ON THE UNIQUENESS OF MAXIMAL FUNCTIONS

L. EPHREMIDZE

ABSTRACT. The uniqueness theorem for the one-sided maximal operator has been proved.

Let L be the class of real 2π -periodic integrable functions and let M be the one-sided maximal operator

$$M(f)(x) = \sup_{b>x} \frac{1}{b-x} \int_{x}^{b} f dm, \quad f \in L, \quad x \in \mathbb{R}$$

(*m* denotes the Lebesgue measure on the line \mathbb{R}).

In this paper we shall prove the following uniqueness

Theorem 1. Let $f, g \in L$ and M(f) = M(g). Then f = g a.e. on \mathbb{R} .

Sets of the type $\{x \in \mathbb{R} : M(f)(x) > t\} = \{x \in \mathbb{R} : M(g)(x) > t\}$ will be briefly denoted by (M > t). Obviously $(M > t)_{t \in \mathbb{R}}$ is a class of bundled open sets continuous from the right, i.e.,

$$\bigcup_{t>\tau} (M>t) = (M>\tau).$$

Let

$$t_0 = \inf\{M(f) : x \in \mathbb{R}\} = \inf\{M(g)(x) : x \in \mathbb{R}\}.$$

For an arbitrary integrable function f if $t = \frac{1}{2\pi} \int_0^{2\pi} f dm$, then $M(f) \ge t$ on the whole line and $M(f)(x_0) = t$ for x_0 being the point of maximum of the function $x \mapsto \int_0^x f dm - tx$. Thus we can conclude that

$$\int_{0}^{2\pi} f dm = \int_{0}^{2\pi} g dm = t_0.$$

1991 Mathematics Subject Classification. 42B25.

49

1072-947X/96/0100-0049
\$09.50/0 \odot 1996 Plenum Publishing Corporation

Key words and phrases. Maximal function, uniqueness theorem.

L. EPHREMIDZE

Because of the Lebesgue differentiation theorem $f, g \leq t_0$ a.e. on $\mathbb{R} \setminus (M > t_0)$. On the other hand, applying the Riesz rising sun lemma (see [1]), we have

$$\int_{(M>t_0)} f dm = \int_{(M>t_0)} g dm = t_0 \cdot m(M>t_0)$$
(1)

(see also [2], p. 58). Consequently $f = g = t_0$ a.e. on $\mathbb{R} \setminus (M > t_0)$ and to prove the theorem it suffices to show the validity of

Lemma 1. Let (a,b) be a (finite) connected component of $(M > t_0)$. Then

$$\int_{x}^{b} f dm = \int_{x}^{b} g dm \tag{2}$$

for each $x \in (a, b)$.

Proof. Assume x fixed and let $t_x = M(f)(x) = M(g)(x)$. For each $t \in [t_0, t_x)$ suppose (a_t, b_t) to be the connected component of (M > t) which contains x and assume that $b_t = x$ whenever $t = t_x$ (note that $b_{t_0} = b$, by assumption). Obviously

$$\bigcup_{t>\tau} (a_t, b_t) \subset (a_\tau, b_\tau)$$

and it is easy to show that $t \mapsto b_t$ is a non-increasing function on $[t_0, t_x]$ continuous from the right.

Let D be the set of points of discontinuity of this function and let

$$D_c = \{t : b_\tau = b_t \text{ for some } \tau > t\}.$$

If $t \in [t_0, t_x) \setminus (D \cup D_c)$ and b_t is a Lebesgue point of both functions f and g, then

$$f(b_t), g(b_t) \le t$$

(since $b_t \notin (M > t)$). On the other hand, for each $\tau \in (t, t_x)$ we have

$$\frac{1}{b_t - b_\tau} \int_{b_\tau}^{b_t} f dm, \quad \frac{1}{b_t - b_\tau} \int_{b_\tau}^{b_t} g dm > t$$

(since (a_t, b_t) is a connected component of (M > t) and $b_{\tau} \in (a_t, b_t)$; see Lemma 1 in [3]). Hence we can conclude that

$$f(b_t) = g(b_t) = t$$

For $t \in D$ let

$$b_t' = \lim_{\tau \to t-} b_\tau.$$

50

$$\frac{1}{b_t' - b_t} \int_{b_t}^{b_t'} f dm, \quad \frac{1}{b_t' - b_t} \int_{b_t}^{b_t'} g dm \le t$$

(since $b_t \notin (M > t)$) and for each $\tau \in [t_0, t)$ we have

$$\frac{1}{b_{\tau}-b_t}\int_{b_t}^{b_{\tau}} f dm, \quad \frac{1}{b_{\tau}-b_t}\int_{b_t}^{b_{\tau}} g dm > \tau$$

(since (a_{τ}, b_{τ}) is a connected component of $(M > \tau)$ and $b_t \in (a_{\tau}, b_{\tau})$). Hence, letting τ converge to t from the left, we get

$$\int_{b_t}^{b'_t} f dm = \int_{b_t}^{b'_t} g dm = t(b'_t - b_t).$$

Since $[x, b] = A_1 \cup A_2 \cup A_3$, where

$$A_{1} = \{b_{t} : t \in [t_{0}, t_{x}] \setminus (D \cup D_{c})\},\$$
$$A_{2} = \bigcup_{t \in D} [b_{t}, b'_{t}],\$$
$$A_{3} = \{b_{t} : t \in D_{c}\},\$$

and since f = g a.e. on A_1 ,

$$\int\limits_{A_2} f dm = \int\limits_{A_2} g dm$$

and A_3 is a denumerable set, we can conclude that (2) holds. \Box

Note that the lemma remains true if f and g are locally integrable functions on \mathbb{R} . Hence if we use the balancing ergodic equality (see [4]) instead of the equality (1), then we get the uniqueness theorem for the ergodic maximal operator.

Theorem 2. Let $(T_{\lambda})_{\lambda \geq 0}$ be an ergodic semiflow of measure-preserving transformations on a finite measure space (X, \mathbb{S}, μ) and let M be the ergodic maximal operator

$$M(f)(x) = \sup_{a>0} \frac{1}{a} \int_{0}^{a} f(T_{\lambda}x) d\lambda, \quad f \in L(X).$$

Then M(f) = M(g) implies that f = g a.e. (in the sense of measure μ) on X.

L. EPHREMIDZE

References

1. F. Riesz, Sur un théoreme de maximum de MM. Hardy et Littlewood. J. London Math. Soc. 7(1932), 10–13.

2. M. de Guzmán, Differentiation of integrals in \mathbb{R}^n . Springer-Verlag, Berlin, 1975.

3. L. Ephremidze, On a relationship between the integrabilities of various maximal functions. *Georgian Math. J.* 2(1995), No. 1, 9–20.

4. B. Marcus and K. Petersen, Balancing ergodic averages. *Lecture Notes in Math.* **729**(1979), No. 4, 126–143.

(Received 06.10.1994)

Author's address: A. Razmadze Mathematical Institute Georgian Academy of Sciences 1, Z. Rukhazde St., Tbilisi 380093 Republic of Georgia