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ON STRONG MAXIMAL OPERATORS CORRESPONDING
TO DIFFERENT FRAMES

G. ONIANI

Abstract. The problem is posed and solved whether the conditions
f ∈ L(1 + ln+ L)2(R2) and supθ∈[0,π/2)

∫

{M2,θ(f)>1}M2,θ(f) < ∞

are equivalent for functions f ∈ L(R2) (where M2,θ denotes the strong
maximal operator corresponding to the frame {OXθ, OYθ}).

The results obtained represent a general solution of M. de Guzmán’s
problem that was previously studied by various authors.

1. Notation

Let B1 be a family of all cubic intervals in Rn. We denote by M1 a
maximal Hardy-Littlewood operator which is defined as follows:

M1(f)(z) := sup
{ 1
|I|

∫

I

|f | : z ∈ I, I ∈ B1

}

, z ∈ Rn,

for f ∈ Lloc(Rn).
Let B2 be a family of all open rectangles in R2 whose sides are parallel

to the coordinate axes; OXθ be the straight line obtained by rotating the
OX-coordinate axis through the angle θ about the point O in the positive
direction (OYθ is defined analogously); B2,θ be a family of all open rectangles
with the sides parallel to the straight lines OXθ and OYθ.

For a rectangle I ⊂ R2 we shall denote by n(I) a number θ ∈ [0, π/2) for
which one of the sides of I is parallel to OXθ. The regularity factor of the
rectangle I will be defined as the ratio of the length of the larger side of I
to the length of the smaller side of I and will be denoted by r(I).

For θ ∈ R we shall denote by θ (mod π/2) a number such that 0 ≤ θ
(mod π/2) < π/2 and θ − θ (mod π/2) = πk/2 for some k ∈ N. One can
easily verify that B2,θ = B2,θ (mod π/2), θ ∈ R.

The sets {OXθ, OYθ}, θ ∈ [0, π/2) will be called frames.
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For f ∈ Lloc(R2) let

M2(f)(z) := sup
{ 1
|I|

∫

I

|f | : z ∈ I, I ∈ B2

}

, z ∈ R2,

M2,θ(f)(z) := sup
{ 1
|I|

∫

I

|f | : z ∈ I, I ∈ B2,θ

}

, z ∈ R2.

M2 is called the strong maximal operator, while M2,θ is called the strong
maximal operator corresponding to the frame {OXθ (mod π/2), OYθ (mod π/2)}.
This definition is correct because by virtue of the equality B2,θ =B2,θ (mod π/2)
we have M2,θ = M2,θ (mod π/2). The latter equality implies that the family
{M2,θ}θ∈[0,π/2) exhausts the family of all operators M2,θ (θ ∈ R).

2. Formulation of the Question

As is known, the space L(1 + ln+ L)(Rn) can be characterized by the
maximal operator M1 as follows (see [1], [2]):

Theorem 10. Let f ∈ L(Rn). Then the following two conditions are
equivalent:

1. f ∈ L(1 + ln+ L)(Rn);

2.
∫

{M1(f)>1}

M1(f) < ∞.

The implication 1 ⇒ 2 was proved by Hardy and Littlewood [3] for n = 1
and by Wiener [4] for n ≥ 2. The results of the reverse nature were obtained
for the first time by Stein [5] and Tsereteli [6, 7]. Guzman and Welland [1,
2] improved the above results by formulating Theorem 10.

It is known that if f ∈ L(1 + ln+ L)2(R2) then (see [1])
∫

{M2(f)>1}

M2(f) < ∞. (2.1)

Guzman (see [1]) posed the question whether it was possible to character-
ize the space L(1 + ln+ L)2(R2) by the operator M2 as was done for the
space L(1 + ln+ L) using the operator M1. Gogoladze [8, 9] and Bagby [10]
answered this question in the negative. Their results give rise to

Theorem 20. For any functions f 6∈ L(1 + ln+ L)2(R2) and f ∈ L(1 +
ln+ L)(R2) there exists a Lebesgue measure preserving an invertible mapping



ON STRONG MAXIMAL OPERATORS 83

ω : R2 → R2 such that
∫

{M2(f◦ω)>1}

M2(f ◦ ω) < ∞.

