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LITTLEWOOD–PALEY OPERATORS ON THE
GENERALIZED LIPSCHITZ SPACES

SHANZHEN LU, CHANGMEI TAN, AND KOZO YABUTA

Abstract. Littlewood–Paley operators defined on a new kind of gen-
eralized Lipschitz spaces Eα,p

0 are studied. It is proved that the im-
age of a function under the action of these operators is either equal
to infinity almost everywhere or is in Eα,p

0 , where −n < α < 1 and
1 < p < ∞.

1. Introduction

For x ∈ Rn, y > 0, the Poisson kernel is P (x, y) = cny(y2 + |x|2)−(n+1)/2.
Denote the Poisson integral of f by

f(x, y) =
∫

Rn

f(z)P (x− z, y) dz.

We have (see [1])

|∇f(x, y)| ≤ cn

∫

Rn

|f(z)| (y + |x− z|)−(n+1)dz. (1)

Let us now consider the following two kinds of Littlewood–Paley functions:

S(f)(x) =
(

∫∫

Γ(x)

y1−n|∇f(z, y)|2dz dy
)1/2

and

g∗λ(f)(x) =
{

∫∫

Rn+1
+

( y
y + |x− z|

)λn
y1−n|∇f(z, y)|2dz dy

}1/2
.
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The generalized Lipschitz space Eα,p consists of functions f which are locally
integrable and satisfy the following condition: there exists a constant C such
that for any cube Q

∫

Q

|f(x)− fQ|pdx ≤ C|Q|1+
αp
n , (2)

where fQ = 1
Q

∫

Q f(x)dx. Denote the norm of f in Eα,p by

‖f‖α,p = inf
{

C1/p : C satisfies (2)
}

.

Recently, Qiu [2] has obtained the following result.

Theorem A. Let 1 < p < ∞, −n/p ≤ α < 1/2, α 6= 0, and λ >
max(1, 2/p). If f ∈ Eα,p and Tf is S(f) or g∗λ(f), then either Tf(x) = ∞
a.e. or Tf(x) < ∞ a.e., and there exists a constant C independent of f
such that

‖Tf‖α,p ≤ C‖f‖α,p.

We notice that the range of α in Theorem A seems somewhat rough. It
is natural to consider whether the conclusion of the above theorem holds
for −n < α < 1. The last named author of this paper proved that the
conclusion of Theorem A holds for −n/p < α < 1 (see [3]). In this paper,
with the aid of the idea in [4], we shall introduce a variant of Eα,p, Eα,p

0 , and
prove that the conclusion of Theorem A holds for Eα,p

0 with −n < α < 1.
Let us first definie Eα,p

0 .

Definition. A locally integrable function f is called a generalized Lips-
chitz function of central type if there exists a constant C such that (2) holds
for any cube Q centered at the origin. Moreover, the space consisting of all
generalized Lipschitz functions of central type is denoted by Eα,p

0 . We call
Eα,p
0 the generalized Lipschitz space of central type.

It is easy to see that Eα,p ⊂ Eα,p
0 and Eα,p

0 is just the bounded mean
oscillation space of central type, BMO0 in [4]. Let us now formulate our
results.

Theorem 1. Let 1 < p < ∞ and −n < α < 1. If f ∈ Eα,p
0 , then either

S(f)(x) = ∞ a.e. or S(f)(x) < ∞ a.e., and there exists a constant C
independent of f such that

‖S(f)‖α,p ≤ C‖f‖α,p.
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Theorem 2. Let 1 < p < ∞, −n < α < 1, and λ > max(1, 2/p) + 2/n.
If f ∈ Eα,p

0 , then either g∗λ(f)(x) = ∞ a.e. or g∗λ(f)(x) < ∞ a.e., and there
exists a constant C = C(n, α, p, λ) such that

‖g∗λ(f)‖α,p ≤ C‖f‖α,p.

2. Some Lemmas

Lemma 1. Let 1 < p < ∞, −n < α < 1, α 6= 0, and 0 < d, α < d. If
f ∈ Eα,p

0 and Q is a cube centered at the origin with the edge length r, then
there exists a constant C = C(n, p, α, d) such that for any y > 0

∫

Rn

|f(x)− fQ|
yn+d + |x|n+d dx ≤ Cy−d(yα + rα)‖f‖α,p. (3)

See [1] and [2] for its proof.

Lemma 1′. Let 1 < p < ∞ and d > 0. If f ∈ BMO0 = E0,p
0 and Q

is a cube centered at the origin with the edge length r, then there exists a
constant C = C(n, p, d) such that for any y > 0,

∫

Rn

|f(x)− fQ|
yn+d + |x|n+d dx ≤ Cy−d

(

1 +
∣

∣

∣ log2
y
r

∣

∣

∣

)

‖f‖0,p.

