ON STRONG MAXIMAL OPERATORS CORRESPONDING TO DIFFERENT FRAMES

G. ONIANI

Abstract

The problem is posed and solved whether the conditions $f \in L\left(1+\ln ^{+} L\right)^{2}\left(\mathbb{R}^{2}\right)$ and $\sup _{\theta \in[0, \pi / 2)} \int_{\left\{M_{2, \theta}(f)>1\right\}} M_{2, \theta}(f)<\infty$ are equivalent for functions $f \in L\left(\mathbb{R}^{2}\right)$ (where $M_{2, \theta}$ denotes the strong maximal operator corresponding to the frame $\left\{O X_{\theta}, O Y_{\theta}\right\}$).

The results obtained represent a general solution of M. de Guzmán's problem that was previously studied by various authors.

1. Notation

Let B_{1} be a family of all cubic intervals in \mathbb{R}^{n}. We denote by M_{1} a maximal Hardy-Littlewood operator which is defined as follows:

$$
M_{1}(f)(z):=\sup \left\{\frac{1}{|I|} \int_{I}|f|: z \in I, I \in B_{1}\right\}, \quad z \in \mathbb{R}^{n}
$$

for $f \in L_{l o c}\left(\mathbb{R}^{n}\right)$.
Let B_{2} be a family of all open rectangles in \mathbb{R}^{2} whose sides are parallel to the coordinate axes; $O X_{\theta}$ be the straight line obtained by rotating the $O X$-coordinate axis through the angle θ about the point O in the positive direction ($O Y_{\theta}$ is defined analogously); $B_{2, \theta}$ be a family of all open rectangles with the sides parallel to the straight lines $O X_{\theta}$ and $O Y_{\theta}$.

For a rectangle $I \subset \mathbb{R}^{2}$ we shall denote by $n(I)$ a number $\theta \in[0, \pi / 2)$ for which one of the sides of I is parallel to $O X_{\theta}$. The regularity factor of the rectangle I will be defined as the ratio of the length of the larger side of I to the length of the smaller side of I and will be denoted by $r(I)$.

For $\theta \in \mathbb{R}$ we shall denote by $\theta(\bmod \pi / 2)$ a number such that $0 \leq \theta$ $(\bmod \pi / 2)<\pi / 2$ and $\theta-\theta(\bmod \pi / 2)=\pi k / 2$ for some $k \in \mathbb{N}$. One can easily verify that $B_{2, \theta}=B_{2, \theta}(\bmod \pi / 2), \theta \in \mathbb{R}$.

The sets $\left\{O X_{\theta}, O Y_{\theta}\right\}, \theta \in[0, \pi / 2)$ will be called frames.

[^0]For $f \in L_{l o c}\left(\mathbb{R}^{2}\right)$ let

$$
\begin{aligned}
& M_{2}(f)(z):=\sup \left\{\frac{1}{|I|} \int_{I}|f|: z \in I, I \in B_{2}\right\}, \quad z \in \mathbb{R}^{2} \\
& M_{2, \theta}(f)(z):=\sup \left\{\frac{1}{|I|} \int_{I}|f|: z \in I, I \in B_{2, \theta}\right\}, \quad z \in \mathbb{R}^{2}
\end{aligned}
$$

M_{2} is called the strong maximal operator, while $M_{2, \theta}$ is called the strong maximal operator corresponding to the frame $\left\{O X_{\theta(\bmod \pi / 2)}, O Y_{\theta(\bmod \pi / 2)}\right\}$. This definition is correct because by virtue of the equality $B_{2, \theta}=B_{2, \theta(\bmod \pi / 2)}$ we have $M_{2, \theta}=M_{2, \theta(\bmod \pi / 2)}$. The latter equality implies that the family $\left\{M_{2, \theta}\right\}_{\theta \in[0, \pi / 2)}$ exhausts the family of all operators $M_{2, \theta}(\theta \in \mathbb{R})$.

2. Formulation of the Question

As is known, the space $L\left(1+\ln ^{+} L\right)\left(\mathbb{R}^{n}\right)$ can be characterized by the maximal operator M_{1} as follows (see [1], [2]):

Theorem $\mathbf{1}^{0}$. Let $f \in L\left(\mathbb{R}^{n}\right)$. Then the following two conditions are equivalent:

$$
\begin{aligned}
& \text { 1. } f \in L\left(1+\ln ^{+} L\right)\left(\mathbb{R}^{n}\right) \text {; } \\
& \text { 2. } \int_{\left\{M_{1}(f)>1\right\}} M_{1}(f)<\infty .
\end{aligned}
$$

The implication $1 \Rightarrow 2$ was proved by Hardy and Littlewood [3] for $n=1$ and by Wiener [4] for $n \geq 2$. The results of the reverse nature were obtained for the first time by Stein [5] and Tsereteli [6, 7]. Guzman and Welland [1, 2] improved the above results by formulating Theorem 1^{0}.

It is known that if $f \in L\left(1+\ln ^{+} L\right)^{2}\left(\mathbb{R}^{2}\right)$ then (see [1])

$$
\begin{equation*}
\int_{\left\{M_{2}(f)>1\right\}} M_{2}(f)<\infty \tag{2.1}
\end{equation*}
$$

Guzman (see [1]) posed the question whether it was possible to characterize the space $L\left(1+\ln ^{+} L\right)^{2}\left(\mathbb{R}^{2}\right)$ by the operator M_{2} as was done for the space $L\left(1+\ln ^{+} L\right)$ using the operator M_{1}. Gogoladze [8, 9] and Bagby [10] answered this question in the negative. Their results give rise to

Theorem 2^{0}. For any functions $f \notin L\left(1+\ln ^{+} L\right)^{2}\left(\mathbb{R}^{2}\right)$ and $f \in L(1+$ $\left.\ln ^{+} L\right)\left(\mathbb{R}^{2}\right)$ there exists a Lebesgue measure preserving an invertible mapping
$\omega: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that

$$
\int_{\left\{M_{2}(f \circ \omega)>1\right\}} M_{2}(f \circ \omega)<\infty
$$

Now we proceed directly to formulating our problem. It is easy to verify that if $f \in L\left(1+\ln ^{+} L\right)^{2}\left(\mathbb{R}^{2}\right)$ then

$$
\begin{equation*}
\int_{\left\{M_{2, \theta}(f)>1\right\}} M_{2, \theta}(f)<\infty \quad \text { for any } \quad \theta \in[0, \pi / 2), \tag{2.2}
\end{equation*}
$$

and, moreover,

$$
\begin{equation*}
\sup _{\theta \in[0, \pi / 2)} \int_{\left\{M_{2, \theta}(f)>1\right\}} M_{2, \theta}(f)<\infty . \tag{2.3}
\end{equation*}
$$

Clearly, conclusion (2.3) is stronger than (2.1) and hence there is a better chance for us to improve the integral properties of the function f when (2.3) is fulfilled than in the case of fulfillment of (2.1). Having given this information, we formulate the problem:

Let $f \in L\left(\mathbb{R}^{2}\right)$ and $\sup _{\theta \in[0, \pi / 2)} \int_{\left\{M_{2, \theta}(f)>1\right\}} M_{2, \theta}(f)<\infty$. Is the inclusion $f \in L\left(1+\ln ^{+} L\right)^{2}\left(\mathbb{R}^{2}\right)$ then valid?