Now we proceed directly to formulating our problem. It is easy to verify that
if f ∈ L(1 + ln+ L)2(R2) then

∫

{M2,θ(f)>1}

M2,θ(f) < ∞ for any θ ∈ [0, π/2), (2.2)

and, moreover,

sup
θ∈[0,π/2)

∫

{M2,θ(f)>1}

M2,θ(f) < ∞. (2.3)

Clearly, conclusion (2.3) is stronger than (2.1) and hence there is a better
chance for us to improve the integral properties of the function f when
(2.3) is fulfilled than in the case of fulfillment of (2.1). Having given this
information, we formulate the problem:

Let f ∈ L(R2) and supθ∈[0,π/2)

∫

{M2,θ(f)>1}M2,θ(f) < ∞. Is the inclu-

sion f ∈ L(1 + ln+ L)2(R2) then valid?
We would like to note here that the functions constructed in [8–10] do not

satisfy condition (2.2) and thus [8–10] do not provide a solution of the above
problem. So we shall prove the following theorem which as a particular case
contains the answer to the problem.

Theorem 1. For any functions f 6∈ L(1 + ln+ L)2(R2) and f ∈ L(1 +
ln+ L)(R2) there exists a Lebesgue measure preserving an invertible mapping
ω : R2 → R2 such that

1. the set {|f ◦ ω| > 1} is a square interval;

2. sup
θ∈[0,π/2)

∫

{M2,θ(f◦ω)>1}

M2,θ(f ◦ ω) < ∞.

3. Auxiliary Statements

To prove Theorem 1 we shall need several lemmas. If ∆ ⊂ R is some
interval and (length ∆) < π/2, then by M∗

2,∆ we denote the following oper-
ator: for each f ∈ Lloc(R2)

M∗
2,∆(f)(z) :=

=sup
{

M2,θ(f)(z) :θ ∈ [cen∆−π/4, inf ∆] ∪ [sup ∆, cen∆+π/4)
}

, z∈R2;
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where cen ∆ = (inf ∆ + sup ∆)/2.

Lemma 1. Let 0 < θ < π/4, H > 0, 0 < λ < H. It is assumed that the
regularity factor of rectangle I satisfies the inequality r(I) ≥ H

λ sin2 θ . Then
there is a rectangle II,H,θ,λ such that

{

M∗
2,∆(HχI ) > λ

}

⊂ II,H,θ,λ,
∣

∣II,H,θ,λ
∣

∣ ≤ c1
H
λ
|I|,

∫

II,H,θ,λ

M∗
2,∆(HχI ) ≤ c2H

(

1 + ln+ H
λ

)

|I|,

where ∆ = (n(I) − θ, n(I) + θ), while c1 and c2 are the positive constants
not depending on I, H, θ, and λ.

Proof. We begin by considering the case λ = 1, H > 1. Without loss
of generality it will be assumed (see Fig. 1) that n(I) = 0, I is the rect-
angle ABCD the sides AB and BC of which have the lengths I1 and I2

respectively and I2/I1 ≥ H/ sin2 θ.

Fig. 1

The strip bounded by the straight lines containing the segments AD and
BC respectively will be denoted by ˜I. Using the convexity property of the
rectangle, it is easy to prove the inequality

M∗
2,∆(HχI )(z) ≤ 3H

I1

dist(z, ˜I)
for dist(z, ˜I) ≥ I1. (3.1)

A minimal number α ≥ 0 for which the straight line l is parallel to the
OXα-axis will be denoted by n(l). Let l1 (n(l1) = θ) and l2 (n(l2) = π− θ)
be the straight lines passing through the points C and D, respectively. The
straight lines l1 and l2 divide the plane into parts. We denote the right-hand
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part by El1,l2 . Due to the definition of the operator M∗
2,θ it is easy to show

that

M∗
2,∆(HχI )(z) ≤ H|I|

dist(z, l1) dist(z, l2)
for z ∈ El1,l2 . (3.2)

Above and below the rectangle I let us draw the straight lines l′1 and l′2
which are parallel to the segment AD and situated at a distance (3H +1)I1

from I. Now the rectangle A′B′C ′D′ can be chosen so that A′D′ ⊂ l′1,
B′C ′ ⊂ l′2, and dist(A′B′, I) = dist(C ′D′, I) = 10I2. We shall prove that
the rectangle A′B′C ′D′ can be taken as II,H,θ,1.