Proof. By the known result in [5] we have

∫

Rn

|f(x)− fQ|
rn+d + |x|n+d dx ≤ Cr−d‖f‖0,p.

Let R be the cube centered at the origin with the edge length y. Then

∫

Rn

|f(x)− fQ|
yn+d + |x|n+d dx ≤

∫

Rn

|f(x)− fR|
yn+d + |x|n+d dx

+|fR − fQ|
∫

Rn

dx
yn+d + |x|n+d dx ≤ Cy−d‖f‖0,p + Cy−d|fR − fQ|.

Thus it remains to prove

|fR − fQ| ≤ C
(

1 +
∣

∣

∣ log2
y
r

∣

∣

∣

)

‖f‖0,p.
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Let y > r, and let k satisfy 2k ≤ y < 2k+1r. Then k ≤ log2
y
r and

|fR − fQ| ≤ |fR − fQk |+
k

∑

j=1

|fQj − fQj−1 |

≤ 2n
( 1
|R|

∫

R

|f(x)− fR|pdx
)1/p

+
k

∑

j=1

2n‖f‖0,p

≤ 2n(1 + k)‖f‖0,p

≤ C
(

1 + log2
y
r

)

‖f‖0,p,

where Qk is the concentric extension of Q by 2k times.
When y < r, by exchanging y and r, we shall get the same estimate as

above with log2
r
y = | log2

y
r |.

Let χE be the characteristic function of E. For a cube Q in Rn and d > 0
let dQ be the concentric extension of Q by d times.

Lemma 2. Suppose that 1 < p < ∞, −n < α < 1, and f ∈ Eα,p
0 . Let

Q be a cube centered at the origin with the edge length r, and hQ(x) =
[f(x) − fQ]χQc (x). If there is x′ ∈ dQ such that S(hQ)(x′) < ∞, where
d = (8

√
n)−1, then there exists a constant C = C(n, α, p) such that

S(hQ)(x) < ∞, ∀x ∈ dQ

and
|S(hQ)(x)− S(hQ)(x′)| < Crα‖f‖α,p, ∀x ∈ dQ.

Proof. Let us first consider the case of α 6= 0. Fix x ∈ dQ. Set

Γ−(x) =
{

(z, y) ∈ Γ(x) : y ≤ dr
}

and
Γ+(x) =

{

(z, y) ∈ Γ(x) : y > dr
}

.

Then
S(hQ)(x) ≤ S− + S+, x ∈ dQ,

where

S− =
(

∫∫

Γ−(x)

y1−n|∇hQ(z, y)|2dz dy
)1/2

and

S+ =
(

∫∫

Γ+(x)

y1−n|∇hQ(z, y)|2dz dy
)1/2

.
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Estimating S− as in [2], we have

S− ≤ Crα‖f‖α,p. (4)

For S+ we have

S+ =
(

∫∫

Γ+(0)

y1−n|∇hQ(x + z, y)|2dz dy
)1/2

≤
(

∫∫

Γ+(0)

y1−n|∇hQ(x′ + z, y)|2dz dy
)1/2

+
(

∫∫

Γ+(0)

y1−n|∇hQ(x + z, y)−∇hQ(x′ + z, y)|2dz dy
)1/2

≤ S(hQ)(x′) +
{

∫∫

Γ+(0)

y1−n

×
(

∫

Qc

|∇P (x + z − t, y)∇P (x′ + z + t, y)| |f(t)− fQ|dt
)2

dz dy
}1/2

.

Note that

|∇P (x, y)−∇P (x′, y)| =
(

n+1
∑

j=1

∣

∣

∣

∂
∂xj

p(x, y)− ∂
∂xj

P (x′, y)
)1/2

,

where ∂
∂xn+1

= ∂
∂y . By the mean value theorem we have

∣

∣

∣

∂
∂xj

p(x, y)− ∂
∂xj

P (x′, y)
∣

∣

∣

=
∣

∣

∣∇
∂

∂xj
P (x, y)

∣

∣

∣

x+θj(x−x′)
|x− x′|, 0 < θj < 1,

where
∣

∣

∣∇
∂

∂xj
P (x, y)

∣

∣

∣ ≤
C

(y + |x|)n+2 .

