

GEORGIAN MATHEMATICAL JOURNAL: Vol. 3, No. 1, 1996, 27-48


AN ALGEBRAIC MODEL OF FIBRATION WITH THE
FIBER K(π, n)-SPACE


N. BERIKASHVILI


Abstract. For a fibration with the fiber K(π, n)-space, the alge-
braic model as a twisted tensor product of chains of the base with
standard chains of K(π, n)-complex is given which preserves multi-
plicative structure as well. In terms of this model the action of the
n-cohomology of the base with coefficients in π on the homology of
fibration is described.


1. Introduction


For a fibration F −→ E −→ B there is the Brown model [1], [2] as a
twisted tensor product C∗(B) ⊗ϕ C∗(F ). However, this model gives us no
information about the multiplicative structure. The aim of this paper is to
construct a model for the particular case of the fiber F = K(π, n) which
would inherit the multiplicative structure of C∗(E) as well. The model is
given as a twisted tensor product C∗(B)⊗zn+1 C�∗ (L(π, n)) of the singular
chain complex of the base with the chain complex of the cubical version
of the complex K(π, n) [3], [4] and it describes the cubical singular chain
complex of the total space (Theorems 5.1 and 6.1 below). It turns out that
this model is actually the chain complex of a cubical complex and hence, in
addition, it carries a Serre cup product structure as well. In Section 7 the
action of the group Hn(B, π) on the model is discussed.


This paper is a reply to the needs of obstruction theory and is applied in
[5]. The main result was announced in [6].


2. Preliminaries


Let X be a CW -complex and F pX = Xp be its filtration by skeletons.
If H is the singular homology theory with coefficient group G, then for the
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first term of the related spectral sequence we have E1
p,q = 0, q > 0, and


(E1
p,0, d


1) is the chain complex


(Hp(Xp, Xp−1, G), d1)


with the homology isomorphic to the singular homology of the space X.
Of course Hp(Xp, Xp−1, G) is isomorphic to ΣGσ, where σ are p-cells of X
and Gσ = G. The above chain complex will be referred to as the cell chain
complex of the CW -complex.


In some cases the chain map of the cell-chain complex of the CW -complex
to the singular or the cubical singular chain complex is defined which induces
the sisomorphism of homology stated above.


Recall that the cubical set is a sequence of sets Q = {Q0, Q1, Q2 · · · }
together with the boundary and degeneracy operators


dε
i : Qn → Qn−1, 1 ≤ i ≤ n, ε = 0, 1,


si : Qn → Qn+1, 1 ≤ i ≤ n + 1,


subject to the standard equalities (see, e.g., [4], [7]).
Qn are n-cubes of Q; σn ∈ Qn is said to be degenerate if


σn = siτn−1.


The abbreviation for dε
iσ


n is σn,ε
i , ε = 0, 1.


The main example of a cubical set is the cubical singular complex Q(X)
of a space X.


Milnor’s notion of the realization of a simplicial set [8] works for a cubical
set as well and runs as follows.


Let In be the standard n-cube and let


eε
i : In−1 −→ In, 1 ≤ i ≤ n, ε = 0, 1,


pi : In+1 → In, 1 ≤ i ≤ (n + 1),


be i-face imbeddings and i-projections.
Let Q be a cubical set. Then the realization |Q| is defined as a factor set


of the space
⋃


n


(Qn × In)


by the identifications


(σn, eε
ix) = (dε


i(σ
n), x), σ ∈ Qn, x ∈ In−1,


(si(σn), x) = (σn, pix), σ ∈ Qn, x ∈ In+1, 1 ≤ i ≤ (n + 1).


|Q| is a CW-complex with n-cells in 1–1 correspondence with the nonde-
generate n-cubes of Q.
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There is a standard continuous map


r : |Q(X)| −→ X.


We define the Giever-Hu realization [9], [10] of the cubical set Q and
denote it by ||Q||, omitting in the above definition the equality with degen-
eracy operators. Then ||Q|| has cells in 1–1 correspondence with all cubes
of Q. We have the canonical continuous map


||Q|| −→ |Q|.


We recall the notion of homology for the cubical set Q. C̃�∗ (Q) is the
chain complex spanned in each dimension n by all n-cubes of Q, and the
boundary operator d is defined by


dσp = Σ(−1)id0
i σ


p − Σ(−1)id1
i σ


p.


C �∗ (Q) is a chain subcomplex of C̃�∗ (Q) spanned by the degenerate cubes.
The quotient complex


C�∗ (Q) = C̃�∗ (Q)/C �∗ (Q)


is said to be the chain complex of Q and its homology is called the homology
of Q.


If G is a group of coefficients, then by


Cn
�(Q, G)


we understand the normalized cochains of Q, i.e., those which are zero on
the degenerate cubes.


For the singular cubical set Q(|Q|) of the space |Q| consider the standard
imbedding


Q ⊂ Q(|Q|).


It induces the following isomorphisms of homology and cohomology:


H�n (Q,G) = H�n (|Q|, G), Hn
�(Q,G) = Hn


�(|Q|, G).


Hence we find that the map r : |Q(X)| → X induces the isomorphisms


H�n (|Q(X)|, G) = H�n (X, G)), Hn
�(|Q(X)|, G) = Hn


�(X,G)).


The interaction of simplicial and cubical sets is as follows. Let ∆n be the
standard simplex and consider the map


ψn : In −→ ∆n (2.1)
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from [11] defined by


y0 = 1− x1,
y1 = x1(1− x2),


y2 = x1x2(1− x3),
...


yn−1 = x1x2x3 · · ·xn−1(1− xn),
yn = x1x2x3 · · ·xn.


(2.2)


Clearly, ψn is the map of the pairs ψn : (In, ∂In) −→ (∆n, ∂∆n), inducing
the homeomorphism In/∂In −→ ∆n/∂∆n.


In [11], for a singular simplex σn : ∆n −→ X J. P. Serre considers the


composition In ψn−−→ ∆n
σn


−→ X as the singular cube tσn of X, defining
the chain map C∗(S(X)) −→ C�∗ (Q(X)) from the simplicial singular chain
complex to the singular normalized cubical chain complex (see the identities
below). Hence for an abelian group G we have the cochain map


C∗�(Q(X), G) −→ C∗(X,G) (2.3)


from the normalized singular cubical cochain complex to an ordinary sin-
gular cochain complex.