The strip bounded by the straight lines l′1 and l′2 will be denoted by E;
the part of E lying on the right of C ′D′ will be denoted by E+, while the
part of E lying on the left of A′B′ will be denoted by E−.

By (3.1) we conclude that
{

M∗
2,∆(HχI ) > 1

}

⊂ E. (3.3)

By virtue of the inequality I2/I1 ≥ H/ sin2 θ and the definition of the rect-
angle A′B′C ′D′ it is easy to show that

E+ ⊂ El1,l2 ; (3.4)

dist(D′, l1) ≥
√

H|I|; (3.5)

dist(C ′, l2) ≥
√

H|I|. (3.6)

Obviously, for any z ∈ E+

dist(z, l1) ≥ dist(D′, l1); (3.7)

dist(z, l2) ≥ dist(C ′, l2). (3.8)

Using (3.2) and (3.4)–(3.8), we find that

M∗
2,∆(HχI )(z) ≤ H|I|

dist(z, l1) dist(z, l2)
≤

≤ H|I|
dist(D′, l1) dist(C ′, l2)

≤ H|I|
√

H|I|
√

H|I|
= 1 (3.9)

for any z ∈ E+.
From (3.9) we readily obtain

M∗
2,∆(HχI )(z) ≤ 1 for all z ∈ E−. (3.10)

For this it is enough to ascertain that the following equality holds:

M∗
2,∆(HχI )(z) = M∗

2,∆(HχI )(z
′), z ∈ R2,
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where z′ denotes a point symmetrical to z with respect to the center of the
rectangle I.

By (3.3), (3.9), and (3.10) we have

{

M∗
2,∆(HχI ) > 1

}

⊂ A′B′C ′D′. (3.11)

Clearly,
∣

∣A′B′C ′D′∣
∣ ≤ (6H + 3)I121I2 < 200H|I|. (3.12)

It is easy to prove the inequality
∫

Ex

M∗
2,∆(HχI )(x, y)dy < 15H(1 + ln H)I1, x ∈ R, (3.13)

where Ex := {(x, y) : y ∈ R} ∩ E, x ∈ R.
By (3.13) we obtain

∫

A′B′C′D′

M∗
2,∆(HχI )(x, y)dxdy ≤

≤ 15H(1 + ln H)I1( length A′D′) ≤ 315H(1 + ln H)|I|. (3.14)

By virtue of (3.11), (3.12), and (3.14) the lemma is proved for the case
λ = 1, H > 1. Now it is easy to obtain the proof for the general case if we
take into consideration the following obvious equalities:

M∗
2,∆(HχI )(z) = λM∗

2,∆

(H
λ

χI

)

(z), z ∈ R2; (3.15)

{

M∗
2,∆(HχI ) > λ

}

=
{

M∗
2,∆

(H
λ

χI

)

> 1
}

. (3.16)

As is well known (see [1]), if f ∈ L(1 + ln+ L)(R2), then for each λ > 0
we have the inequality

∣

∣

{

M2(f) > λ
}∣

∣ ≤ c3

∫

R2

|f |
λ

(

1 + ln+ |f |
λ

)

, (3.17)

where c3 is a positive constant not depending on f and λ.
Let Γθ be rotation of the plane through the angle θ about the point O

in the positive direction. It is easy to verify that M2,θ(f)(z) = M2(f ◦
Γθ)(Γ−1

θ (z)). Hence we obtain |{M2,θ(f) > λ}| = |{M2(f ◦Γθ) > λ}| which
by virtue of (3.17) implies that Lemma 2 is valid.
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Lemma 2. Let f ∈ L(1 + ln+ L)(R2); then the inequality

∣

∣

{

M2,θ(f) > λ
}∣

∣ ≤ c3

∫

R2

|f |
λ

(

1 + ln+ |f |
λ

)

holds for each θ ∈ [0, π/2) and λ > 0.