We would like to note here that the functions constructed in [8-10] do not satisfy condition (2.2) and thus [8-10] do not provide a solution of the above problem. So we shall prove the following theorem which as a particular case contains the answer to the problem.

Theorem 1. For any functions $f \notin L\left(1+\ln ^{+} L\right)^{2}\left(\mathbb{R}^{2}\right)$ and $f \in L(1+$ $\left.\ln ^{+} L\right)\left(\mathbb{R}^{2}\right)$ there exists a Lebesgue measure preserving an invertible mapping $\omega: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that

$$
\text { 1. the set }\{|f \circ \omega|>1\} \quad \text { is a square interval; }
$$

2. $\sup _{\theta \in[0, \pi / 2)} \int_{\left\{M_{2, \theta}(f \circ \omega)>1\right\}} M_{2, \theta}(f \circ \omega)<\infty$.

3. Auxiliary Statements

To prove Theorem 1 we shall need several lemmas. If $\Delta \subset \mathbb{R}$ is some interval and (length Δ) $<\pi / 2$, then by $M_{2, \Delta}^{*}$ we denote the following operator: for each $f \in L_{l o c}\left(\mathbb{R}^{2}\right)$

$$
\begin{gathered}
M_{2, \Delta}^{*}(f)(z):= \\
=\sup \left\{M_{2, \theta}(f)(z): \theta \in[\operatorname{cen} \Delta-\pi / 4, \inf \Delta] \cup[\sup \Delta, \operatorname{cen} \Delta+\pi / 4)\right\}, \quad z \in \mathbb{R}^{2} ;
\end{gathered}
$$

where $\operatorname{cen} \Delta=(\inf \Delta+\sup \Delta) / 2$.

Lemma 1. Let $0<\theta<\pi / 4, H>0,0<\lambda<H$. It is assumed that the regularity factor of rectangle I satisfies the inequality $r(I) \geq \frac{H}{\lambda \sin ^{2} \theta}$. Then there is a rectangle $\mathcal{I}_{I, H, \theta, \lambda}$ such that

$$
\begin{aligned}
& \left\{M_{2, \Delta}^{*}\left(H \chi_{I}\right)>\lambda\right\} \subset \mathcal{I}_{I, H, \theta, \lambda}, \\
& \left|\mathcal{I}_{I, H, \theta, \lambda}\right| \leq c_{1} \frac{H}{\lambda}|I| \\
& \quad \int_{\mathcal{I}_{I, H, \theta, \lambda}} M_{2, \Delta}^{*}\left(H \chi_{I}\right) \leq c_{2} H\left(1+\ln ^{+} \frac{H}{\lambda}\right)|I|,
\end{aligned}
$$

where $\Delta=(n(I)-\theta, n(I)+\theta)$, while c_{1} and c_{2} are the positive constants not depending on I, H, θ, and λ.

Proof. We begin by considering the case $\lambda=1, H>1$. Without loss of generality it will be assumed (see Fig. 1) that $n(I)=0, I$ is the rectangle $A B C D$ the sides $A B$ and $B C$ of which have the lengths I_{1} and I_{2} respectively and $I_{2} / I_{1} \geq H / \sin ^{2} \theta$.

Fig. 1

The strip bounded by the straight lines containing the segments $A D$ and $B C$ respectively will be denoted by \widetilde{I}. Using the convexity property of the rectangle, it is easy to prove the inequality

$$
\begin{equation*}
M_{2, \Delta}^{*}\left(H \chi_{I}\right)(z) \leq 3 H \frac{I_{1}}{\operatorname{dist}(z, \widetilde{I})} \quad \text { for } \quad \operatorname{dist}(z, \widetilde{I}) \geq I_{1} \tag{3.1}
\end{equation*}
$$

A minimal number $\alpha \geq 0$ for which the straight line l is parallel to the $O X_{\alpha}$-axis will be denoted by $n(l)$. Let $l_{1}\left(n\left(l_{1}\right)=\theta\right)$ and $l_{2}\left(n\left(l_{2}\right)=\pi-\theta\right)$ be the straight lines passing through the points C and D, respectively. The straight lines l_{1} and l_{2} divide the plane into parts. We denote the right-hand
part by $E_{l_{1}, l_{2}}$. Due to the definition of the operator $M_{2, \theta}^{*}$ it is easy to show that

$$
\begin{equation*}
M_{2, \Delta}^{*}\left(H \chi_{I}\right)(z) \leq \frac{H|I|}{\operatorname{dist}\left(z, l_{1}\right) \operatorname{dist}\left(z, l_{2}\right)} \quad \text { for } \quad z \in E_{l_{1}, l_{2}} \tag{3.2}
\end{equation*}
$$

Above and below the rectangle I let us draw the straight lines l_{1}^{\prime} and l_{2}^{\prime} which are parallel to the segment $A D$ and situated at a distance $(3 H+1) I_{1}$ from I. Now the rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ can be chosen so that $A^{\prime} D^{\prime} \subset l_{1}^{\prime}$, $B^{\prime} C^{\prime} \subset l_{2}^{\prime}$, and $\operatorname{dist}\left(A^{\prime} B^{\prime}, I\right)=\operatorname{dist}\left(C^{\prime} D^{\prime}, I\right)=10 I_{2}$. We shall prove that the rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ can be taken as $\mathcal{I}_{I, H, \theta, 1}$.

The strip bounded by the straight lines l_{1}^{\prime} and l_{2}^{\prime} will be denoted by E; the part of E lying on the right of $C^{\prime} D^{\prime}$ will be denoted by E^{+}, while the part of E lying on the left of $A^{\prime} B^{\prime}$ will be denoted by E^{-}.

