ON THE NON-COMMUTATIVE NEUTRIX PRODUCT
 $\left(x_{+}^{r} \ln x_{+}\right) \circ x_{-}^{-s}$

ADEM KILIÇMAN AND BRIAN FISHER

Abstract

The non-commutative neutrix product of the distributions $x_{+}^{r} \ln x_{+}$and x_{-}^{-s} is evaluated for $r=0,1,2, \ldots$ and $s=$ $1,2, \ldots$ Further neutrix products are then deduced.

In the following, we let N be the neutrix (see van der Corput [1]) having domain $N^{\prime}=\{1,2, \ldots, n, \ldots\}$ and range the real numbers, with negligible functions finite linear sums of the functions $n^{\lambda} \ln ^{r-1} n, \ln ^{r} n, \lambda>0, r=$ $1,2, \ldots$, and all functions which converge to zero in the normal sense as n tends to infinity.

We now let $\rho(x)$ be any infinitely differentiable function having the following properties:
(i) $\rho(x)=0$ for $|x| \geq 1$,
(ii) $\rho(x) \geq 0$,
(iii) $\rho(x)=\rho(-x)$,
(iv) $\int_{-1}^{1} \rho(x) d x=1$.

Putting $\delta_{n}(x)=n \rho(n x)$ for $n=1,2, \ldots$, it follows that $\left\{\delta_{n}(x)\right\}$ is a regular sequence of infinitely differentiable functions converging to the Dirac deltafunction $\delta(x)$.

Now let \mathcal{D} be the space of infinitely differentiable functions with compact support and let \mathcal{D}^{\prime} be the space of distributions defined on \mathcal{D}. Then if f is an arbitrary distribution in \mathcal{D}^{\prime}, we define $f_{n}(x)=\left(f * \delta_{n}\right)(x)=\left\langle f(t), \delta_{n}(x-t)\right\rangle$ for $n=1,2, \ldots$. It follows that $\left\{f_{n}(x)\right\}$ is a regular sequence of infinitely differentiable functions converging to the distribution $f(x)$.

A first extension of the product of a distribution and an infinitely differentiable function is the following (see for example [2] or [3]).

[^0]Definition 1. Let f and g be distributions in \mathcal{D}^{\prime} for which on the interval $(a, b), f$ is the k th derivative of a locally summable function F in $L^{p}(a, b)$ and $g^{(k)}$ is a locally summable function in $L^{q}(a, b)$ with $1 / p+1 / q=1$. Then the product $f g=g f$ of f and g is defined on the interval (a, b) by

$$
f g=\sum_{i=0}^{k}\binom{k}{i}(-1)^{i}\left[F g^{(i)}\right]^{(k-i)}
$$

The following definition for the neutrix product of two distributions was given in [4] and generalizes Definition 1.

Definition 2. Let f and g be distributions in \mathcal{D}^{\prime} and let $g_{n}(x)=(g *$ $\left.\delta_{n}\right)(x)$. We say that the neutrix product $f \circ g$ of f and g exists and is equal to the distribution h on the interval (a, b) if

$$
\underset{n \rightarrow \infty}{N-\lim _{\infty}}\left\langle f(x) g_{n}(x), \phi(x)\right\rangle=\langle h(x), \phi(x)\rangle^{1}
$$

for all functions ϕ in \mathcal{D} with support contained in the interval (a, b).
Note that if

$$
\lim _{n \rightarrow \infty}\left\langle f(x) g_{n}(x), \phi(x)\right\rangle=\langle h(x), \phi(x)\rangle
$$

we simply say that the product f.g exists and equals h (see [4]).
It is obvious that if the product $f . g$ exists then the neutrix product $f \circ g$ exists and $f . g=f \circ g$. Further, it was proved in [4] that if the product $f g$ exists by Definition 1 then the product $f . g$ exists by Definition 2 and $f g=f . g$. Note also that although the product defined in Definition 1 is always commutative, the product and neutrix product defined in Definition 2 is in general non-commutative.

The following theorem holds (see [5]).
Theorem 1. Let f and g be distributions in \mathcal{D}^{\prime} and suppose that the neutrix products $f \circ g^{(i)}\left(\right.$ or $\left.f^{(i)} \circ g\right)$ exist on the interval (a, b) for $i=$ $0,1,2, \ldots, r$. Then the neutrix products $f^{(k)} \circ g\left(\right.$ or $\left.f \circ g^{(k)}\right)$ exist on the interval (a, b) for $k=1,2, \ldots, r$ and

$$
\begin{equation*}
f^{(k)} \circ g=\sum_{i=0}^{k}\binom{k}{i}(-1)^{i}\left[f \circ g^{(i)}\right]^{(k-i)} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
f \circ g^{(k)}=\sum_{i=0}^{k}\binom{k}{i}(-1)^{i}\left[f^{(i)} \circ g\right]^{(k-i)} \tag{2}
\end{equation*}
$$

on the interval (a, b) for $k=1,2, \ldots, r$.