By using this lemma we can easily prove

Lemma 3. Let f ∈ L(1 + ln+ L)2(R2); then the inequality
∫

{M2,θ(f)>1}

M2,θ(f) ≤ c4

∫

R2

|f |
(

1 + ln+ |f |
)2

,

where c4 is the positive constant not depending on f and θ, holds for each
θ ∈ [0, π/2).

Let Ω ⊂ [0, π/2), B = ∪θ∈ΩB2,θ and for each f ∈ Lloc(R2)

MB(f)(z) := sup
{ 1
|I|

∫

I

|f | : z ∈ I, I ∈ B
}

, z ∈ R2.

We have

Lemma 4. Let Ik be a rectangle, Hk > 1, k ∈ N, and
∑∞

k=1 Hk|Ik| < ∞.
It is assumed that there exists a sequence {Ik} such that Ik∩Im = ∅, k 6= m,
{MB(HkχIk

) > λ} ⊂ Ik, k ∈ N, where λ ∈ (0, 1] is a fixed number. Then

{

MB

(
∞
∑

k=1

HkχIk

)

> λ
}

⊂
∞
⋃

k=1

Ik. (3.18)

Proof. Let fk := HkχIk
(k ∈ N) and f :=

∑∞
k=1 HkχIk

= supk∈NHkχIk
.

Clearly, (3.18) is equivalent to the inequality

MB(f)(z) ≤ λ, z 6∈ ∪∞k=1Ik. (3.19)

Let us assume that z 6∈ ∪∞k=1Ik, R 3 z, R ∈ B and prove the inequality
∫

R∩Ik

fk ≤ λ
∣

∣R ∩ Ik
∣

∣, k ∈ N. (3.20)

Let n(R) = θ and Rxθ := {(ξ, η) : ξθ = xθ, ηθ ∈ R} ∩ R, for each xθ ∈ R
(where (ξθ, ηθ) denotes the coordinates of the point (ξ, η) in the XθOYθ-
system).
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We consider an arbitrarily fixed number k ∈ N. The following notation
is introduced:

E1
k :=

{

xθ : Rxθ ∩ Ik 6= ∅, Rxθ\Ik 6= ∅
}

;

E2
k :=

{

xθ : Rxθ ⊂ Ik
}

;

R1
k :=

⋃

xθ∈E1
k

(

Rxθ ∩ Ik
)

;

R2
k :=

⋃

xθ∈E2
k

(

Rxθ ∩ Ik
)

.

Clearly,

R1
k ∩R2

k = ∅ and R ∩ Ik = R1
k ∪R2

k. (3.21)

For our further discussion we need the inequality

MB(f)(z) ≤ λ, z ∈ ∂Ik, (3.22)

which immediately follows from the condition of the lemma (∂ denotes the
boundary of sets).

If xθ ∈ E1
k, then one can easily find that one end of the segment Rxθ ∩Ik

belongs to ∂Ik and hence by virtue of (3.22) one readily obtains
∫

Rxθ∩Ik

fk(xθ, yθ)dyθ ≤ λ
∣

∣Rxθ ∩ Ik
∣

∣

1,

where | · |1 denotes the Lebesgue measure on the straight line.
The above inequality implies

∫

R1
k

fk =
∫

E1
k

dxθ

∫

Rxθ∩Ek

fk(xθ, yθ)dyθ ≤

≤
∫

E1
k

λ
∣

∣Rxθ ∩ Ik
∣

∣

1 = λ
∣

∣R1
k

∣

∣. (3.23)

It is easy to prove the following facts:

R2
k is a rectancle included in B; (3.24)

R2
k has a vertex belonging to ∂Ik. (3.25)

From (3.22), (3.24), (3.25) we obtain the inequality
∫

R2
k

fk ≤ λ
∣

∣R2
k

∣

∣. (3.26)
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Taking into account (3.12), (3.23), and (3.26), we have
∫