By (3.1) we conclude that

$$
\begin{equation*}
\left\{M_{2, \Delta}^{*}\left(H \chi_{I}\right)>1\right\} \subset E \tag{3.3}
\end{equation*}
$$

By virtue of the inequality $I_{2} / I_{1} \geq H / \sin ^{2} \theta$ and the definition of the rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ it is easy to show that

$$
\begin{align*}
& E^{+} \subset E_{l_{1}, l_{2}} \tag{3.4}\\
& \operatorname{dist}\left(D^{\prime}, l_{1}\right) \geq \sqrt{H|I|} \tag{3.5}\\
& \operatorname{dist}\left(C^{\prime}, l_{2}\right) \geq \sqrt{H|I|} \tag{3.6}
\end{align*}
$$

Obviously, for any $z \in E^{+}$

$$
\begin{align*}
& \operatorname{dist}\left(z, l_{1}\right) \geq \operatorname{dist}\left(D^{\prime}, l_{1}\right) ; \tag{3.7}\\
& \operatorname{dist}\left(z, l_{2}\right) \geq \operatorname{dist}\left(C^{\prime}, l_{2}\right) . \tag{3.8}
\end{align*}
$$

Using (3.2) and (3.4)-(3.8), we find that

$$
\begin{gather*}
M_{2, \Delta}^{*}\left(H \chi_{I}\right)(z) \leq \frac{H|I|}{\operatorname{dist}\left(z, l_{1}\right) \operatorname{dist}\left(z, l_{2}\right)} \leq \\
\leq \frac{H|I|}{\operatorname{dist}\left(D^{\prime}, l_{1}\right) \operatorname{dist}\left(C^{\prime}, l_{2}\right)} \leq \frac{H|I|}{\sqrt{H|I|} \sqrt{H|I|}}=1 \tag{3.9}
\end{gather*}
$$

for any $z \in E^{+}$.
From (3.9) we readily obtain

$$
\begin{equation*}
M_{2, \Delta}^{*}\left(H \chi_{I}\right)(z) \leq 1 \quad \text { for all } z \in E^{-} \tag{3.10}
\end{equation*}
$$

For this it is enough to ascertain that the following equality holds:

$$
M_{2, \Delta}^{*}\left(H \chi_{I}\right)(z)=M_{2, \Delta}^{*}\left(H \chi_{I}\right)\left(z^{\prime}\right), \quad z \in \mathbb{R}^{2}
$$

where z^{\prime} denotes a point symmetrical to z with respect to the center of the rectangle I.

By (3.3), (3.9), and (3.10) we have

$$
\begin{equation*}
\left\{M_{2, \Delta}^{*}\left(H \chi_{I}\right)>1\right\} \subset A^{\prime} B^{\prime} C^{\prime} D^{\prime} \tag{3.11}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
\left|A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right| \leq(6 H+3) I_{1} 21 I_{2}<200 H|I| \tag{3.12}
\end{equation*}
$$

It is easy to prove the inequality

$$
\begin{equation*}
\int_{E_{x}} M_{2, \Delta}^{*}\left(H \chi_{I}\right)(x, y) d y<15 H(1+\ln H) I_{1}, \quad x \in \mathbb{R} \tag{3.13}
\end{equation*}
$$

where $E_{x}:=\{(x, y): y \in \mathbb{R}\} \cap E, x \in \mathbb{R}$.
By (3.13) we obtain

$$
\begin{gather*}
\int_{\substack{\prime \\
A^{\prime} C^{\prime} D^{\prime}}} M_{2, \Delta}^{*}\left(H \chi_{I}\right)(x, y) d x d y \leq \\
\leq 15 H(1+\ln H) I_{1}\left(\text { length } A^{\prime} D^{\prime}\right) \leq 315 H(1+\ln H)|I| \tag{3.14}
\end{gather*}
$$

By virtue of (3.11), (3.12), and (3.14) the lemma is proved for the case $\lambda=1, H>1$. Now it is easy to obtain the proof for the general case if we take into consideration the following obvious equalities:

$$
\begin{align*}
& M_{2, \Delta}^{*}\left(H \chi_{I}\right)(z)=\lambda M_{2, \Delta}^{*}\left(\frac{H}{\lambda} \chi_{I}\right)(z), \quad z \in \mathbb{R}^{2} \tag{3.15}\\
& \left\{M_{2, \Delta}^{*}\left(H \chi_{I}\right)>\lambda\right\}=\left\{M_{2, \Delta}^{*}\left(\frac{H}{\lambda} \chi_{I}\right)>1\right\} \tag{3.16}
\end{align*}
$$

As is well known (see [1]), if $f \in L\left(1+\ln ^{+} L\right)\left(\mathbb{R}^{2}\right)$, then for each $\lambda>0$ we have the inequality

$$
\begin{equation*}
\left|\left\{M_{2}(f)>\lambda\right\}\right| \leq c_{3} \int_{\mathbb{R}^{2}} \frac{|f|}{\lambda}\left(1+\ln ^{+} \frac{|f|}{\lambda}\right) \tag{3.17}
\end{equation*}
$$

where c_{3} is a positive constant not depending on f and λ.
Let Γ_{θ} be rotation of the plane through the angle θ about the point O in the positive direction. It is easy to verify that $M_{2, \theta}(f)(z)=M_{2}(f \circ$ $\left.\Gamma_{\theta}\right)\left(\Gamma_{\theta}^{-1}(z)\right)$. Hence we obtain $\left|\left\{M_{2, \theta}(f)>\lambda\right\}\right|=\left|\left\{M_{2}\left(f \circ \Gamma_{\theta}\right)>\lambda\right\}\right|$ which by virtue of (3.17) implies that Lemma 2 is valid.

Lemma 2. Let $f \in L\left(1+\ln ^{+} L\right)\left(\mathbb{R}^{2}\right)$; then the inequality

$$
\left|\left\{M_{2, \theta}(f)>\lambda\right\}\right| \leq c_{3} \int_{\mathbb{R}^{2}} \frac{|f|}{\lambda}\left(1+\ln ^{+} \frac{|f|}{\lambda}\right)
$$

holds for each $\theta \in[0, \pi / 2)$ and $\lambda>0$.
By using this lemma we can easily prove
Lemma 3. Let $f \in L\left(1+\ln ^{+} L\right)^{2}\left(\mathbb{R}^{2}\right)$; then the inequality

$$
\int_{\left\{M_{2, \theta}(f)>1\right\}} M_{2, \theta}(f) \leq c_{4} \int_{\mathbb{R}^{2}}|f|\left(1+\ln ^{+}|f|\right)^{2}
$$

where c_{4} is the positive constant not depending on f and θ, holds for each $\theta \in[0, \pi / 2)$.