For map (2.3) at the geometrical level, t : S(X) −→ Q(X), we have the
identities


d1
i t(σ


n) = t(σn
i−1), 1 ≤ i ≤ n,


d0
nt(σn) = t(σn


n),


d0
i t(σ


n) = sisi · · · si
︸ ︷︷ ︸


n−i


t(σn
n,(n−1),··· ,i), 1 ≤ i < n.


(2.4)


We see that (tσ)0i is a degenerate cube if i 6= n.
The above equalities imply that the following lemma is valid.


Lemma 2.1. Let 0 < k ≤ n and let P be the sum of closed k-cubes of
In which are not degenerated by ψn. Then P is a deformation retract of In.


One defines a chain map C�∗ (X) −→ CN
∗ (X) of the normalized complexes


as follows. Consider the standard triangulation of In and let s(In) denote
the basic n-dimensional chain of this triangulation as a singular chain of the
space In. Define f by


f(σn) = σn
∗ (s(In)) ∈ Cn(X). (2.5)


If σn is a degenerate cube, then all n-simplexes in f(s(In)) are degenerate
and therefore f defines the map of the normalized complexes.
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For cubical cochains J. P. Serre defines the ^-product which is certainly
valid for general cubical sets too [11]. The definition runs as follows. For
the subset


K = (i1 < i2 < i3 · · · < ik) ⊂ (1, 2, 3, · · · , n)


and σn ∈ Qn we introduce the notation


dε
Kσn = dε


i1d
ε
i2d


ε
i3 · · · d


ε
ik


(σn), ε = 0, 1.


Let cp ∈ Cp(Q, Λ), cq ∈ Cq(Q, Λ) be the normalized p- and q-cochains
of Q with coefficients in a commutative ring Λ. Define the product cp+q =
cp ^ cq by


cp+q(τp+q) = Σ(H,K)(−1)a(H,K)cp(d0
K(τp+q))cq(d1


H(τp+q)), (2.6)


where (H, K) is the decomposition of {1, 2, 3, · · · , (p + q)} into two disjoint
subsets.


Note that if τp+q is of the form t(σ), then on the right side only one
summand, precisely that of the decomposition (1, 2, 3, · · · , p)


⋃


(p + 1, p +
2, · · · , p + q), is not zero, which shows that the cochain map (2.3) preserves
multiplicative structure.


For any abelian group π and any positive integer n one introduces the
cubical version of the K(π, n)-complex [3], [4]. L(π, n) is a cubical set with
p-cubes being n-cocycles, Zn(Ip, π), where Ip = I×I×· · ·×I is the standard
cube with standard faces, and the cochain is understood as a cell cochain.
The boundary and degeneracy operators are defined similarly to those in
the c.s.s. case.


For the complex L(π, n) we have, in C�∗ (L(π, n)), the ring structure that
converts C�∗ (L(π, n)) into a graded differential ring and hence H�∗ (L(π, n))
into a graded ring. The multiplication is defined as follows. Given cubes
σp and σq in L(π, n), i.e., σp ∈ Zn(Ip, π), σq ∈ Zn(Iq, π), we define the
(p + q)-cube σp ◦ σq = σp+q ∈ Zn(Ip+q, π) as pr∗1σp + pr∗2σq, where


pr1 : Ip+q → Ip, pr2 : Ip+q → Iq


are standard projections of Ip+q on its first p-cube and its last q-cube.
Under this multiplication C̃�∗ (L(π, n)) is the differential graded ring and
C̄�∗ (L(π, n)) is the ideal, and therefore C̃�∗ (L(π, n))/C �∗ (L(π, n)) is the
graded differential associative ring. We have C�0 (L(π, n))=Z, C�i (L(π, n))
= 0, 0 < i < n, while 1 ∈ Z is the unitary element of the algebra
C�∗ (L(π, n)).


The Eilenberg–MacLane complex K(π, n) is a simplicial set and
C∗(K(π, n)) is the skew-commutative differential ring. The above map


ψn : In −→ ∆n
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enables us to define the chain map


C∗(K(π, n)) −→ C�∗ (L(π, n))


similarly to that of J. P. Serre. In an obvious manner similar to that used
for (2.5) we define


C�∗ (L(π, n)) −→ CN
∗ (K(π, n))


which is a homomorphism of differential rings. Hence H�∗ (L(π, n)) and
H∗(K(π, n)) are isomorphic as rings and thus H�∗ (L(π, n)) is a commutative
ring.


Recall some notions from the theory of perturbed differentials [12]. Let Y
be a filtered left graded differential module over a filtered graded differential
algebra A under the pairing


A⊗ Y −→ Y.


Let F iA ⊃ F i+1A and F iY ⊃ F i+1Y be the above-mentioned filtrations.
Fix the integer n. Let


Tn(A) = {a ∈ FnA, |a| = +1, dAa = aa};


a is known as a twisting element of the differential algebra.
For a ∈ Tn(A) the perturbed differential in Y is defined as


dax = dY x + ax, x ∈ Y.


The filtered complex with this perturbed differential will be denoted by Ya.
It is a 1-graded and filtered differential chain complex. Consider the set
Gn(A) of all elements in A of the form


g = 1 + p, p ∈ F 1A, dAp ∈ FnA.


It is obvious that this set is the group under the product operation in the
algebra A. The group Gn(A) acts from the left on the set Tn(A) by


ā = (1 + p) ◦ a = (1 + p)−1a(1 + p) + (1 + p)−1dA(1 + p) (2.7)


which is equivalent to the equality


dA(1 + p) = (1 + p)ā− a(1 + p). (2.8)


The set of orbits under action (2.7) will be denoted by Dn(A).
For a = (1 + p) ◦ a consider the map ϕp : Yā → Ya given by


ϕp(x) = (1 + p)x = x + px. (2.9)


This is a chain map and, obviously, 1–1.


Proposition 2.1. If f : A1 −→ A is a morphism of filtered differential
algebras inducing an isomorphism of the nth terms of spectral sequences,
then the induced map Dnf : Dn(A1) −→ Dn(A) is 1–1 [12].
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3. Auxiliary Complexes


Let B be a topological space and π an abelian group. Let L(π, n) be the
K(π, n)-complex of the preceding section and C�∗ (L(π, n)) its normalized
chain complex. Let G be an abelian group. Consider the chain and cochain
complexes C�∗ (L(π, n), G) and C∗�(L(π, n), G).