Thus

|∇P (x + z − t, y)−∇P (x′ + z − t, y)|

≤ C|x− x′|
{

n+1
∑

j=1

(

y + |x + z − t + θj(x− x′)|
)−2(n+2)

}1/2
. (5)
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Since (x, y) ∈ Γ+(0), x, x′ ∈ dQ, and t 6∈ Q, we have |t| > r/2, |z| < y,
|x| < r/16 < |t|/8, and |x− x′| < r/8 < |t|/4. Thus,

|t| ≤ |x + z − t + θj(x− x′)|+ |x|+ |z|+ |x− x′|
≤ |x + z − t + θj(x− x′)|+ |t|/8 + y + |t|/4

and
5
16

(

y + |t|
)

≤ |x + z − t + θj(x− x′)|+ y,

where 1 ≤ j ≤ n|+ 1. Therefore

|∇P (x + z − t, y)−∇P (x′ + z − t, y)| ≤ Cr
(y + |t|)n+2 . (6)

Using (6) and (3), we obtain

S+ ≤ S(hQ)(x′) + C
{

∫∫

Γ+(0)

y1−n
[

∫

Qc

r|f(t)− fQ|
(y + |t|)n+2 dt

]2
dzdy

}1/2

≤ S(hQ)(x′) + C
{

∫∫

Γ+(0)

y1−nr2[y−2(yα + rα)‖f‖α,p
]2

dzdy
}1/2

≤ S(hQ)(x′) + Cr‖f‖α,p

{

∞
∫

dr

∫

|z|<y

y1−ny−4(y2α + r2α)dzdy
}1/2

≤ S(hQ)(x′) + Crα‖f‖α,p. (7)

Combining (4) with (7) we have

S(hQ)(x) ≤ S(hQ)(x′) + Crα‖f‖α,p.

Thus S(hQ)(x) < ∞. Exchanging x and x′, we obtain

|S(hQ)(x)− S(hQ)(x′)| ≤ Crα‖f‖α,p.

Hence the proof of Lemma 2 is complete for the case of α 6= 0.
When α = 0, by using Lemma 1′ instead of Lemma 1 we obtain

S+ ≤ S(hQ)(x′) + C
{

∫∫

Γ+(0)

y1−n
[

∫

Qc

r|f(t)− fQ|
(y + |t|)n+2 dt

]2
dzdy

}1/2

≤ S(hQ)(x′) + C
{

∫∫

Γ+(0)

y1−nr2[y−2(1 +
∣

∣ log2
y
r

∣

∣

)

‖f‖0,p
]2

dzdy
}1/2

≤ S(hQ)(x′) + Cr‖f‖0,p

{

∞
∫

dr

∫

|z|<y

y−3−n(

1 +
∣

∣ log2
y
r

∣

∣

)2
dzdy

}1/2
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≤ S(hQ)(x′) + Crα‖f‖0,p

{

∞
∫

1

u−3(1 + | log2 u|
)2

du
}1/2

≤ S(hQ)(x′) + Crα‖f‖0,p. (8)

Now, it is easy to see that the conclusion of the lemma for α = 0 follows
from (8) and (4) with α = 0.

Lemma 3. Under the hypothesis of Lemma 2, if there is x′ ∈ dQ such
that g∗λ(hQ)(x′) < ∞, where λ > max(1, 2/p) + 2/n, then there exists a
constant C = C(n, α, λ, p) such that g∗λ(hQ)(x) < ∞ and

|g∗λ(hQ)(x)− g∗λ(x′) ≤ Crα‖f‖α,p, ∀x ∈ dQ.

Proof. We only consider the case of α 6= 0. As in Lemma 2, the proof in
the case α = 0 is similar. Let

Jk =
{

(z, y) ∈ Rn+1
+ : |z| < 2k−2r, 0 < y < 2k−2r

}

, k ≥ 0.

For fixed x ∈ dQ we have

g∗λ(hQ)(x) ≤ G− + G+,

where

G− =
(

∫∫

J0

( y
y + |z|

)λn
y1−n|∇hQ(x + z, y)|2dz dy

)1/2

and

G+ =
(

∫∫

Rn+1
+ \J0

( y
y + |z|

)λn
y1−n|∇hQ(x + z, y)|2dz dy

)1/2
.

Note that if (z, y) ∈ J0, x ∈ dQ, and t 6= Q, then |z| < r/4, |x| < r/16, and
|t| > r/2. Thus

|t| ≤ |t− x− z|+ |x|+ |z| ≤ |x + z − t|+ 5
8
|t|

and
1
16

(r + |t|) ≤ |x + z − t|+ y.

