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ON THE UNIQUENESS OF MAXIMAL FUNCTIONS

L. EPHREMIDZE

Abstract. The uniqueness theorem for the one-sided maximal oper-
ator has been proved.

Let L be the class of real 2π-periodic integrable functions and let M be
the one-sided maximal operator

M(f)(x) = sup
b>x

1
b− x

b
∫

x

fdm, f ∈ L, x ∈ R

(m denotes the Lebesgue measure on the line R).
In this paper we shall prove the following uniqueness

Theorem 1. Let f, g ∈ L and M(f) = M(g). Then f = g a.e. on R.

Sets of the type {x ∈ R : M(f)(x) > t} = {x ∈ R : M(g)(x) > t} will
be briefly denoted by (M > t). Obviously (M > t)t∈R is a class of bundled
open sets continuous from the right, i.e.,

∪
t>τ

(M > t) = (M > τ).

Let
t0 = inf{M(f) : x ∈ R} = inf{M(g)(x) : x ∈ R}.

For an arbitrary integrable function f if t = 1
2π

∫ 2π
0 fdm, then M(f) ≥ t on

the whole line and M(f)(x0) = t for x0 being the point of maximum of the
function x 7→

∫ x
0 fdm− tx. Thus we can conclude that

2π
∫

0

fdm =

2π
∫

0

gdm = t0.
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Because of the Lebesgue differentiation theorem f, g ≤ t0 a.e. on R\(M >
t0). On the other hand, applying the Riesz rising sun lemma (see [1]), we
have

∫

(M>t0)

fdm =
∫

(M>t0)

gdm = t0 ·m(M > t0) (1)

(see also [2], p. 58). Consequently f = g = t0 a.e. on R\(M > t0) and to
prove the theorem it suffices to show the validity of

Lemma 1. Let (a, b) be a (finite) connected component of (M > t0).
Then

b
∫

x

fdm =

b
∫

x

gdm (2)

for each x ∈ (a, b).

Proof. Assume x fixed and let tx = M(f)(x) = M(g)(x). For each t ∈
[t0, tx) suppose (at, bt) to be the connected component of (M > t) which
contains x and assume that bt = x whenever t = tx (note that bt0 = b, by
assumption). Obviously

∪
t>τ

(at, bt) ⊂ (aτ , bτ )

and it is easy to show that t 7→ bt is a non-increasing function on [t0, tx]
continuous from the right.

Let D be the set of points of discontinuity of this function and let

Dc = {t : bτ = bt for some τ > t}.

If t ∈ [t0, tx)\(D ∪Dc) and bt is a Lebesgue point of both functions f and
g, then

f(bt), g(bt) ≤ t

(since bt 6∈ (M > t)). On the other hand, for each τ ∈ (t, tx) we have

1
bt − bτ

bt
∫

bτ

fdm,
1

bt − bτ

bt
∫

bτ

gdm > t

(since (at, bt) is a connected component of (M > t) and bτ ∈ (at, bt); see
Lemma 1 in [3]). Hence we can conclude that

f(bt) = g(bt) = t.

For t ∈ D let
b′t = lim

τ→t−
bτ .
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Then

1
b′t − bt

b′t
∫

bt

fdm,
1

b′t − bt

b′t
∫

bt

gdm ≤ t

(since bt 6∈ (M > t)) and for each τ ∈ [t0, t) we have

1
bτ − bt

bτ
∫

bt

fdm,
1

bτ − bt

bτ
∫

bt

gdm > τ

(since (aτ , bτ ) is a connected component of (M > τ) and bt ∈ (aτ , bτ )).
Hence, letting τ converge to t from the left, we get

b′t
∫

bt

fdm =

b′t
∫

bt

gdm = t(b′t − bt).

Since [x, b] = A1 ∪A2 ∪A3, where

A1 = {bt : t ∈ [t0, tx]\(D ∪Dc)},
A2 = ∪

t∈D
[bt, b′t],

A3 = {bt : t ∈ Dc},

and since f = g a.e. on A1,
∫

A2

fdm =
∫

A2

gdm

and A3 is a denumerable set, we can conclude that (2) holds.

Note that the lemma remains true if f and g are locally integrable func-
tions on R. Hence if we use the balancing ergodic equality (see [4]) instead
of the equality (1), then we get the uniqueness theorem for the ergodic
maximal operator.

Theorem 2. Let (Tλ)λ≥0 be an ergodic semiflow of measure-preserving
transformations on a finite measure space (X, S, µ) and let M be the ergodic
maximal operator

M(f)(x) = sup
a>0

1
a

a
∫

0

f(Tλx)dλ, f ∈ L(X).

Then M(f) = M(g) implies that f = g a.e. (in the sense of measure µ)
on X.
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