Consider the complexes


Y∗∗(B, π, n) = C∗(B, C�∗ (L(π, n))),


Y∗∗(B, π, n, G) = C∗(B, C�∗ (L(π, n), G)),
(3.1)


i.e., the group of singular chains of B with coefficients in the normalized
integral chains of the complex L(π, n) and the group of singular chains of
B with coefficients in the normalized chains of the complex L(π, n) with
coefficients in G. These complexes are bigraded differential modules, the
first differential being that of B and the second one that of L(π, n). Both
complexes are covariant functors on the category of topological spaces. It
is clear that


Y∗∗(B, π, n) = C∗(B)⊗ C�∗ (L(π, n)),


Y∗∗(B, π, n,G) = C∗(B)⊗ C�∗ (L(π, n), G),


Y∗∗(B, π, n,G) = C∗(B,C�∗ (L(π, n)))⊗G.


The cohomology version is


Y ∗∗(B, π, n,G) = C∗(B, C∗�(L(π, n), G)).


We have


Y ∗∗(B, π, n, G) = Hom(C∗(B), C∗�(L(π, n), G)),


Y ∗∗(B, π, n,G) = Hom(Y∗∗(B, π, n), G)).


Consider the graded differential algebra C�∗ (L(π, n)) of the preceding
section and the bigraded differential algebra


A∗∗(B, π, n) = C∗(B,C�∗ (L(π, n))) (3.2)


of singular cochains of B with coeficients in the normalized chains of L(π, n),
where the multiplication is defined as the ^-product of B when the coeffi-
cients are multiplied by the product in the algebra C�∗ (L(π, n)). We obtain


A∗∗(B, π, n) = Hom(C∗(B), C�∗ (L(π, n)))


and the above multiplication is the same as that defined by the composition


C∗(B) ∆−→ C∗(B)⊗C∗(B)
x⊗y−−→ C�∗ (L(π, n))⊗C�∗ (L(π, n))


µ−→ C�∗ (L(π, n))
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for x, y ∈ Hom(C∗(B), C�∗ (L(π, n))), where ∆ is the coproduct of B and
µ is the product in C�∗ (L(π, n)). By lifting the second index in (3.2) we
obtain the bigraded algebra of the fourth quadrant with both differentials
increasing the degree of elements by +1:


A∗,−∗(B, π, n) = C∗(B, C−∗� (L(π, n))).


The total complex is the direct product of bihomogeneous components


Am = Πp,−q
p−q=mAp,−q


and therefore every element xn is given uniquely as the sum of its compo-
nents


xn = xn,o + xn+1,−1 + xn+2,−2 + xn+3,−3 + · · · .


The unitary element of the algebra 1 ∈ A0,0 ⊂ A0 is the cochain of B,
c0,0, equal to 1 of C∗(L(π, n)) for every 0-simplex of B. A∗,−∗(B, π, n) is a
contravariant functor both on the category of topological spaces and on the
category of simplicial sets. The filtration of bialgebra A with respect to the
first degree is the decreasing one and is complete in the Eilenberg-Moore
sense. The second term of the spectral sequence is


Ep,−q
2 = Hp(B,Hq(π, n)),


the spectral sequence converging to


Hp−q(A∗,−∗(B, π, n))


in the Eilenberg–Moore sense.
Y∗∗(B, π, n,G) = Y −∗,−∗(B, π, n, G) and Y ∗∗(B, π, n, G) are the left


modules over the bigraded algebra A∗,−∗(B, π, n) to be understood as fol-
lows. The pairing


C�p (L(π, n))⊗ C�q (L(π, n)) −→ C�p+q(L(π, n)) (3.3)


induces the pairings


C�p (L(π, n))⊗ C�q (L(π, n))⊗G −→ C�p+q(L(π, n))⊗G, (3.4)


C�p (L(π, n))⊗ Cp+q
� (L(π, n), G) −→ Cq


�(L(π, n), G). (3.5)


The bicomplex Y∗∗(B, π, n, G) is the module over the algebra A∗∗(B, π, n)
via the _-product of B and the product of coefficients (3.3) and (3.4). The
bicomplex Y ∗∗(B, π, n, G) is the left module over the algebra A∗∗(B, π, n)
via the ^-product in B and the product of coefficients (3.5).


The spectral sequence arguments show that if f : B1 −→ B induces an
isomorphism of homology, then the induced homomorphisms of complexes


A∗,−∗(B, π, n) −→ A∗,−∗(B1, π, n)
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and
Y∗∗(B1, π, n) −→ Y∗∗(B, π, n)


induce an isomorphism of homology.
In particular, if K is the ordered simplicial complex then the imbedding


K ⊂ S(|K|) induces the isomorphism


H(A∗,−∗(|K|, π, n)) −→ H(A∗,−∗(K,π, n)). (3.6)


Consider the algebra A∗,−∗(B, π, n) as a filtered differential algebra with
the filtration defined by the first degree and introduce the notation
D(A∗,−∗(B, π, n)) = Dn+1(A∗,−∗(B, π, n)). Then


D(A∗,−∗(B, π, n)) = Tn+1(A∗,−∗(B, π, n))/Gn+1(A∗,−∗(B, π, n)),


where Tn+1(A∗,−∗(B, π, n)) is the set of all twisting elements of A∗,−∗(B, π, n)
of the form


a = an+1,−n + an+2,−n−1 + an+3,−n−2 · · · ,


and Gn+1(A∗,−∗(B, π, n)) is the set of all elements in A∗,−∗(B, π, n) of the
form


1 + p = 1 + pn,−n + pn+1,−n−1 + pn+2,−n−2 + · · ·


(by virtue of C�i (L(π, n)) = 0, 0 < i < n).


Proposition 3.1. If f : B1 −→ B induces an isomorphism of homology
then D(f) : D(A∗,−∗(B, π, n)) −→ D(A∗,−∗(B1, π, n)) is the 1–1 map.


Proof. We have Ep,−q
2 = Hp(B,Hq(π, n)). By assumption, f induces an


isomorphism of the second terms and hence of the (n+1)th terms of spectral
sequences. To complete the proof apply Proposition 2.1.