[^1]In the next two theorems, which were proved in [5] and [6] respectively, the distributions x_{+}^{-r} and x_{-}^{-r} are defined by

$$
x_{+}^{-r}=\frac{(-1)^{r-1}}{(r-1)!}\left(\ln x_{+}\right)^{(r)}, \quad x_{-}^{-r}=-\frac{1}{(r-1)!}\left(\ln x_{-}\right)^{(r)},
$$

for $r=1,2, \ldots$ and not as in the book of Gel'fand and Shilov [7].
Theorem 2. The neutrix products $x_{+}^{r} \circ x_{-}^{-s}$ and $x_{-}^{-s} \circ x_{+}^{r}$ exist and

$$
\begin{align*}
& x_{+}^{r} \circ x_{-}^{-s}=x_{+}^{r} x_{-}^{-s}=0, \tag{3}\\
& x_{-}^{-s} \circ x_{+}^{r}=x_{-}^{-s} x_{+}^{r}=0 \tag{4}
\end{align*}
$$

for $r=s, s+1, \ldots$ and $s=1,2, \ldots$ and

$$
\begin{align*}
& x_{+}^{r} \circ x_{-}^{-s}=\sum_{i=r+1}^{s}\binom{s}{i} \frac{(-1)^{i-1} r!}{(s-1)!} c_{1}(\rho) \delta^{(s-r-1)}(x), \tag{5}\\
& x_{-}^{-s} \circ x_{+}^{r}=\sum_{i=r+1}^{s}\binom{s}{i} \frac{(-1)^{i-1} r!}{(s-1)!}\left[c_{1}(\rho)+\frac{1}{2} \psi(i-r-1)\right] \delta^{(s-r-1)}(x) \tag{6}
\end{align*}
$$

for $r=0,1, \ldots, s-1$ and $s=1,2, \ldots$, where

$$
c_{1}(\rho)=\int_{0}^{1} \ln t \rho(t) d t, \quad \psi(r)=\left\{\begin{array}{cc}
0, & r=0 \\
\sum_{i=1}^{r} i^{-1}, & r \geq 1
\end{array}\right.
$$

Theorem 3. The neutrix products $x_{+}^{-r} \circ x_{-}^{-s}$ and $x_{-}^{-s} \circ x_{+}^{-r}$ exist and

$$
\begin{align*}
& x_{+}^{-r} \circ x_{-}^{-s}=\frac{(-1)^{r} c_{1}(\rho)}{(r+s-1)!} \delta^{(r+s-1)}(x), \tag{7}\\
& x_{-}^{-s} \circ x_{+}^{-r}=\frac{(-1)^{r-1} c_{1}(\rho)}{(r+s-1)!} \delta^{(r+s-1)}(x) \text { for } r, s=1,2, \ldots \tag{8}
\end{align*}
$$

It was shown in [8] that with suitable choice of the function $\rho, c_{1}(\rho)$ can take any negative value.

We now prove the following theorem.
Theorem 4. The neutrix products $\left(x_{+}^{r} \ln x_{+}\right) \circ x_{-}^{-s}$ and $x_{-}^{-s} \circ\left(x_{+}^{r} \ln x_{+}\right)$ exist and

$$
\begin{align*}
& \left(x_{+}^{r} \ln x_{+}\right) \circ x_{-}^{-s}=\left(x_{+}^{r} \ln x_{+}\right) x_{-}^{-s}=0, \tag{9}\\
& x_{-}^{-s} \circ\left(x_{+}^{r} \ln x_{+}\right)=x_{-}^{-s}\left(x_{+}^{r} \ln x_{+}\right)=0 \tag{10}
\end{align*}
$$