R∩Ik

fk =
∫

R1
k

fk +
∫

R2
k

fk ≤ λ
∣

∣R1
k

∣

∣ + λ
∣

∣R2
k

∣

∣ = λ
∣

∣R ∩ Ik
∣

∣. (3.27)

Since k ∈ N has been chosen arbitrarily, (3.27) implies the estimate
∫

R

f =
∞
∑

k=1

∫

R∩Ik

fk =
∞
∑

k=1

∫

R∩Ik

fk ≤
∞
∑

k=1

λ
∣

∣R ∩ Ik
∣

∣ ≤ λ|R|;

Because of an arbitrarily chosen R (z ∈ R, R ∈ B) we hence conclude that

MB(f)(z) ≤ λ, z 6∈ ∪∞k=1Ik.

For each θ ∈ [0, π/2) let A(θ) denote a set of all f ∈ L(R2) for which
∫

{M2,θ(f)>1}M2,θ(f) < ∞. We have

Lemma 5. Let f and g belong to the set A(θ). Then f + g ∈ A(θ) and
∫

{M2,θ(f+g)>1}

M2,θ(f + g) ≤

≤ c5

(

∫

{M2,θ(f)>1}

M2,θ(f) +
∫

{M2,θ(g)>1}

M2,θ(g)
)

+

+c6
(∥

∥f(1 + ln+ |f |)
∥

∥

1 +
∥

∥g(1 + ln+ |g|)
∥

∥

1

)

, (3.28)

where c5 and c6 are positive constants not depending on f , g, and θ.

Proof. One can easily verify the following inequalities:
∫

{M2,θ(f+g)>1}

M2,θ(f + g) ≤

≤
∫

{M2,θ(f)>1/2}∪{M2,θ(g)>1/2}

(

M2,θ(f) + M2,θ(g)
)

; (3.29)

∫

{M2,θ(f)>1/2}∪{M2,θ(g)>1/2}

M2,θ(f) ≤

≤
∫

{M2,θ(f)>1/2}

M2,θ(f) +
1
2

∣

∣

{

M2,θ(g) > 1/2
}∣

∣; (3.30)

∫

{M2,θ(g)>1/2}∪{M2,θ(g)>1/2}

M2,θ(f) ≤
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≤
∫

{M2,θ(g)>1/2}

M2,θ(g) +
1
2

∣

∣

{

M2,θ(f) > 1/2
}∣

∣. (3.31)

By virtue of (3.29), (3.30), (3.31) and Lemma 2 we conclude that (3.28) is
valid.

Let A denote a set of all functions f ∈ L(R2) satisfying condition (2.3).
Lemma 5 immediately gives rise to

Lemma 6. Let f and g belong to the set A. Then f + g ∈ A.

4. Proof of Theorem 1

It is assumed without loss of generality that f is positive, |{f > 1}| = 1.
Let Ek := {k − 1 ≤ f < k}, k ∈ N. Clearly, there exists k0 ≥ 3 for which

∞
∑

k=k0

c1k|Ek| < 1. (4.1)

Choose a sequence {mk} ⊂ N such that

k ln2 k|Ek|
mk

≤ 1, k ∈ N. (4.2)

Let N0 := {k ∈ N : k ≥ k0, |Ek| > 0} and the sequence {∆k,m}k∈N0,m=1,mk

consist of pairwise nonintersecting intervals lying on the segment [0, π/2).
For each k ∈ N0 and m ∈ [1,mk] choose a rectangle Ik,m such that

∣

∣Ik,m
∣

∣ =
|Ek|
mk

; (4.3)

n
(

Ik,m
)

= cen ∆k,m; (4.4)

r
(

Ik,m
)

≥ k
sin2 |∆k,m|1/2

. (4.5)

By virtue of (4.5) and Lemma 1 there exists a rectangle Ik,m such that
{

M∗
2,∆k,m

(

kχIk,m

)

> 1
}

⊂ Ik,m; (4.6)
∣

∣Ik,m
∣

∣ ≤ c1k
∣

∣Ik,m
∣

∣; (4.7)
∫

Ik,m

M∗
2,∆k,m

(

kχIk,m

)