4. Transformation of the Functors
β : D(A∗,−∗(B, π, n)) → Hn+1(B, π) and


γ : Hn+1(B, π) → D(A∗,−∗(B, π, n))


Consider the homomorphism α : Cn(L(π, n)) −→ G defined on the n-cubes
of L(π, n), τn = [g], g ∈ G, by α([g]) = g. It induces the homomorphism
of cochain complexes β : C∗(B,Cn(L(π, n))) −→ C∗(B, π). The latter homo-
morphism defines the map of sets β : A∗,−∗(B, π, n) −→ C∗(B, π) by β(a) =
β(an+k,−n) if a = an+k,−n + an+k+1,−n−1 + · · · . Let a ∈ T (A(B, π, n)).
Then |a| = 1, da = aa, and hence δBan+1,−n + dLan+2,−n−1 = 0. We see
that β(dLan+2,−n−1) = 0, so that β(δBan+1,−n) = 0 and δBβ(an+1,−n) = 0.
Hence, if a ∈ T (A∗,−∗(B, π, n)), then β(a) ∈ Zn+1(B, π).


If ā ∼ a, then β(ā) − β(a) ∈ Bn+1(B, π). Indeed, by (2.8) we have
dAp = ā − a + pā − ap, and therefore δBpn,−n + dLpn+1,−n−1 = ān+1,n −
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an+1,−n. Hence δBβ(pn,−n) = β(ān+1,−n)− β(an+1,−n) which is equivalent
to δBβ(p) = β(ā)− β(a). The above shows that the map


β : D(A∗,−∗(B, π, n)) −→ Hn+1(B, π)


defined by β(a) ∈ β(d), d ∈ D(A∗,−∗(B, π, n)), a ∈ d, is correct.
The second transformation


γ : Hn+1(B, π) −→ D(A∗,−∗(B, π, n))


is more difficult to define, since it requires the construction of the mappings


Zn+1(B, π) → Tn+1(A∗,−∗(B, π, n)),


Zn+1(B, π)× Cn(B, π) → Gn+1(A∗,−∗(B, π, n)),


with suitable properties.


Lemma 4.1. There is a rule which assigns a twisting cochain a(zn+1) ∈
A∗,−∗(B, π, n) to every cocycle zn+1 ∈ Zn+1(B, π). If f : B1 → B is a map,
then a(f∗(zn+1)) = f∗(a(zn+1)).


Proof. For zn+1 ∈ Zn+1(B, π) we first construct the map


κzn+1 : S(B) −→ L(π, n), (4.1)


κzn+1(σm+1) being the m-cube τm ∈ L(π, n) with the following properties:
(i) κzn+1(σm+1) if (m + 1) ≤ n is the unique m-cube of L(π, n) (which is


degenerate for m > 0);
(ii) κzn+1(σn+1) = [g] ∈ C̃�n (L(π, n)), where g = zn+1(σn+1);
(iii)


d1
i κzn+1(σm+1) = κzn+1(σm+1


i ), 1 ≤ i ≤ m,


d0
1κzn+1(σm+1) = κzn+1(σm+1


0 ),


d0
mκzn+1(σm+1) = κzn+1(σm+1


m+1),


d0
i κzn+1(σm+1) = κzn+1(σm+1


(1) )κzn+1(σm+1
(2) ), 1 < i < m,


(4.2)


where σm+1
(1) and σm+1


(2) are respectively the first i-dimensional and the last
(m + 1− i)-dimensional face of σm+1.


With such κzn+1 constructed, the twisting element ãz in the auxiliary
algebra Ã∗∗(B, π, n) = C∗(B, C̃∗(L(π, n))) is defined as ã = ã2,−1 + ã3,−2 +
· · · , where ãm+1,−m(σm+1) = κzm+1(σm+1) ∈ C̃m(L(π, n)).


The above equalities imply that dã = ãã. The image of ã, a(zn+1),
with respect to the homomorphism Ã∗∗(B, π, n) −→ A∗∗(B, π, n) induced
by C̃�∗ (L(π, n)) −→ C�∗ (L(π, n)) is a twisting cochain. By virtue of the fact
that all cubes of positive dimension < n are degenerate, we find that


a(zn+1) = an+1,−n + an+2,−n−1 + · · ·







AN ALGEBRAIC MODEL OF FIBRATION 37


and


β(a) = β(an+1,−n) = zn+1.


The rest of the proof consists in constructing κzn+1 .
The geometric background for the (algebraic) definition of κzn+1 is as


follows. Consider a cross section s of the fibration over the n-skeleton of
|S(B)| such that the obstruction cocycle zn+1(s) is equal to zn+1, zn+1 =


zn+1(s). For σm+1 ∈ S(B) consider the map Im+1 ψ−→ ∆m+1
σm+1


−−−→ |S(B)|.
Consider a subcomplex of n-cubes of the cubical complex Im+1 which is sent
by ψ in the n-simplex of ∆m+1. By virtue of Lemma 2.1 this subcomplex
is the retract of Im+1 and therefore the cross section over this subcomplex
induced by the cross section sn has an extension over Im+1. Consider its
restriction over the n-skeleton of Im+1. On the m-cube (0, x2, x3, · · · , xm+1)
it defines an n-dimensional cell-cochain with coefficients in πn(F ) = π.
Obviously, this cochain is a cocycle. We can define κz(σm+1) to be this
cocycle regarded as an m-cube of L(π, n).


The reasoning above suggests the definition of κzn+1 as follows. As above,
we consider the map ψ : Im+1 −→ ∆m+1 and also we consider Im as the
face (0, x2, x3, · · · , xm+1). The n-cochain am+1,−m(σm+1) = λn of Im is
uniquely defined as follows: it is zero on the n-cubes of Im which have a
form differing from


u = (0, ε1, ε2, . . . , εk, xi1 , 1, 1, 1, . . . , 1, xi2 , 1, 1, 1, . . . , 1, xin , ν1, ν2, . . . , νs).


For the above n-cube we assume εj to be the last ε equal to zero in the
sequence ε1, ε2, . . . , εk and consider the (n + 1)-cube in Im+1


(1, . . . , 1, xi0 , 1, . . . , 1, xi1 , 1, . . . , 1, xi2 , 1, . . . , 1, xin , ν1, ν2, . . . , νs),


where εj is replaced by xi0 . If all ε’s are equal to 1, we consider the (n+1)-
cube


(xi0 , 1, . . . , 1, xi1 , 1, . . . , 1, xi2 , 1, . . . , 1, xin , ν1, ν2, . . . , νs).


This (n + 1)-cube of Im+1 defines via the map ψm+1 the nondegenerate
(n+1)-simplex v in the simplex ∆m+1 and we set


λ(u) = (σm+1)∗(zn+1)(v), σm+1 : ∆m+1 → B.