By (1) and Lemma 1 we get

G− ≤ C
{

∫∫

J0

( y
y + |z|

)λn
y1−n

[
∫

Qc

r|f(t)− fQ|
(y + |x + z − t|)n+1 dt

]2
dzdy

}1/2

≤ C
{

∫∫

J0

( y
y + |z|

)λn
y1−n

[

∫

Qc

r|f(t)− fQ|
(r + |t|)n+1 dt

}2
dzdy

}1/2
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≤ C
{

∞
∫

dr

∫

|z|<y

( y
y + |z|

)λn
y1−n[

rα−1‖f‖α,p
]2

dzdy
}1/2

≤ Crα−1‖f‖α,p

(

r
∫

0

y1−nrndy
)1/2

≤ Crα‖f‖α,p.

To estimate C+ we observe that

G+ ≤
{

∫∫

Rn+1
+ \J0

( y
y + |z|

)λn
y1−n|∇hQ(x′ + z, y)|2dzdy

}1/2

+
{

∫∫

Rn+1
+ \J0

( y
y + |z|

)λn
y1−n|∇hQ(x + z, y)−

−∇hQ(x′ + z, y)|2dzdy
}1/2

≤ g∗λ(hQ)(x′) + D,

where

D =
{

∫∫

Rn+1
+ \J0

( y
y + |z|

)λn
y1−n|∇hQ(x + z, y)−

−∇hQ(x′ + z, y)|2dzdy
}1/2

≤ C
{

∞
∑

k=1

(2kr)−λn
∫∫

Jk\Jk−1

yλn+1−n

×
[

∫

Qc

|∇P (x + z − t, y)−∇P (x′ + z − t, y)| |f(t)− fQ|dt
]2

dzdy
}1/2

≤ C
{

∞
∑

k=1

(2kr)−λn(Ak + Bk)
}1/2

.

Here

Ak =
∫∫

Jk\Jk−1

yλn+1−n

×
[

∫

Qc
k+1

|∇P (x + z − t, y)−∇P (x′ + z − t, y)| |f(t)− fQ|dt
]2

dzdy,
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Bk =
∫∫

Jk\Jk−1

yλn+1−n

×
[

∫

Qk+1\Q

|∇P (x + z − t, y)−∇P (x′ + z − t, y)| |f(t)− fQ|dt
]2

dzdy,

and Qk+1 = 2k+1Q. Without loss of generality we may assume that
max(1, 2/p) + 2/n < λ < 3 + 2/n. By the easy inequality (see [3])

|∇P (x, y)−∇P (x′, y)|

≤ C|x− x′|
( 1

(y + |x|)n+2 +
1

(y + |x′|)n+2

)

, ∀x, x′ ∈ Rn, y > 0,

together with the Minkowski inequality for integrals, we have

Bk ≤ Cr2
∫∫

Jk\Jk−1

yλn+1−n
{

∫

Qk+1\Q

|f(t)− fQ|
( 1

(y + |x + z − t|)n+2

+
1

(y + |x′ + z − t|)n+2

)

dt
}2

dz dy

≤ Cr2

∞
∫

0

∫

Rn

yλn+1−n
{

∫

Qk+1

|f(t)− fQ|
( 1

(y + |x + z − t|)n+2

+
1

(y + |x′ + z − t|)n+2

)

dt
}2

dz dy

≤ Cr2
∫

Rn

[

∫

Qk+1

|f(t)−fQ|
(

∞
∫

0

yλn+1−n

(y+|x + z − t|)2(n+2) dy
)1/2

dt
]2

dz

+ Cr2
∫

Rn

[

∫

Qk+1

|f(t)−fQ|
(

∞
∫

0

yλn+1−n

(y+|x′ + z − t|)2(n+2) dy
)1/2

dt
]2

dz

=Cr2
∫

Rn

[

∫

Qk+1

|f(t)−fQ|
|z+x−t|(3n−λn+2)/2

(

∞
∫

0

yλn+1−n

(1+y)2(n+2) dy
)1/2

dt
]2

dz

+Cr2
∫

Rn

[

∫

Qk+1

|f(t)− fQ|
|z+x′−t|(3n−λn+2)/2

(

∞
∫

0

yλn+1−n

(1+y)2(n+2) dy
)1/2

dt
]2

dz

= Cr2
∫

Rn

(

∫

Qk+1

|f(t)− fQ|
|u− t|n−[(λn−1)−2]/2 dt

)2
du.
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Using the Hardy–Littlewood–Sobolev theorem on fractional integration with
γ = [(λ− 1)n− 2]/2, q = 2, and 1/s = 1/q + γ/n = λ/2− 1/n (see [6]), we
obtain

Bk ≤ Cr2
(

∫

Qk+1

|f(z)− fQ|sdz
)2/s

.