≤ 2c2k ln k
∣

∣Ik,m
∣

∣. (4.8)

Let {Qk,m}k∈N0,m=1,mk
be a sequence of pairwise rectangular intervals lying

on [0, 1]2 and each having height equal to 1, and

|Qk,m| =
∣

∣Ik,m
∣

∣, k ∈ N0, m = 1,mk (4.9)
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(such a sequence exists by virtue of (4.1), (4.3) and (4.7)).
For each k ∈ N0 and m ∈ [1,mk] we complete the rectangle Qk,m with

pairwise nonintersecting rectangles {Ik,m,q} which are homothetic to the
rectangle Ik,m, i.e., we have

Ik,m,q = Pk,m,q(Ik,m)

where Pk,m,q is the homothety (q ∈ N); (4.10)

Ik,m,q ⊂ Qk,m, q ∈ N; (4.11)

Ik,m,q ∩ Ik,m,q′ = ∅, q 6= q′; (4.12)
∣

∣

∣Qk,m\
⋃

q∈N
Ik,m,q

∣

∣

∣ = 0. (4.13)

Let Ik,m,q := Pk,m,q(Ik,m), k ∈ N0, m = 1,mk, q ∈ N. Clearly,

∑

q∈N

∣

∣Ik,m,q
∣

∣ =
∣

∣Ik,m
∣

∣ =
|Ek|
mk

, k ∈ N0, m ∈ [1,mk]. (4.14)

Since Pk,m,q is a homotopy, by (4.6)–(4.8) we conclude that for each k ∈ N0,
m ∈ [1, mk], and q ∈ N

{

M∗
2,∆k,m

(

kχIk,m,q

)

> 1
}

⊂ Ik,m,q; (4.15)
∣

∣Ik,m,q
∣

∣ ≤ c1k
∣

∣Ik,m,q
∣

∣; (4.16)
∫

Ik,m,q

M∗
2,∆k,m

(

kχIk,m,q

)

≤ 2c2k ln k
∣

∣Ik,m,q
∣

∣. (4.17)

We introduce the notation gk,m := supq∈N(kχIk,m,q
), k ∈ N0, m0 = 1, mk,

and g := sup{gk,m : k ∈ N0,m ∈ [1,mk]}. Let us prove that g ∈ A.
It is assumed that θ ∈ [0, π/2) is an arbitrary fixed number. Two cases

are possible:
(a) θ ∈ ∪

k,m
∆k,m;

(b) θ 6∈ ∪
k,m

∆k,m;

(a) Let θ ∈ ∆k(θ),m(θ). We introduce the notation T := {(k,m, q) : k ∈
N0, m ∈ [1, mk], q ∈ N, (k, m) 6= (k(θ), m(θ))}.

Since θ 6∈ ∆k,m for (k, m) 6= (k(θ),m(θ)), by the definition of M∗
2,∆ and

(4.15) we obtain
{

M2,θ
(

kχIk,m,q

)

> 1
}

⊂
{

M∗
2,∆k,m

(

kχIk,m,q

)

> 1
}

⊂ Ik,m,q,

(k, m, q) ∈ T.
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Hence by (4.12) and Lemma 4 we conclude that

{

M2,θ
(

g − gk(θ),m(θ)
)

> 1
}

⊂
⋃

(k,m,q)∈T

Ik,m,q, (4.18)

M2,θ
(

g − gk(θ),m(θ)
)

(z) ≤ M2,θ
(

kχIk,m,q

)

(z) + 1

for z ∈ Ik,m,q, (k,m, q) ∈ T. (4.19)

On account of (4.14) and (4.16)–(4.19) we write
∫

{M2,θ(g−gk(θ),m(θ))>1}

M2,θ
(

g − gk(θ),m(θ)
)

≤

≤
∑

(k,m,q)∈T

∫

Ik,m,q

M2,θ
(

g − gk(θ),m(θ)
)

≤

≤
∑

(k,m,q)∈T

∫

Ik,m,q

[

M2,θ
(

kχIk,m,q

)