λn is the cocycle. This is proved directly.
Let κzn+1(σm+1) be the cocycle λn regarded as the m-cube of L(π, n).
It remains to show that equalities (4.2) are fulfilled. Each of the four


equalities (4.2) is easy to check by using the algebraic definition of κzn+1 .
It is obvious that ã and hence a(zn+1) is functorial.
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We next define


Zn+1(B, π)× Cn(B, π) → Gn+1(A∗,−∗(B, π, n)).


Assume that we are given a cocycle zn+1
B×I ∈ Zn+1(B × I, π).


By i0 : B −→ B × I and i1 : B −→ B × I we denote the imbeddings of B
as the lower and the upper bottom of B × I. We introduce the notation


zn+1
B = i∗0z


n+1
B×I z̄n+1


B = i∗1z
n+1
B×I .


By virtue of Lemma 4.1


a(zn+1
B ) = i∗0a(zn+1


B×I) a(z̄n+1
B ) = i∗1a(zn+1


B×I).


In the lemma below we shall show that a(zn+1
B ) and a(z̄n+1


B ) are the
equivalent twisting elements of the algebra A∗,−∗(B, π, n).


Let us consider the standard prism construction


w1 : C∗(B) −→ C∗+1(B × I)


subject to the condition


dw1 − w1d = i∗1 − i∗0. (4.3)


To every singular simplex σm ∈ S(B) this construction assigns the singular
(m+1)-chain w1(σm) which is the image of the main integral (m+1)-chain of
the standard triangulation of ∆m×I by the map σm×id : ∆m×I −→ B×I.


The map


w∗1 : A∗,−∗(B × I, π, n) −→ A∗,−∗(B, π, n) (4.4)


can be defined by the composition


CB
w1−→ CB×I


x−→ C�∗ (L(π, n)), x ∈ A∗,−∗(B × I, π, n).


From (4.3) we obtain


w∗1d = dw∗1 + i∗1 − i∗0. (4.5)


Let
u(zn+1


B×I) = w∗1(a(zn+1
B×I)).


We see that |u| = 0, u ∈ Fn(A∗,−∗(B, π, n)).


Lemma 4.2. In the algebra A∗,−∗(B, π, n) there holds the equality


dA(B,π,n)u(zn+1
B×I) = a(z̄n+1


B )−a(zn+1
B )+u(zn+1


B×I)a(z̄n+1
B )−a(zn+1


B )u(zn+1
B×I).
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Proof. By Lemma 4.1 we have dA(B×I,π,n)azn+1
B×I


= azn+1
B×I


azn+1
B×I


.


By virtue of the map w∗1 and (4.5) the left side of the equality becomes


d(u(zn+1
B×I))− a(z̄n+1


B ) + a(zn+1
B ).


The right side becomes


u(zn+1
B×I)a(z̄n+1


B )− a(zn+1
B )u(zn+1


B×I) (4.6)


which can be shown as follows. The standard triangulation of ∆m × I has
as vertices of the lower bottom those of ∆m, say, b0 < b1 < b2 < · · · bm,
while the copies of the vertices of ∆m, say, b′0 < b′1 < b′2 < · · · b′m, are the
vertices of the upper bottom. It is assumed that b(i) < b′(i). Only


(b0 < b1 < b2 < · · · bi < b′i < b′i+1 < · · · b′m), i = 0, 1, · · ·m


are (m + 1)-dimensional simplices.
By the above definition w1(σm) is the image of


∑


0≤i≤m


(−1)i(b0 < b1 < b2 < · · · bi < b′i < b′i+1 < · · · < b′m).


Thus we see that the value of ãã on w1(σm) is equal to


∑


0≤i≤m


(−1)i[
∑


j≤i


a′(b0 < b1 < · · · < bj) ·


·a′(bj < bj+1 < · · · < bi < b′i < b′i+1 < · · · < b′m) +


+
∑


i≤j≤m


a′(b0 < b1 < b2 < · · · < bi < b′i < b′i+1 < · · · < b′j) ·


·a′(b′j < b′j+1 < · · · < b′m)].


Here a′ = (σm × id)∗ã and the two summands coincide with the two
summands in (4.6).


Definition 4.1. Let zn+1
B ∈ Zn+1(B, π) and cn


B ∈ Cn(B, π). On B × I
consider the cocycle zn+1


B×I = Pr∗zn+1
B +δB×Icn


B×I , where cn
B×I is the cochain


cn
B imbedded in B × 0. Denote u(cn


B , zn+1
B ) = u(zn+1


B×I).


Lemma 4.3. If zn+1
B ∈ Zn+1(B, π) and cn


B ∈ Cn(B, π), then a(zn+1
B +


δBcn
B) and a(zn+1


B ) are the equivalent twisting elements, the equivalence
being given by the element 1+u(cn


B , zn+1
B ). Hence the map γ : Hn+1(B, π) −→


D(A∗,−∗(B, π, n)) defined by a(zn+1) ∈ γ(h) if zn+1 ∈ h ∈ Hn+1(B, π) is
correct.
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Proof. By the assumptions of the lemma the equality of Lemma 4.2 is
identical to


a(zn+1
B + δBcn


B) = (1 + u(cn
B , zn+1


B ))−1a(zn+1
B )(1 + u(cn


B , zn+1
B )) +


+ (1 + u(cn
B , zn+1


B ))−1dA(1 + u(cn
B , zn+1


B )).


5. Algebraic Model


Recall that the bicomplexes Y∗∗(B, π, n) = C∗(B,C�∗ (L(π, n))), Y∗∗(B, π,
n,G) = C∗(B, C�∗ (L(π, n), G)) and Y ∗∗(B, π, n,G) = C∗(B, C∗�(L(π, n), G))
are the modules over the bialgebra A∗,−∗(B, π, n) = C∗(B, C�∗ (L(π, n))).


Definition 5.1. Let F −→ E −→ B be a Serre fibration with the fiber
F K(π, n)-space. Then πi(F ) = 0, i 6= n and πn(F ) = π. Let hn+1 ∈
Hn+1(B, π) be the obstruction class of the fibration and let zn+1 ∈ hn+1.
Consider a(zn+1) ∈ T (A∗,−∗(B, π, n)) and the perturbed differential


da(zn+1)(y) = dY (y) + a(zn+1)y,


y ∈ Y∗∗(B, π, n), Y∗∗(B, π, n,G), Y ∗∗(B, π, n, G).
(5.1)


The complex Y∗∗(B, π, n) with this perturbed differential Yzn+1(B, π, n)
= Ya(zn+1)(B, π, n) is the (integral) homology model of the fibration. The
complex Y∗∗(B, π, n, G) with this perturbed differential Yzn+1(B, π, n, G) =
Ya(zn+1)(B, π, n,G) is the homology model with coefficients G. The com-
plex Y ∗∗(B, π, n,G) with this perturbed differential Y ∗∗


zn+1(B, π, n, G) =
Y ∗∗


a(zn+1)(B, π, n) is the cohomology model of the fibration.