Since λ ≥ 2/p + 2/n, then p ≥ s. Thus

Bk ≤ Cr2
(

∫

Qk+1

|f(z)− fQ|pdz
)2/p

|Qk+1|2(1/s−1/p)

≤ Cr2
{(

∫

Qk+1

|f(z)− fQ|pdz
)1/p

+ |Qk+1|1/p|fQk+1 − fQ|
}2
|Qk+1|2(1/s−1/p)

≤ Cr2{|Qk+1|1/p+α/n‖f‖α,p

+ |Qk+1|1/p(2kr)α‖f‖α,p
}2|Qk+1|2(1/s+1/p)

≤ Cr2(2kr)2α(2kr)λn−2‖f‖α,p

≤ C(2kr)λn(22k(α−1)r2α‖f‖α,p.

To estimate Ak we observe that if (z, y) ∈ Jk\Jk−1 and t 6∈ Qk+1, then
|t| > 2kr, k ≥ 1, and |z| < 2k−2r < |t|/4. Thus,

|t| ≤ |x + z − t + θj(x− x′)|+ |x|+ |z|+ |x− x′|

≤ |x + z − t + θ(x− x′)|+ 5
16
|t|.

By Lemma 1 we have

Ak ≤ C
∫∫

Jk\Jk+1

yλn+1−n
[

∫

Qc
k+1

r|f(t)− fQ|
(2kr + |t|)n+2 dt

]2
dz dy

≤ Cr2
∫∫

Jk\Jk+1

yλn+1−n{

(2kr)−2[(2kr)α + rα]‖f‖α,p
}2

dz dy

≤ Cr2(2kr)−4+2α‖f‖α,p

2kr
∫

0

∫

|z|<2kr

yλn+1−ndz dy

≤ Cr2α(2kr)λn22k(α−1)‖f‖α,p.
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Combining the estimate of Ak with that of Bk, we obtain

D ≤ C
{

∞
∑

k=1

(2kr)−λn(2kr)λnr2α22k(α−1)‖f‖α,p

}1/2
≤ Crα‖f‖α,p.

Therefore
g∗λ(hQ)(x) ≤ g∗λ(hQ)(x′) + Crα‖f‖α,p.

As in the last part of the proof of Lemma 2, we have

|g(
λhQ)(x)− g∗λ(hQ)(x′) ≤ Crα‖f‖α,p.

3. The Proofs of the Theorems

Let T be one of the Littlewood–Paley functions as in Section 1. Suppose
that Tf(x) 6= ∞ a.e. Then |E| ∆= |{x : Tf(x) < ∞}| > 0. Thus there is
a cube Q′ centered at the origin such that |Q′ ∩ E| > 0. Set Q = (1/d)Q′

(then Q′ = dQ). We write f as

f(x) = fQ + [f(x)− fQ]χQ(x) + [f(x)− fQ]χQc (x)
∆= fQ + gQ(x) + hQ(x).

Since

Tf(x) ≤ TgQ(x) + ThQ(x) (9)

and

ThQ(x) ≤ Tf(x) + TgQ(x), (10)

it is easy to see that the inequality

‖gQ‖p =
(

∫

Q

|f(t)− fQ|pdt
)1/p

≤ C|Q|1/p+α/n‖f‖α,p (11)

implies that gQ ∈ Lp. Then it follows from the Lp-boundedness of the
Littlewood–Paley operator that TgQ(x) < ∞ a.e.. Since |Q′ ∩E| > 0, there
is x′ ∈ Q′ ∩E ⊂ dQ such that Tf(x′) < ∞ and TgQ(x′) < ∞. By (10) and
Lemmas 2 and 3, we have ThQ(x′) < ∞ and

ThQ(x) < ∞, ∀x ∈ dQ = Q′.

By (9) we obtain
Tf(x) < ∞ a.e. x ∈ Q′.

Finally, let the edge length of Q′ tend to ∞; we have Tf(x) < ∞ a.e.,
x ∈ Rn.
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Let Q′ be a cube centered at the origin, and Q = (1/d)Q′. Choose
x′ ∈ dQ so that ThQ(x′) < ∞. Then it follows from (11) and Lemmas 2
and 3 that

(

∫

Q′

|Tf(x)− ThQ(x′)|pdx
)1/p

≤
(

∫

Q′

|TgQ(x)|pdx
)1/p

+
(

∫

Q′

|ThQ(x)− ThQ(x′)|pdx
)1/p

≤ C‖gQ‖p + C|Q′|1/prα‖f‖α,p

≤ C|Q′|1/p+α/n‖f‖α,p.

This completes the proof of the theorems.
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