Let $\Omega \subset[0, \pi / 2), B=\cup_{\theta \in \Omega} B_{2, \theta}$ and for each $f \in L_{l o c}\left(\mathbb{R}^{2}\right)$

$$
M_{B}(f)(z):=\sup \left\{\frac{1}{|I|} \int_{I}|f|: z \in I, I \in B\right\}, \quad z \in \mathbb{R}^{2}
$$

We have
Lemma 4. Let I_{k} be a rectangle, $H_{k}>1, k \in \mathbb{N}$, and $\sum_{k=1}^{\infty} H_{k}\left|I_{k}\right|<\infty$. It is assumed that there exists a sequence $\left\{\mathcal{I}_{k}\right\}$ such that $\mathcal{I}_{k} \cap \mathcal{I}_{m}=\varnothing, k \neq m$, $\left\{M_{B}\left(H_{k} \chi_{I_{k}}\right)>\lambda\right\} \subset \mathcal{I}_{k}, k \in \mathbb{N}$, where $\lambda \in(0,1]$ is a fixed number. Then

$$
\begin{equation*}
\left\{M_{B}\left(\sum_{k=1}^{\infty} H_{k} \chi_{I_{k}}\right)>\lambda\right\} \subset \bigcup_{k=1}^{\infty} \mathcal{I}_{k} \tag{3.18}
\end{equation*}
$$

Proof. Let $f_{k}:=H_{k} \chi_{I_{k}}(k \in \mathbb{N})$ and $f:=\sum_{k=1}^{\infty} H_{k} \chi_{I_{k}}=\sup _{k \in \mathbb{N}} H_{k} \chi_{I_{k}}$. Clearly, (3.18) is equivalent to the inequality

$$
\begin{equation*}
M_{B}(f)(z) \leq \lambda, \quad z \notin \cup_{k=1}^{\infty} \mathcal{I}_{k} \tag{3.19}
\end{equation*}
$$

Let us assume that $z \notin \cup_{k=1}^{\infty} \mathcal{I}_{k}, R \ni z, R \in B$ and prove the inequality

$$
\begin{equation*}
\int_{R \cap \mathcal{I}_{k}} f_{k} \leq \lambda\left|R \cap \mathcal{I}_{k}\right|, \quad k \in \mathbb{N} \tag{3.20}
\end{equation*}
$$

Let $n(R)=\theta$ and $R_{x_{\theta}}:=\left\{(\xi, \eta): \xi_{\theta}=x_{\theta}, \eta_{\theta} \in \mathbb{R}\right\} \cap R$, for each $x_{\theta} \in \mathbb{R}$ (where $\left(\xi_{\theta}, \eta_{\theta}\right)$ denotes the coordinates of the point (ξ, η) in the $X_{\theta} O Y_{\theta^{-}}$ system).

We consider an arbitrarily fixed number $k \in \mathbb{N}$. The following notation is introduced:

$$
\begin{aligned}
& E_{k}^{1}:=\left\{x_{\theta}: R_{x_{\theta}} \cap \mathcal{I}_{k} \neq \varnothing, R_{x_{\theta}} \backslash \mathcal{I}_{k} \neq \varnothing\right\} \\
& E_{k}^{2}:=\left\{x_{\theta}: R_{x_{\theta}} \subset \mathcal{I}_{k}\right\} \\
& R_{k}^{1}:=\bigcup_{x_{\theta} \in E_{k}^{1}}\left(R_{x_{\theta}} \cap \mathcal{I}_{k}\right) \\
& R_{k}^{2}:=\bigcup_{x_{\theta} \in E_{k}^{2}}\left(R_{x_{\theta}} \cap \mathcal{I}_{k}\right)
\end{aligned}
$$

Clearly,

$$
\begin{equation*}
R_{k}^{1} \cap R_{k}^{2}=\varnothing \quad \text { and } \quad R \cap \mathcal{I}_{k}=R_{k}^{1} \cup R_{k}^{2} \tag{3.21}
\end{equation*}
$$

For our further discussion we need the inequality

$$
\begin{equation*}
M_{B}(f)(z) \leq \lambda, \quad z \in \partial \mathcal{I}_{k} \tag{3.22}
\end{equation*}
$$

which immediately follows from the condition of the lemma (∂ denotes the boundary of sets).

If $x_{\theta} \in E_{k}^{1}$, then one can easily find that one end of the segment $R_{x_{\theta}} \cap \mathcal{I}_{k}$ belongs to $\partial \mathcal{I}_{k}$ and hence by virtue of (3.22) one readily obtains

$$
\int_{R_{x_{\theta}} \cap \mathcal{I}_{k}} f_{k}\left(x_{\theta}, y_{\theta}\right) d y_{\theta} \leq \lambda\left|R_{x_{\theta}} \cap \mathcal{I}_{k}\right|_{1},
$$

where $|\cdot|_{1}$ denotes the Lebesgue measure on the straight line.
The above inequality implies

$$
\begin{align*}
\int_{R_{k}^{1}} f_{k} & =\int_{E_{k}^{1}} d x_{\theta} \int_{R_{x_{\theta}} \cap E_{k}} f_{k}\left(x_{\theta}, y_{\theta}\right) d y_{\theta} \leq \\
& \leq \int_{E_{k}^{1}} \lambda\left|R_{x_{\theta}} \cap \mathcal{I}_{k}\right|_{1}=\lambda\left|R_{k}^{1}\right| \tag{3.23}
\end{align*}
$$

It is easy to prove the following facts:

$$
\begin{align*}
& R_{k}^{2} \text { is a rectancle included in } B \tag{3.24}\\
& R_{k}^{2} \text { has a vertex belonging to } \partial \mathcal{I}_{k} . \tag{3.25}
\end{align*}
$$

From (3.22), (3.24), (3.25) we obtain the inequality

$$
\begin{equation*}
\int_{R_{k}^{2}} f_{k} \leq \lambda\left|R_{k}^{2}\right| \tag{3.26}
\end{equation*}
$$

Taking into account (3.12), (3.23), and (3.26), we have

$$
\begin{equation*}
\int_{R \cap \mathcal{I}_{k}} f_{k}=\int_{R_{k}^{1}} f_{k}+\int_{R_{k}^{2}} f_{k} \leq \lambda\left|R_{k}^{1}\right|+\lambda\left|R_{k}^{2}\right|=\lambda\left|R \cap \mathcal{I}_{k}\right| . \tag{3.27}
\end{equation*}
$$