We have


Y∗∗zn+1(B, π, n, G) = Y∗∗zn+1(B, π, n)⊗G,


Y ∗∗
zn+1(B, π, n, G) = Hom(Y∗∗zn+1(B, π, n), G).


The models of fibration depend on the choice of the cocycle in the obstruc-
tion class. However, they are isomorphic complexes: if zn+1, z̄n+1 are two
obstruction cocycles of the same fibration, then there is cn ∈ Cn(B, π) with
δcn = z̄n+1 − zn+1. By virtue of Lemma 4.3 a(z̄n+1) = (1 + u(cn, zn+1)) ◦
a(zn+1). Hence the chain map (2.9)


ϕu(cn,zn+1) : Y∗∗z̄n+1(B, π, n, G) −→ Y∗∗zn+1(B, π, n, G),


ϕu(cn,zn+1)(y) = (1 + u(cn, zn+1))(y), y ∈ Y∗∗(B, π, n, G)


is an isomorphism.
The same reasoning holds for the cohomology model.
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Theorem 5.1. Let F −→ E −→ B be a Serre fibration with the fiber F
K(π, n)-space and let Y∗∗zn+1(B, π, n, G), Y ∗∗


zn+1(B, π, n, G), zn+1 ∈
Zn+1(B, πn(F )), be its homology (resp., cohomology) model. Then:


(i) There are chain and cochain maps defined uniquely up to chain ho-
motopy


Y∗∗zn+1(B, π, n,G) −→ C�∗ (E, G),


C∗�(E, G) −→ Y ∗∗
zn+1(B, π, n,G)


inducing an isomophism of homology groups.
(ii) if Y∗∗z̄n+1(B, π, n, G), Y ∗∗


z̄n+1(B, π, n,G) are other models of the fibra-
tion and δcn = z̄n+1 − zn+1, cn ∈ Cn(B, πn(F )), then the triangles


C�∗ (E) Y∗∗zn+1(B, π, n)


Y∗∗z̄n+1(B, π, n),


6ϕu(cn,zn+1)


�


Z
Z


ZZ}


C∗�(E, G) Y ∗∗
zn+1(B, π, n, G)


Y ∗∗
z̄n+1(B, π, n,G)


ϕu(cn,zn+1)


-


?


Q
Q


QQs


are commutative up to chain homotopy.


The proof below uses the geometric interpretation of the model.
Let K be a simplicial set, zn+1 ∈ Zn+1(K, π), and define the cubical


complex K ×zn+1 L(π, n) as follows. Consider as (p + q)-dimensional cubes
of K ×zn+1 L(π, n) the pairs (σp, τ q), where σp is a p-dimensional simplex
of K and τ q is a q-dimensional cube of the cubical set L(π, n).


The face operators are defined by virtue of (2.4) and (4.2) as follows. Let
κzn+1 : K −→ L(π, n) be map (4.1).


Define


d1
p+i(σ


p, τ q) = (σp, d1
i τ


q), 1 ≤ i ≤ q,


d0
p+i(σ


p, τ q) = (σp, d0
i τ


q), 1 ≤ i ≤ q,


d1
i (σ


p, τ q) = (σp
i−1, τ


q), 1 ≤ i ≤ p,


d0
p(σ


p, τ q) = (σp
p , τ q),


d0
i (σ


p, τ q) = (σp
1 , κzn+1(σp


2) ◦ τ q) 1 ≤ i ≤ (p− 1),


where σp
1 is the first (i − 1)-face and σp


2 is the last (p − i + 1)-face of σp,
while ◦ is the product in the ring C̃�∗ (L(π, n)).


The degeneracy operators are defined only partially:


sp+i(σp, τ q) = (σp, si(τ q)), 1 ≤ i ≤ (q + 1).
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The chain complexes C̃�∗ (K ×zn+1 L(π, n)), C̄�∗ (K ×zn+1 L(π, n)),
C�∗ (K×zn+1L(π, n)), C∗�(K×zn+1L(π, n), G) of K×zn+1L(π, n)) are defined
as for the case of cubical sets.


The obvious fact is


Lemma 5.1. The integral chain complex of the cubical complex
S(B)×zn+1 L(π, n) is the complex Y∗∗zn+1(B, π, n).


Let |K ×zn+1 L(π, n)| be the Milnor realization of this complex (Section
2). Let ||K|| be the Giever–Hu realization of the simplicial set K (i.e., the
degeneracy operators are passive). We have the map


α : |K ×zn+1 L(π, n)| −→ ||K|| (5.2)


defined for every (σp, τ q) by Ip+q proj.−−−→ Ip ψ−→ ∆p. The complex |K ×zn+1


L(π, n)| is filtered by subcomplexes F r = ∪
p≤r


|(σp, τ q)|. We have


Lemma 5.2. Hr+q(F r, F r−1) = Cr(K,H�q (L(π, n))).


Proof. F r/F r−1 is a wedge of CW -complexes, one complex Kσr for every
σr ∈ K. Hence Hr+q(F r, F r−1) =


∑


σr Hr+q(Kσr). The filtration of Kσr


by its skeletons gives Hr+q(Kσr ) = H�q (L(π, n)).


Consider the standard map ||S(B)|| −→ B of the Giever–Hu realization
of S(B) and also consider the induced fibration E′ pr−→ ||S(B)||. In the
diagram


E ←−−−− E′


pr






y








y
pr


B ←−−−− ||S(B)||
the horizontal maps induce an isomorphism of homology. In the induced
fibration consider the filtration given by pr−1(||S(B)||r).


Proposition 5.1. There is a commutative diagram


E′ � |S(B)×zn+1 L(π, n)|


‖S(B)‖ ,


J
J
Ĵ


�
�


��
αpr


where the upper map is the map of filtered spaces and induces an isomor-
phism of the first terms of the related spectral sequences.
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Proof. The map |S(B) ×zn+1 zL(π, n)| −→ E′ is constructed by induction
on degree of cells. Let s be a cross section over the n-skeleton of ||S(B)||
whose obstruction cocycle is zn+1. The induction steps are as follows:


(0). (σ0, τ0) is a vertex. Let f |(σ0, τ0) = sα|(σ0, τ0) = s(σ0).
(i), i<n. (σj , τ i−j) are i-dimensional cells. Let f |(σj , τ i−j)=sα|(σj , τ i−j).
(n). (σj , τn−j) are n-cells. Let f |(σj , τn−j) = sα|(σj , τn−j), j < n, and


let f |(σ0, τn) be the map of this “n-sphere” in a fiber over σ0 as an element
of πn(F, s(σ0)).