+ 1
]

≤

≤
∑

(k,m,q)∈T

[

2c2k ln k|Ik,m,q|+ |Ik,m,q|
]

≤

≤ 1 +
∑

k∈N0

2c2k ln k|Ek| ≤ 1 + 8c2‖f ln+ f‖1. (4.20)

By (4.2), (4.14) and Lemma 3 we have
∫

{M2,θ(gk(θ),m(θ))>1}

M2,θ
(

gk(θ),m(θ)
)

≤ c4

∫

R2

gk(θ),m(θ)
(

1 + ln+ gk(θ),m(θ)
)2

=

= c4

∑

q∈N
k(θ)

(

1 + ln k(θ)
)2∣

∣Ik(θ),m(θ),q
∣

∣ =

= c4k(θ)
(

1 + ln k(θ)
)2 |Ek(θ)|

mk(θ)
≤ 4c4. (4.21)

From the construction we easily find that
∥

∥

(

g − gk(θ),m(θ)
)(

1 + ln+ (

g − gk(θ),m(θ)
)∥

∥

1 ≤
≤

∥

∥g(1 + ln+ g)
∥

∥

1 ≤ 4‖f ln+ f‖1, (4.22)

Analogously,
∥

∥gk(θ),m(θ)
(

1 + ln+ gk(θ),m(θ)
)∥

∥

1 ≤ 4‖f ln+ f‖1 (4.23)
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Using the representation g = (g − gk(θ),m(θ)) + gk(θ),m(θ), by virtue of
(4.20)–(4.23) and Lemma 5 we obtain

∫

{M2,θ(g)>1}

M2,θ(g) ≤

≤ c5
(

1 + 8c2‖f ln+ f‖1 + 4c4
)

+ 8‖f ln+ f‖1c6. (4.24)

In proving the case (b) we have no “dangerous” term gk(θ),m(θ) and there-
fore, applying the same reasoning as for (4.20), we can write

∫

{M2,θ(g)>1}

M2,θ(g) ≤

≤
∑

(k,m,q)∈T0

∫

Ik,m,q

M2,θ(g) ≤
∑

(k,m,q)∈T0

∫

Ik,m,q

[

M2,θ(kχIk,m,q
) + 1

]

≤

≤
∑

(k,m,q)∈T0

[

2c2k ln k|Ik,m,q|+ |Ik,m,q|
]

≤

≤ 1 +
∑

k∈N0

2c2k ln k|Ek| ≤ 1 + 8c2‖f ln+ f‖,

where T0 :=
{

(k, m, q) : k ∈ N0, m = 1,mk, q ∈ N
}

. (4.25)

Since θ ∈ [0, π/2) was chosen arbitrarily, by virtue of (4.24) and (4.25)
we conclude that g ∈ A.

We shall now find the desired mapping of ω. From the construction it
easily follows that

Ek ∩ Ek′ = ∅, k 6= k′, (4.26)
(

⋃

(m,q)∈Tk

Ik,m,q

)
⋂

(
⋃

(m,q)∈Tk′

Ik′,m,q

)

= ∅, k = k′,
(4.27)

where Tk := {(m, q) : m ∈ [1,mk], q ∈ N} for k ∈ N0;

|Ek| =
∣

∣

∣

⋃

(m,q)∈Tk

Ik,m,q

∣

∣

∣ > 0, k ∈ N0, (4.28)

∣

∣

∣{f > 1}\
⋃

k∈N0

Ek

∣

∣

∣ =
∣

∣

∣(0, 1)2\
⋃

(k,m,q)∈T0

Ik,m,q

∣

∣

∣ > 0. (4.29)

By conditions (4.26)–(4.29) and one familiar result on measure-preserving
transformations (see, e.g., [11, Chapter: Uniform Approximation]) we con-
clude that there exists a Lebesgue measure preserving an invertible mapping
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ω : R2 → R2 such that

ω
(

⋃

(m,q)∈Tk

Ik,m,q

)

= Ek, k ∈ N0; (4.30)