Since $k \in \mathbb{N}$ has been chosen arbitrarily, (3.27) implies the estimate

$$
\int_{R} f=\sum_{k=1}^{\infty} \int_{R \cap I_{k}} f_{k}=\sum_{k=1}^{\infty} \int_{R \cap \mathcal{I}_{k}} f_{k} \leq \sum_{k=1}^{\infty} \lambda\left|R \cap \mathcal{I}_{k}\right| \leq \lambda|R| ;
$$

Because of an arbitrarily chosen $R(z \in R, R \in B)$ we hence conclude that

$$
M_{B}(f)(z) \leq \lambda, \quad z \notin \cup_{k=1}^{\infty} \mathcal{I}_{k}
$$

For each $\theta \in[0, \pi / 2)$ let $A(\theta)$ denote a set of all $f \in L\left(\mathbb{R}^{2}\right)$ for which $\int_{\left\{M_{2, \theta}(f)>1\right\}} M_{2, \theta}(f)<\infty$. We have

Lemma 5. Let f and g belong to the set $A(\theta)$. Then $f+g \in A(\theta)$ and

$$
\begin{gather*}
\int_{\left\{M_{2, \theta}(f+g)>1\right\}} M_{2, \theta}(f+g) \leq \\
\leq c_{5}\left(\int_{\left\{M_{2, \theta}(f)>1\right\}} M_{2, \theta}(f)+\int_{\left\{M_{2, \theta}(g)>1\right\}} M_{2, \theta}(g)\right)+ \\
+c_{6}\left(\left\|f\left(1+\ln ^{+}|f|\right)\right\|_{1}+\left\|g\left(1+\ln ^{+}|g|\right)\right\|_{1}\right), \tag{3.28}
\end{gather*}
$$

where c_{5} and c_{6} are positive constants not depending on f, g, and θ.
Proof. One can easily verify the following inequalities:

$$
\begin{gather*}
\int_{\left\{M_{2, \theta}(f+g)>1\right\}} M_{2, \theta}(f+g) \leq \\
\leq \int_{\left\{M_{2, \theta}(f)>1 / 2\right\} \cup\left\{M_{2, \theta}(g)>1 / 2\right\}}\left(M_{2, \theta}(f)+M_{2, \theta}(g)\right) ; \tag{3.29}\\
\leq \int_{\left\{M_{2, \theta}(f)>1 / 2\right\} \cup\left\{M_{2, \theta}(g)>1 / 2\right\}} M_{2, \theta}(f) \leq \\
\int_{\left\{M_{2, \theta}(f)>1 / 2\right\}} M_{2, \theta}(f)+\frac{1}{2}\left|\left\{M_{2, \theta}(g)>1 / 2\right\}\right| ; \tag{3.30}\\
\int_{\left\{M_{2, \theta}(g)>1 / 2\right\} \cup\left\{M_{2, \theta}(g)>1 / 2\right\}} M_{2, \theta}(f) \leq
\end{gather*}
$$

$$
\begin{equation*}
\leq \int_{\left\{M_{2, \theta}(g)>1 / 2\right\}} M_{2, \theta}(g)+\frac{1}{2}\left|\left\{M_{2, \theta}(f)>1 / 2\right\}\right| \tag{3.31}
\end{equation*}
$$

By virtue of (3.29), (3.30), (3.31) and Lemma 2 we conclude that (3.28) is valid.

Let A denote a set of all functions $f \in L\left(\mathbb{R}^{2}\right)$ satisfying condition (2.3). Lemma 5 immediately gives rise to

Lemma 6. Let f and g belong to the set A. Then $f+g \in A$.

4. Proof of Theorem 1

It is assumed without loss of generality that f is positive, $|\{f>1\}|=1$. Let $E_{k}:=\{k-1 \leq f<k\}, k \in \mathbb{N}$. Clearly, there exists $k_{0} \geq 3$ for which

$$
\begin{equation*}
\sum_{k=k_{0}}^{\infty} c_{1} k\left|E_{k}\right|<1 \tag{4.1}
\end{equation*}
$$

Choose a sequence $\left\{m_{k}\right\} \subset \mathbb{N}$ such that

$$
\begin{equation*}
\frac{k \ln ^{2} k\left|E_{k}\right|}{m_{k}} \leq 1, \quad k \in \mathbb{N} \tag{4.2}
\end{equation*}
$$

Let $N_{0}:=\left\{k \in \mathbb{N}: k \geq k_{0},\left|E_{k}\right|>0\right\}$ and the sequence $\left\{\Delta_{k, m}\right\}_{k \in N_{0}, m=\overline{1, m_{k}}}$ consist of pairwise nonintersecting intervals lying on the segment [0, $\pi / 2$).

For each $k \in N_{0}$ and $m \in\left[1, m_{k}\right]$ choose a rectangle $I_{k, m}$ such that

$$
\begin{align*}
& \left|I_{k, m}\right|=\frac{\left|E_{k}\right|}{m_{k}} \tag{4.3}\\
& n\left(I_{k, m}\right)=\operatorname{cen} \Delta_{k, m} \tag{4.4}\\
& r\left(I_{k, m}\right) \geq \frac{k}{\sin ^{2}\left|\Delta_{k, m}\right|_{1} / 2} \tag{4.5}
\end{align*}
$$

By virtue of (4.5) and Lemma 1 there exists a rectangle $\mathcal{I}_{k, m}$ such that

$$
\begin{align*}
& \left\{M_{2, \Delta_{k, m}}^{*}\left(k \chi_{I_{k, m}}\right)>1\right\} \subset \mathcal{I}_{k, m} \tag{4.6}\\
& \left|\mathcal{I}_{k, m}\right| \leq c_{1} k\left|I_{k, m}\right| \tag{4.7}\\
& \int_{\mathcal{I}_{k, m}} M_{2, \Delta_{k, m}}^{*}\left(k \chi_{I_{k, m}}\right) \leq 2 c_{2} k \ln k\left|I_{k, m}\right| \tag{4.8}
\end{align*}
$$

Let $\left\{Q_{k, m}\right\}_{k \in N_{0}, m=\overline{1, m_{k}}}$ be a sequence of pairwise rectangular intervals lying on $[0,1]^{2}$ and each having height equal to 1 , and

$$
\begin{equation*}
\left|Q_{k, m}\right|=\left|\mathcal{I}_{k, m}\right|, \quad k \in N_{0}, \quad m=\overline{1, m_{k}} \tag{4.9}
\end{equation*}
$$