(n+1). For the cell (σn+1, τ0) the map is already defined for its boundary
and the image lies over σn+1. This n-sphere is homotopic to 0 over σn+1


by virtue of the fact that zn+1(σn+1) ∈ πn(F ) is the class of the n-sphere
defined by s on the boundary of σn+1. Hence f extends from the boundary
onto the whole cell and the image lies over σn+1.


The map f of the boundary of (σ1, τn) is homotopic to 0 and hence it
extends onto the whole cell.


For the rest of the (n + 1)-cells (σi, τn+1−i), 1 < i ≤ n, we assume that
f |(σi, τn+1−i) = sα|(σi, τn+1−i).


(m), m > n + 1. (σi, τ j), i + j = m, f already defined on its boundary
is an (m− 1)-sphere over σi and by the fact that m− 1 > n it is homotopic
to 0. f extends over the whole cell. The map is now constructed. By the
inductive construction we see that it preserves filtrations.


The first term of both filtrations in the proposition under consideration
is Cp(S(B), Hq(F )), and by virtue of the above map the homomorphism of
the first terms of the spectral sequences is an isomorphism.


Proof of Theorem 5.1. The standard imbedding


S(B)×zn+1 L(π, n) −→ Q(|S(B)×zn+1 L(π, n)|)


gives the chain map


C�∗ (S(B)×zn+1 L(π, n)) −→ C�∗ (|S(B)×zn+1 L(π, n)|)


inducing an isomorphism of cubical singular homologies. Then by Proposi-
tion 5.1 the composition


Y∗∗zn+1(B, π, n, G) = C�∗ (S(B)×zn+1 L(π, n), G) −→


−→ C�∗ (|S(B)×zn+1 L(π, n)|, G)
f


zn+1
∗−−−−→ C�∗ (E, G)


induces an isomorphism of homology. Let this chain map be the map of (i).
Consider the fibration F −→ E′′ −→ B × I induced by projection pr :


B × I −→ B and a map as in part (i) of the theorem:


E′′
f


zn+1
B×I←−−−− |S(B × I)×zn+1


B×I
L(π, n)|
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where zn+1
B×I = pr∗zn+1


B −δc̄n (c̄n is cn placed on B×I) is such that i∗0z
n+1
B×I =


zn+1
B , i∗1z


n+1
B×I = z̄n+1


B . We can choose this map so that on the bottoms of
B × I it will coincide with fzn+1 and fz̄n+1 . Consider the imbeddings


C�∗ (|S(B × I)×zn+1
B×I


L(π, n)|) ←− C�∗ (|S(B)×zn+1
B


L(π, n)|),


C�∗ (|S(B × I)×zn+1
B×I


L(π, n)|) ←− C�∗ (|S(B)×z̄n+1
B


L(π, n)|).


In view of the chain map


C�∗ (E) ←− C�∗ (E′′) ←− C�∗ (|S(B × I)×zn+1
B×I


L(π, n)|)


it is enough to show that the triangle


C�∗ (|S(B × I)×zn+1
B×I


L(π, n)|)


6ϕ
u(cn,zn+1


B
)


�


Z
Z


ZZ}


C�∗ (|S(B)×zn+1
B


L(π, n)|)


C�∗ (|S(B × I)×zn+1
B×I


L(π, n)|)


is commutative up to chain homotopy. To this end consider


C�∗ (|S(B×I)×zn+1
B×I


L(π, n)|)
ϕ


u(c̄n,pr∗zn+1
B


)


←−−−−−−−−−− C�∗ (|S(B×I)×pr∗zn+1
B


L(π, n)|).


The two imbeddings of C�∗ (|S(B) ×zn+1
B


L(π, n)|) on the left side complex
are chain homotopic and the composition gives the required homotopy. This
proves (ii) for an integral homology. Hence we obtain (ii) for the coefficient
group G and cohomology.


In particular, if z̄n+1 = zn+1 and cn = 0, then we deduce that the map
in (i) is defined uniquely up to chain homotopy.


6. Multiplicative Structure in the Algebraic Model


We have seen that the cohomology model Y ∗∗
zn+1(B, π, n, G) of a fibration


F → E → B with F a K(π, n)-space can be identified with the cochain
complex of the cubical complex S(B)×zn+1 L(π, n). Each cubical complex
is endowed with multiplicative structure via the Serre cup product. Hence
Y ∗∗


zn+1(B, π, n, Λ), where Λ is a commutative ring, has a multiplicative struc-
ture. It can evidently be described as follows.


Let xs, yt ∈ Y ∗∗
zn+1(B, π, n, Λ). Being an element of the module Cp(B,


Cq(L(π, n)Λ)), the (p, q)-component, where p + q = s + t, of the product
ws+t = xsyt is a p-dimensional cochain of B with coefficients in Cq(L(π, n), Λ)
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defined in the following manner: for the pair (σp, τ q) consider all decompo-
sitions of 1, 2, · · · , (p + q) in two disjoint sets (H, K) and let


ws+t[(σp, τ q)] =
∑


(H,K)


(−1)a(H,K)x(d0
K(σp, τ q))y(d1


H(σp, τ q)).


Theorem 6.1. The cochain map of Theorem 5.1


C∗�(E, Λ) −→ Y ∗∗
zn+1(B, π, n, Λ)


is multiplicative.


Proof. The above cochain map is induced (see the proof of Theorem 5.1)
by the map of cubical sets S(B)×zn+1 L(π, n) −→ Q(E).


7. Action of the Group Hn(B, π) on the Homology of the
Complexes Y∗∗zn+1(B, π, n, G) and Y ∗∗


zn+1(B, π, n, G)


Consider the space B × ∆2 and assume that we are given a cocycle
zn+1
B×∆2 ∈ Zn+1(B ×∆2, π).