ω
(

(0, 1)2\
⋃

(k,m,q)∈T0

Ik,m,q

)

= {f > 1}\
⋃

k∈N0

Ek; (4.31)

ω
(

R2\(0, 1)2
)

= {f ≤ 1}. (4.32)

(4.30) and (4.31) clearly imply

{f ◦ ω > 1} = ω−1({f > 1}
)

= (0, 1)2. (4.33)

From the construction and conditions (4.30)–(4.32) we obtain

(f ◦ ω)χ ∪
k∈N0

Ek
≤ g,

(f ◦ ω)χ
R2\ ∪

k∈N0

Ek
∈ L

(

1 + ln+ L
)2

(R2).

Hence, taking into account f ◦ ω = (f ◦ ω)χ ∪
k∈N0

Ek
+ (f ◦ ω)χ

R2\ ∪
k∈N0

Ek
,

inclusions g ∈ A, and Lemmas 3 and 6, we conclude that f ◦ ω ∈ A, i.e.,

sup
θ∈[0,π/2)

∫

{M2,θ(f◦ω)>1}

M2,θ(f ◦ ω) < ∞. (4.34)

By (4.33) and (4.34) ω is the desired mapping.

5. Remarks

Remark 1. On overcoming certain technical difficulties, we can prove by
a technique similar to that used to prove Theorem 1 the following general-
ization.

Theorem 2. Let a function f 6∈ L(1+ln+ L)2(R2), f ∈ L(1+ln+ L)(R2).
It is assumed that a set G1, |G1| > 0, is such that fχ

R2\G1
∈ L(1 +

ln+ L)2(R2). Then for any set G2, |G2| = |G1|, there exists a Lebesgue
measure preserving an invertible mapping ω : R2 → R2 such that

1. ω(G1) = G2,

2. {z : ω(z) 6= z} ⊂ G1 ∪G2,

3. sup
θ∈[0,π/2)

∫

{M2,θ(f◦ω)>1}

M2,θ(f ◦ ω) < ∞.

Theorem 2 yields as a corollary
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Theorem 3. Let a function f 6∈ L(1+ln+ L)2(R2), f ∈ L(1+ln+ L)(R2).
It is assumed that a set G is such that fχ

R2\G
∈ L(1 + ln+ L)2(R2). Then

there exists a Lebesgue measure preserving an invertible mapping ω : R2 →
R2 such that

1. {z : ω(z) 6= z} ⊂ G,

2. sup
θ∈[0,π/2)

∫

{M2,θ(f◦ω)>1}

M2,θ(f ◦ ω) < ∞.

Remark 2. Let X be a set and R an equivalence relation on X. A subset
Y ⊂ X will be called an R-set if the fact that y ∈ Y implies that [y]R ⊂ Y ,
where [y]R denotes a set of all elements from X R-equaivalent to y. The
following problem is posed in [6]: Given an equivalence relation R on the
set X, characterize the set E ⊂ X from the standpoint of R, i.e., give in
explicit terms the kernel E(R) (the greatest R-set contained in E) and the
hull E(R) (the least R-set containing E).

Consider an arbitrary set G ⊂ R2 and choose |G| > 0, XG, RG and
EG in the following manner: XG := {f ∈ L(R2), supp f ⊂ G}, EG :=
{f ∈ XG, f ∈ A}, f and g ∈ RG will be called RG-equivalent if there
exists a Lebesgue measure preserving an invertible mapping ω : R2 → R2,
{z : ω(z) 6= z} ⊂ G, such that g = f ◦ ω.

Let us agree that ϕ(L)(G) denotes a class of functions f : R2 → R with
the following properties: supp f ⊂ G,

∫

G ϕ(|f |) < ∞. One can easily show
that EG(RG) = L(1 + ln+ L)2(G), while by virtue of (2.3) and Theorem 3
we have the equality EG(RG) = L(1 + ln+ L)(G). Thus the next theorem
is valid.

Theorem 4. For each G ⊂ R2, |G| > 0, we have

EG(RG) = L(1 + ln+ L)2(G) and EG(RG) = L(1 + ln+ L)(G).
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