(such a sequence exists by virtue of (4.1), (4.3) and (4.7)).
For each $k \in N_{0}$ and $m \in\left[1, m_{k}\right]$ we complete the rectangle $Q_{k, m}$ with pairwise nonintersecting rectangles $\left\{\mathcal{I}_{k, m, q}\right\}$ which are homothetic to the rectangle $\mathcal{I}_{k, m}$, i.e., we have

$$
\begin{equation*}
\mathcal{I}_{k, m, q}=P_{k, m, q}\left(\mathcal{I}_{k, m}\right) \tag{4.10}
\end{equation*}
$$

where $P_{k, m, q}$ is the homothety $(q \in \mathbb{N})$;

$$
\begin{align*}
& \mathcal{I}_{k, m, q} \subset Q_{k, m}, \quad q \in \mathbb{N} \tag{4.11}\\
& \mathcal{I}_{k, m, q} \cap \mathcal{I}_{k, m, q^{\prime}}=\varnothing, \quad q \neq q^{\prime} \tag{4.12}\\
& \left|Q_{k, m} \backslash \bigcup_{q \in \mathbb{N}} \mathcal{I}_{k, m, q}\right|=0 \tag{4.13}
\end{align*}
$$

Let $I_{k, m, q}:=P_{k, m, q}\left(I_{k, m}\right), k \in N_{0}, m=\overline{1, m_{k}}, q \in \mathbb{N}$. Clearly,

$$
\begin{equation*}
\sum_{q \in \mathbb{N}}\left|I_{k, m, q}\right|=\left|I_{k, m}\right|=\frac{\left|E_{k}\right|}{m_{k}}, \quad k \in N_{0}, \quad m \in\left[1, m_{k}\right] \tag{4.14}
\end{equation*}
$$

Since $P_{k, m, q}$ is a homotopy, by (4.6)-(4.8) we conclude that for each $k \in N_{0}$, $m \in\left[1, m_{k}\right]$, and $q \in \mathbb{N}$

$$
\begin{align*}
& \left\{M_{2, \Delta_{k, m}}^{*}\left(k \chi_{I_{k, m, q}}\right)>1\right\} \subset \mathcal{I}_{k, m, q} \tag{4.15}\\
& \left|\mathcal{I}_{k, m, q}\right| \leq c_{1} k\left|I_{k, m, q}\right| \tag{4.16}\\
& \quad \int_{\mathcal{I}_{k, m, q}} M_{2, \Delta_{k, m}}^{*}\left(k \chi_{I_{k, m, q}}\right) \leq 2 c_{2} k \ln k\left|I_{k, m, q}\right| \tag{4.17}
\end{align*}
$$

We introduce the notation $g_{k, m}:=\sup _{q \in \mathbb{N}}\left(k \chi_{I_{k, m, q}}\right), k \in N_{0}, m_{0}=\overline{1, m_{k}}$, and $g:=\sup \left\{g_{k, m}: k \in N_{0}, m \in\left[1, m_{k}\right]\right\}$. Let us prove that $g \in A$.

It is assumed that $\theta \in[0, \pi / 2)$ is an arbitrary fixed number. Two cases are possible:
(a) $\theta \in \underset{k, m}{\cup} \Delta_{k, m}$;
(b) $\theta \notin \underset{k, m}{\cup} \Delta_{k, m}$;
(a) Let $\theta \in \Delta_{k(\theta), m(\theta)}$. We introduce the notation $T:=\{(k, m, q): k \in$ $\left.N_{0}, m \in\left[1, m_{k}\right], q \in \mathbb{N},(k, m) \neq(k(\theta), m(\theta))\right\}$.

Since $\theta \notin \Delta_{k, m}$ for $(k, m) \neq(k(\theta), m(\theta))$, by the definition of $M_{2, \Delta}^{*}$ and (4.15) we obtain

$$
\begin{gathered}
\left\{M_{2, \theta}\left(k \chi_{I_{k, m, q}}\right)>1\right\} \subset\left\{M_{2, \Delta_{k, m}}^{*}\left(k \chi_{I_{k, m, q}}\right)>1\right\} \subset \mathcal{I}_{k, m, q}, \\
(k, m, q) \in T .
\end{gathered}
$$

Hence by (4.12) and Lemma 4 we conclude that

$$
\begin{align*}
& \left\{M_{2, \theta}\left(g-g_{k(\theta), m(\theta)}\right)>1\right\} \subset \bigcup_{(k, m, q) \in T} \mathcal{I}_{k, m, q} \tag{4.18}\\
& M_{2, \theta}\left(g-g_{k(\theta), m(\theta)}\right)(z) \leq M_{2, \theta}\left(k \chi_{I_{k, m, q}}\right)(z)+1 \\
& \text { for } z \in \mathcal{I}_{k, m, q}, \quad(k, m, q) \in T \tag{4.19}
\end{align*}
$$

On account of (4.14) and (4.16)-(4.19) we write

$$
\begin{align*}
& \quad \int_{\left\{M_{2, \theta}\left(g-g_{k(\theta), m(\theta)}\right)>1\right\}} M_{2, \theta}\left(g-g_{k(\theta), m(\theta)}\right) \leq \\
& \leq \sum_{(k, m, q) \in T_{\mathcal{I}_{k, m, q}}} \int_{2, \theta} M_{2, \theta}\left(g-g_{k(\theta), m(\theta)}\right) \leq \\
& \leq \sum_{(k, m, q) \in T_{\mathcal{I}_{k, m, q}}}\left[M_{2, \theta}\left(k \chi_{I_{k, m, q}}\right)+1\right] \leq \\
& \leq \sum_{(k, m, q) \in T}\left[2 c_{2} k \ln k\left|I_{k, m, q}\right|+\left|\mathcal{I}_{k, m, q}\right|\right] \leq \\
& \leq 1+\sum_{k \in N_{0}} 2 c_{2} k \ln k\left|E_{k}\right| \leq 1+8 c_{2}\left\|f \ln ^{+} f\right\|_{1} \tag{4.20}
\end{align*}
$$