We have three imbeddings i0, i1, i2, : B → B × ∆2 for three vertices of
∆2 and three imbeddings i01, i12, i02, : B × I → B ×∆2 for three 1-faces of
∆2. For a given cocycle zn+1


B×∆2 ∈ Zn+1(B×∆2) consider six (n+1)-cocycles
(three on B and three on B × I):


zn+1
B,0 = i∗0(z


n+1
B×∆2), zn+1


B×I,01 = i∗01(z
n+1
B×∆2),


zn+1
B,1 = i∗1(z


n+1
B×∆2), zn+1


B×I,12 = i∗12(z
n+1
B×∆2),


zn+1
B,2 = i∗2(z


n+1
B×∆2), zn+1


B×I,02 = i∗02(z
n+1
B×∆2).


The left cocycles define on B three twisting elements a(zn+1
B,0 ), a(zn+1


B,1 ),
a(zn+1


B,2 ), while the right cocycles define on B three 0-elements as in Lemma
4.2:


u01(zn+1
B×I,01), u12(zn+1


B×I,12), u02(zn+1
B×I,02) ∈ A∗,−∗(B, π, n) =


= C∗(B, C�∗ (L(π, n))).


Consider the standard map


w2 : C∗(B) −→ C∗+2(B ×∆2)


subject to the condition


dB×∆2w2 − w2dB = (i∗01 + i∗12 − i∗02)w1. (7.1)


To every singular simplex σm ∈ S(B) this map assigns the singular (m+2)-
chain w2(σm) which is the image of the main integral (m + 2)-chain of the
standard triangulation of ∆m×∆2 by the map σm×id : ∆m×∆2 −→ B×∆2.
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Define the map


w∗2 : A∗,−∗(B ×∆2, π, n) −→ A∗,−∗(B, π, n)


by the composition


C∗(B) w2−→ C∗(B ×∆2)
x−→ C�∗ (L(π, n)), x ∈ A(B ×∆2, π, n).


Let v(zn+1
B×∆2


) = w∗2(a(zn+1
B×∆2


)). We see that |v| = −1 and v = v0,−1 +
v1,−2 + v2,−3 + · · · .


Lemma 7.1. In the above notation we have the equality


dA(B,π,n)v = u01 + u12 + u01u12 − u02 + va(zn+1
B,0 ) + a(zn+1


B,2 )v


in the algebra A∗,−∗(B, π, n).


Proof. The lemma is proved similarly to Lemma 4.2, using equality (7.1).


In what follows we abbreviate Y∗∗zn+1(B, π, n) to Yzn+1 .
In the situation we are considering we have the triangle of chain isomor-


phisms


Yzn+1
B,0


- Yzn+1
B,1


Yzn+1
B,2


.
?
ϕu12


HHHHHHj
ϕu02


ϕu01


Corollary 7.1. The above triangle is commutative up to chain homo-
topy.


Proof. By virtue of Lemma 7.1 the map F : Yzn+1
B,0


→ Yzn+1
B,2


defined by


F (x) = vx yields a chain homotopy between the composition ϕu12ϕu01 and
ϕu02 .


Corollary 7.2. Let zn+1
B ∈ Zn+1(B, π) and cn, cn


1 ∈ Cn(B, π). Then the
triangle


Yzn+1+δ(cn+cn
1 ) Yzn+1+δcn


Yzn+1


?
ϕu(cn,zn+1)


HHHHHHj
ϕu(cn


1
+cn,zn+1)


ϕu(cn
1


,zn+1+δcn)
-
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is commutative up to chain homotopy.


Proof. Let Pr : B × ∆2 → B be the projection and consider the cocycle
of B ×∆2 zn+1


B×∆2 = Pr∗(zn+1
B ) + δB×∆2(c̄n) + δB×∆2(¯̄cn + ¯̄cn


1 ), c̄n being cn


identified as the cochain of the subcomplex B × 1 and zero otherwise, and
¯̄cn + ¯̄cn


1 being cn + cn
1 identified as the cochain of B × 2 and zero otherwise.


The rest follows from Corollary 7.1.


Corollary 7.3. Let zn+1
B ∈Zn+1(B, π) and 0∈Cn(B, π); then ϕu(0,zn+1) :


Yzn+1
B


→ Yzn+1
B


is homotopic to the identity.


Proof. From 0 = 0 + 0 and Corollary 7.1 we see that ϕu(0,zn+1)ϕu(0,zn+1) ∼
ϕu(0,zn+1); hence by the fact that ϕu(0,zn+1) is surjective, ϕu(0,zn+1) is homo-
topic to the identity (in fact, ϕu(0,zn+1) is the identity, but we do not need
this).


Corollary 7.4. For zn+1
B ∈ Zn+1(B, π) and cn ∈ Cn(B, π) the triangle


Yzn+1 Yzn+1−δcn


Yzn+1


?
ϕu(cn,zn+1)


HHHHHHj
id


ϕu(−cn,zn+1−δcn)
-


is commutative up to chain homotopy.


Proof. By virtue of Corollary 7.2 the composition in question is homotopic
to ϕu(cn−cn,zn+1) = ϕu(0,zn+1). Corollary 7.3 accomplishes the proof.


Corollary 7.5. For zn+1
B ∈ Zn+1(B, π) and cn−1 ∈ Cn−1(B, π) the map


ϕu(δcn−1,zn+1) : Yzn+1
B


→ Yzn+1
B


is homotopic to the identity.


Proof. On the complex B×I consider an n-cochain kn = δB×Icn−1−δBcn−1;
here cn−1 and δBcn−1 are identified as cochains in B×0 and zero otherwise.
Then δB×Ikn = δB×I(δBcn−1). Identify kn as a cochain of B × ∆2 via
i01 : B × I → B × ∆2. Consider zn+1


B×∆2 = Pr∗zn+1
B − δB×∆2kn. The


restrictions of this cocycle on (B×I)02 and (B×I)12 are equal to Pr∗(zn+1
B )


and the restriction on (B×I)01 is Pr∗zn+1−δB×I(δBcn). Hence Corollaries
7.2 and 7.4 carry the proof to the end.


Theorem 7.1. For every zn+1 ∈ Zn+1(B, π) and every abelian group
G the cohomology group Hn(B, π) acts from the left on the homology and
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cohomology groups Hq+1(Yzn+1 , G), Hq+1(Yzn+1 , G). The action is given
by the chain map


ϕu(cn,zn+1) : Yzn+1 −→ Yzn+1 , ϕu(cn,zn+1)(y) = (1 + u(cn, zn+1))(y),


cn ∈ Zn(B, π), y ∈ Yzn+1 .


Proof. We readily prove the theorem, using the above corollaries.
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