|S3τ = 0 for any τ from the interval (0, t0]. Therefore, u ≡ 0 in
the domain D.

Due to the fact that the strong solution of the problem (3),(2) of the class
W 1

2 is at the same time a weak solution of the class W 1
2 , from Lemma 2 and

the remark following after Theorem 1 we have
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Theorem 2. Let k = 0, i.e., S1 : x2 = 0, 0 ≤ t ≤ t0 and u|S1 = f1 = 0.
Then for any f2 ∈ W 1

2 (S2) and F2 ∈ L2(D) there exists a unique weak
solution u of the problem (3), (2) of the class W 1

2 for which the estimate (9)
is valid.

To prove the solvability of the problem (1),(2) we shall use the solvability
of the problem (3),(2) and the fact that in the specifically chosen equivalent
norms of the spaces L2(D), W 1

2 (D), W 1
2 (Si), i = 1, 2, the lowest terms in

equation (1) give arbitrarily small perturbations.
Introduce in the space W 1

2 (D) an equivalent norm depending on the
parameter γ,

‖u‖2D,1,γ =
∫

D

e−γt(u2 + u2
t + u2

x1
+ u2

x2
)dxdt, γ > 0.

In the same manner we introduce the norms ‖F‖D,0,γ , ‖fi‖Si,1,γ in the
spaces L2(D), W 1

2 (Si), i = 1, 2.
Making use of the inequality (16), we obtain the a priori estimate for

u ∈ C∞∗ (D) with respect to the norms ‖ · ‖D,1,γ , ‖ · ‖Si,1,γ , i = 1, 2. Multi-
plying both parts of the inequality (16) by e−γt and integrating the obtained
inequality with respect to τ from 0 to t0 we get

‖u‖2D,1,γ =

t0
∫

0

e−γτW0(τ)dτ ≤ C2k

(
2

∑

i=1

t0
∫

0

e−γt‖fi‖2W 1
2 (Siτ )dτ +

+

t0
∫

0

e−γτ‖F‖2L2(Dτ )dτ
)

. (24)

We have

t0
∫

0

e−γt‖F‖2L2(Dτ )dτ =

t0
∫

0

e−γt
[

τ
∫

0

(

∫

D0σ

F 2dx
)

dσ
]

dτ =

=

t0
∫

0

[

∫

D0σ

F 2dx

t0
∫

σ

e−γτdτ
]

dσ =
1
γ

t0
∫

0

(e−γσ − e−γt0)
[

∫

D0σ

F 2dx
]

dσ ≤

≤ 1
γ

t0
∫

0

e−γσ
[

∫

D0σ

F 2dx
]

dσ =
1
γ
‖F‖2D,0,γ , (25)

where D0τ = ∂Dτ ∩ {t = τ}, 0 < τ ≤ t0.
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Analogously we obtain

t0
∫

0

e−γτ‖fi‖2W 1
2 (Siτ )dτ ≤ C3

γ
‖fi‖2Si,1,γ , i = 1, 2, (26)

where C3 is a positive constant independent of fi and the parameter γ.
From the inequalities (24)–(26) we have the a priori estimate for u ∈

C∞∗ (D)

‖u‖D,1,γ ≤
C4√

γ

(
2

∑

i=1

‖fi‖Si,1,γ + ‖F‖D,0,γ

)

(27)

for −1 < k < 0, where C4 = const > 0 does not depend on u and the
parameter γ.

Below, the coefficients a, b, c, and d in equation (1) are assumed to be
bounded measurable functions in the domain D.

Consider the space

V = L2(D)×W 1
2 (S1)×W 1

2 (S2).

To the problem (1),(2) there corresponds an unbounded operator

T : W 1
2 (D) → V

with the domain of definition ΩT = C∞∗ (D) ⊂ W 1
2 (D), acting by the formula

Tu = (Lu, u|S1 , u|S2), u ∈ ΩT .

We can easily prove that the operator T admits a closure T . In fact, let
un ∈ ΩT , un → 0 in W 1

2 (D) and Tun → (F, f1, f2) in the space V . First we
shall show that F = 0. For ϕ ∈ C∞0 (D) we have

(Lun, ϕ) = (un,�ϕ) + (Ku,ϕ), (28)

where Ku = aux1 +bux2 +cut +du. Since un → 0 in W 1
2 (D), it follows from

(28) that (Lun, ϕ) → 0. On the other hand, by the definition of a strong
solution, we have the convergence Lun → F in L2(D). Therefore (f, ϕ) = 0
for any ϕ ∈ C∞0 (D), and hence, F = 0. That f1 = f2 = 0 follows from the
fact that un → 0 in W 1

2 (D) and the contraction operator u → (u|S1 , u|S2)
acts boundedly from W 1

2 (D) to L2(S1)× L2(S2).
To the problem (3),(2) there corresponds an unbounded operator T0 :

W 1
2 (D) → V obtained from the operator T for a = b = c = d = 0. As

was shown above, the operator T0 also admits a closure T 0. Obviously,
the operator K0 : W 1

2 (D) → V acting by the formula K0u = (Ku, 0, 0) is
bounded and

T = T0 + K0. (29)
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Note that the domains of definition ΩT and ΩT 0
of the closed operators

T and T 0 coincide by virtue of (29) and the fact that the operator K0 is
bounded.

We can easily see that the existence and uniqueness of the strong solution
of the problem (1),(2) of the class W 1

2 as well as the estimate (9) for this
solution follow from the existence of the bounded right operator T−1 inverse
to T and defined in a whole space V .

The fact that the operator T 0 has a bounded right inverse operator T−1
0 :

V → W 1
2 (D) for −1 < k < 0 follows from Theorem 1 and the estimate (9)

which, as we have shown above, can be written in equivalent norms in the
form of (27). It is easy to see that the operator

K0T−1
0 : V → V

is bounded and by virtue of (27) its norm admits the following estimate

‖K0T−1
0 ‖ ≤ C4C5√

γ
, (30)

where C5 is a positive constant depending only on the coefficients a, b, c,
and d of equation (1).

Taking into account (30), we note that the operator (I+K0T−1
0 ) : V → V

has a bounded inverse operator (I+K0T−1
0 )−1 for sufficiently large γ, where

I is the unit operator. Now it remains only to note that the operator

T−1
0 (I + K0T−1

0 )−1

is a bounded operator right inverse to T and defined in a whole space V .
Thus the following theorem is proved.

Theorem 3. Let −1 < k < 0. Then for any fi ∈ W 1
2 (Si), i = 1, 2,

F ∈ L2(D) there exists a unique strong solution u of the problem (1), (2) of
the class W 1

2 for which the estimate (9) is valid.
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