By (4.2), (4.14) and Lemma 3 we have

$$
\begin{gather*}
\int_{\left\{M_{2, \theta}\left(g_{k(\theta), m(\theta))}>1\right\}\right.} M_{2, \theta}\left(g_{k(\theta), m(\theta)}\right) \leq c_{4} \int_{\mathbb{R}^{2}} g_{k(\theta), m(\theta)}\left(1+\ln ^{+} g_{k(\theta), m(\theta)}\right)^{2}= \\
=c_{4} \sum_{q \in \mathbb{N}} k(\theta)(1+\ln k(\theta))^{2}\left|I_{k(\theta), m(\theta), q}\right|= \\
=c_{4} k(\theta)(1+\ln k(\theta))^{2} \frac{\left|E_{k(\theta)}\right|}{m_{k(\theta)}} \leq 4 c_{4} \tag{4.21}
\end{gather*}
$$

From the construction we easily find that

$$
\begin{gather*}
\|\left(g-g_{k(\theta), m(\theta)}\right)\left(1+\ln ^{+}\left(g-g_{k(\theta), m(\theta)}\right) \|_{1} \leq\right. \\
\leq\left\|g\left(1+\ln ^{+} g\right)\right\|_{1} \leq 4\left\|f \ln ^{+} f\right\|_{1} \tag{4.22}
\end{gather*}
$$

Analogously,

$$
\begin{equation*}
\left\|g_{k(\theta), m(\theta)}\left(1+\ln ^{+} g_{k(\theta), m(\theta)}\right)\right\|_{1} \leq 4\left\|f \ln ^{+} f\right\|_{1} \tag{4.23}
\end{equation*}
$$

Using the representation $g=\left(g-g_{k(\theta), m(\theta)}\right)+g_{k(\theta), m(\theta)}$, by virtue of (4.20)-(4.23) and Lemma 5 we obtain

$$
\begin{gather*}
\int_{\left\{M_{2, \theta}(g)>1\right\}} M_{2, \theta}(g) \leq \\
\leq c_{5}\left(1+8 c_{2}\left\|f \ln ^{+} f\right\|_{1}+4 c_{4}\right)+8\left\|f \ln ^{+} f\right\|_{1} c_{6} \tag{4.24}
\end{gather*}
$$

In proving the case (b) we have no "dangerous" term $g_{k(\theta), m(\theta)}$ and therefore, applying the same reasoning as for (4.20), we can write

$$
\begin{gathered}
\int_{\left\{M_{2, \theta}(g)>1\right\}} M_{2, \theta}(g) \leq \\
\left.\leq \sum_{(k, m, q) \in T_{0} \mathcal{I}_{k, m, q}} \int_{2, \theta} M_{2}(g) \leq \sum_{(k, m, q) \in T_{0} \mathcal{I}_{k, m, q}} \int M_{2, \theta}\left(k \chi_{I_{k, m, q}}\right)+1\right] \leq \\
\leq \sum_{(k, m, q) \in T_{0}}\left[2 c_{2} k \ln k\left|I_{k, m, q}\right|+\left|\mathcal{I}_{k, m, q}\right|\right] \leq \\
\leq 1+\sum_{k \in N_{0}} 2 c_{2} k \ln k\left|E_{k}\right| \leq 1+8 c_{2}\left\|f \ln ^{+} f\right\|
\end{gathered}
$$

$$
\begin{equation*}
\text { where } T_{0}:=\left\{(k, m, q): k \in N_{0}, m=\overline{1, m_{k}}, q \in \mathbb{N}\right\} \tag{4.25}
\end{equation*}
$$

Since $\theta \in[0, \pi / 2)$ was chosen arbitrarily, by virtue of (4.24) and (4.25) we conclude that $g \in A$.

We shall now find the desired mapping of ω. From the construction it easily follows that

$$
\begin{align*}
& E_{k} \cap E_{k^{\prime}}=\varnothing, \quad k \neq k^{\prime}, \tag{4.26}\\
& \left(\bigcup_{(m, q) \in T_{k}} I_{k, m, q}\right) \bigcap\left(\bigcup_{(m, q) \in T_{k^{\prime}}} I_{k^{\prime}, m, q}\right)=\varnothing, \quad k=k^{\prime}, \tag{4.27}
\end{align*}
$$

where $T_{k}:=\left\{(m, q): m \in\left[1, m_{k}\right], q \in \mathbb{N}\right\}$ for $k \in N_{0}$;

$$
\begin{align*}
& \left|E_{k}\right|=\left|\bigcup_{(m, q) \in T_{k}} I_{k, m, q}\right|>0, \quad k \in N_{0} \tag{4.28}\\
& \left|\{f>1\} \backslash \bigcup_{k \in N_{0}} E_{k}\right|=\left|(0,1)^{2} \backslash \bigcup_{(k, m, q) \in T_{0}} I_{k, m, q}\right|>0 \tag{4.29}
\end{align*}
$$

By conditions (4.26)-(4.29) and one familiar result on measure-preserving transformations (see, e.g., [11, Chapter: Uniform Approximation]) we conclude that there exists a Lebesgue measure preserving an invertible mapping
$\omega: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that

$$
\begin{align*}
& \omega\left(\bigcup_{(m, q) \in T_{k}} I_{k, m, q}\right)=E_{k}, \quad k \in N_{0} \tag{4.30}\\
& \omega\left((0,1)^{2} \backslash \bigcup_{(k, m, q) \in T_{0}} I_{k, m, q}\right)=\{f>1\} \backslash \bigcup_{k \in N_{0}} E_{k} \tag{4.31}\\
& \omega\left(\mathbb{R}^{2} \backslash(0,1)^{2}\right)=\{f \leq 1\} \tag{4.32}
\end{align*}
$$

(4.30) and (4.31) clearly imply

$$
\begin{equation*}
\{f \circ \omega>1\}=\omega^{-1}(\{f>1\})=(0,1)^{2} . \tag{4.33}
\end{equation*}
$$

From the construction and conditions (4.30)-(4.32) we obtain

$$
\begin{aligned}
& (f \circ \omega) \chi_{k \in N_{0}}^{\cup} E_{k} \leq g \\
& (f \circ \omega) \chi_{\mathbb{R}^{2} \backslash \underset{k \in N_{0}}{\cup} E_{k}} \in L\left(1+\ln ^{+} L\right)^{2}\left(\mathbb{R}^{2}\right)
\end{aligned}
$$

Hence, taking into account $f \circ \omega=(f \circ \omega) \chi_{k \in N_{0}}^{\cup} E_{k}+(f \circ \omega) \chi_{\mathbb{R}^{2} \backslash}^{k \in N_{0}} E_{k}$, inclusions $g \in A$, and Lemmas 3 and 6 , we conclude that $f \circ \omega \in A$, i.e.,

$$
\begin{equation*}
\sup _{\theta \in[0, \pi / 2)} \int_{\left\{M_{2, \theta}(f \circ \omega)>1\right\}} M_{2, \theta}(f \circ \omega)<\infty \tag{4.34}
\end{equation*}
$$

By (4.33) and (4.34) ω is the desired mapping.

5. Remarks

Remark 1. On overcoming certain technical difficulties, we can prove by a technique similar to that used to prove Theorem 1 the following generalization.

Theorem 2. Let a function $f \notin L\left(1+\ln ^{+} L\right)^{2}\left(\mathbb{R}^{2}\right), f \in L\left(1+\ln ^{+} L\right)\left(\mathbb{R}^{2}\right)$. It is assumed that a set $G_{1},\left|G_{1}\right|>0$, is such that $f \chi_{\mathbb{R}^{2} \backslash G_{1}} \in L(1+$ $\left.\ln ^{+} L\right)^{2}\left(\mathbb{R}^{2}\right)$. Then for any set $G_{2},\left|G_{2}\right|=\left|G_{1}\right|$, there exists a Lebesgue measure preserving an invertible mapping $\omega: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that

1. $\omega\left(G_{1}\right)=G_{2}$,
2. $\{z: \omega(z) \neq z\} \subset G_{1} \cup G_{2}$,
3. $\sup _{\theta \in[0, \pi / 2)} \int_{\left\{M_{2, \theta}(f \circ \omega)>1\right\}} M_{2, \theta}(f \circ \omega)<\infty$.

Theorem 2 yields as a corollary

Theorem 3. Let a function $f \notin L\left(1+\ln ^{+} L\right)^{2}\left(\mathbb{R}^{2}\right), f \in L\left(1+\ln ^{+} L\right)\left(\mathbb{R}^{2}\right)$. It is assumed that a set G is such that $f \chi_{\mathbb{R}^{2} \backslash G} \in L\left(1+\ln ^{+} L\right)^{2}\left(\mathbb{R}^{2}\right)$. Then there exists a Lebesgue measure preserving an invertible mapping $\omega: \mathbb{R}^{2} \rightarrow$ \mathbb{R}^{2} such that

1. $\{z: \omega(z) \neq z\} \subset G$,
2. $\sup _{\theta \in[0, \pi / 2)} \int_{\left\{M_{2, \theta}(f \circ \omega)>1\right\}} M_{2, \theta}(f \circ \omega)<\infty$.

Remark 2. Let X be a set and R an equivalence relation on X. A subset $Y \subset X$ will be called an R-set if the fact that $y \in Y$ implies that $[y]_{R} \subset Y$, where $[y]_{R}$ denotes a set of all elements from $X R$-equaivalent to y. The following problem is posed in [6]: Given an equivalence relation R on the set X, characterize the set $E \subset X$ from the standpoint of R, i.e., give in explicit terms the kernel $\underline{E}(R)$ (the greatest R-set contained in E) and the hull $\bar{E}(R)$ (the least R-set containing E).

Consider an arbitrary set $G \subset \mathbb{R}^{2}$ and choose $|G|>0, X_{G}, R_{G}$ and E_{G} in the following manner: $X_{G}:=\left\{f \in L\left(\mathbb{R}^{2}\right)\right.$, supp $\left.f \subset G\right\}, E_{G}:=$ $\left\{f \in X_{G}, f \in A\right\}, f$ and $g \in R_{G}$ will be called R_{G}-equivalent if there exists a Lebesgue measure preserving an invertible mapping $\omega: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, $\{z: \omega(z) \neq z\} \subset G$, such that $g=f \circ \omega$.

Let us agree that $\varphi(L)(G)$ denotes a class of functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with the following properties: $\operatorname{supp} f \subset G, \int_{G} \varphi(|f|)<\infty$. One can easily show that $\underline{E}_{G}\left(R_{G}\right)=L\left(1+\ln ^{+} L\right)^{2}(G)$, while by virtue of (2.3) and Theorem 3 we have the equality $\bar{E}_{G}\left(R_{G}\right)=L\left(1+\ln ^{+} L\right)(G)$. Thus the next theorem is valid.

Theorem 4. For each $G \subset \mathbb{R}^{2},|G|>0$, we have

$$
\underline{E}_{G}\left(R_{G}\right)=L\left(1+\ln ^{+} L\right)^{2}(G) \quad \text { and } \quad \bar{E}_{G}\left(R_{G}\right)=L\left(1+\ln ^{+} L\right)(G)
$$

Aknowledgment

The author wishes to express his thanks to T. Zerekidze for useful hints and discussions.

References

1. M. de Guzmán, Differentiation of integrals in \mathbb{R}^{n}. Lecture Notes in Mathematics 481, Springer, 1975.
2. M. de Guzmán and G. V. Welland, On the differentiation of integrals. Rev. Un. Mat. Argentina 25(1971), 253-276.
3. G. H. Hardy and J. E. Littlewood, A maximal theorem with functiontheoretic applications. Acta Math. 54(1930), 81-116.
4. N. Wiener, The ergodic theorem. Duke Math. J. 5(1939), 1-18.
5. E. M. Stein, Note on class $L \log L$. Studia Math. 31(1969), 305-310.
6. O. D. Tsereteli, On the inversion of some Hardy and Littlewood theorems. (Russian) Bull. Acad. Sci. Georgian SSR 56(1969), No. 2, 269-271.
7. O. D. Tsereteli, A metric characteristic of the set of functions whose maximal functions are summable. (Russian) Trudy Tbilissk. Mat. Inst. 42(1972), 104-118.
8. L. D. Gogoladze, The Hardy-Littlewood maximal functions. (Russian) Bull. Acad. Sci. Georgian SSR 111(1983), 257-259.
9. L. D. Gogoladze, On the summation of multiple trigonometric series and conjugate functions. (Russian) Dissertation for the Doctor of Science Degree, Tbilisi, 1984.
10. R. J. Bagby, A note on the strong maximal function. Proc. Amer. Math. Soc. 88(1983), 648-650.
11. P. R. Halmos, Lectures on the ergodic theory. Math. Soc. Japan, Tokyo, 1956.
(Received 23.05.1994)
Author's address:
Faculty of Mechanics and Mathematics
I. Javakhishvili Tbilisi State University

2, University St., Tbilisi 380043
Republic of Georgia

[^0]: 1991 Mathematics Subject Classification. 28A15.
 Key words and phrases. Strong maximal operators, different frames, regularity factor of a rectangle.