for $r=s, s+1, s+2 \ldots$ and $s=1,2, \ldots$ and

$$
\begin{align*}
\left(x_{+}^{r} \ln x_{+}\right) \circ x_{-}^{-s} & =\frac{(-1)^{r}}{(s-r-1)!}\left(c_{2}-\frac{\pi^{2}}{12}\right) \delta^{(s-r-1)}(x) \\
& -\sum_{i=r+1}^{s-1} \frac{(-1)^{i} r!c_{1}}{(s-i-1)!i!(i-r)} \delta^{(s-r-1)}(x) \\
& -\psi(r) \sum_{i=r+1}^{s} \frac{(-1)^{i} s r!c_{1}}{i!(s-i)!} \delta^{(s-r-1)}(x) \tag{11}\\
x_{-}^{-s} \circ\left(x_{+}^{r} \ln x_{+}\right) & =\frac{(-1)^{r}}{(s-r-1)!}\left(c_{2}-\frac{\pi^{2}}{12}\right) \delta^{(s-r-1)}(x) \\
- & \sum_{i=r+1}^{s-1} \frac{(-1)^{i} r!c_{1}}{(s-i-1)!i!(i-r)} \delta^{(s-r-1)}(x) \\
- & \psi(r) \sum_{i=r+1}^{s} \frac{(-1)^{i} s r!}{i!(s-i)!}\left[c_{1}+\frac{1}{2} \psi(i-r-1)\right] \delta^{(s-r-1)}(x) \tag{12}
\end{align*}
$$

for $r=0,1,2, \ldots, s-1$ and $s=1,2 \ldots$, where

$$
c_{2}(\rho)=\int_{0}^{1} \ln ^{2} t \rho(t) d t
$$

Proof. We first of all prove that

$$
\begin{equation*}
\ln x_{+} \circ x_{-}^{-1}=\left(c_{2}-\frac{\pi^{2}}{12}\right) \delta(x) \tag{13}
\end{equation*}
$$

We put $\left(x_{-}^{-1}\right)_{n}=x_{-}^{-1} * \delta_{n}(x)$ so that

$$
\left(x_{-}^{-1}\right)_{n}=-\int_{x}^{1 / n} \ln (t-x) \delta_{n}^{\prime}(t) d t
$$

on the interval $[0,1 / n]$, the intersection of the supports of $\ln x_{+}$and $\left(x_{-}^{-1}\right)_{n}$. Then

$$
\begin{aligned}
\left\langle\ln x_{+},\left(x_{-}^{-1}\right)_{n}\right\rangle & =-\int_{0}^{1 / n} \ln x \int_{x}^{1 / n} \ln (t-x) \delta_{n}^{\prime}(t) d t d x \\
& =-\int_{0}^{1 / n} \delta_{n}^{\prime}(t) \int_{0}^{t} \ln x \ln (t-x) d x d t \\
& =-\int_{0}^{1} \rho^{\prime}(u) \int_{0}^{u}[\ln v-\ln n][\ln (u-v)-\ln n] d v d u
\end{aligned}
$$

on making the substitutions $n t=u$ and $n x=v$. It follows that

$$
\begin{align*}
& N \underset{n \rightarrow \infty}{N-} \lim \left\langle\ln x_{+},\left(x_{-}^{-1}\right)_{n}\right\rangle=-\int_{0}^{1} \rho^{\prime}(u) \int_{0}^{u} \ln v \ln (u-v) d v d u \\
& =-\int_{0}^{1} u \rho^{\prime}(u) \int_{0}^{1}[\ln u+\ln y][\ln u+\ln (1-y)] d y d u \tag{14}
\end{align*}
$$

on making the substitution $v=u y$.
Now

$$
\begin{aligned}
\int_{0}^{1} \ln y d y & =\int_{0}^{1} \ln (1-y) d y=-1 \\
\int_{0}^{1} \ln y \ln (1-y) d y & =-\int_{0}^{1} \ln (1-y) d y+\int_{0}^{1} \frac{y \ln y}{1-y} d y \\
& =1+\sum_{i=1}^{\infty} \int_{0}^{1} y^{i} \ln y d y=1-\sum_{i=1}^{\infty}(i+1)^{-2}=2-\frac{\pi^{2}}{6} \\
\int_{0}^{1} u \rho^{\prime}(u) d u & =-\int_{0}^{1} \rho(u) d u=-\frac{1}{2} \\
\int_{0}^{1} u \ln u \rho^{\prime}(u) d u & =-\int_{0}^{1}(1+\ln u) \rho(u) d u=-\frac{1}{2}-c_{1} \\
\int_{0}^{1} u \ln ^{2} u \rho^{\prime}(u) d u & =-\int\left(2 \ln u+\ln ^{2} u\right) \rho(u) d u=-2 c_{1}-c_{2}
\end{aligned}
$$

and it follows from these equations and equation (14) that

$$
\begin{equation*}
\underset{n \rightarrow \infty}{N-\lim _{n}}\left\langle\ln x_{+},\left(x_{-}^{-1}\right)_{n}\right\rangle=c_{2}-\frac{\pi^{2}}{12} \tag{15}
\end{equation*}
$$

Further, it follows as above that

$$
\begin{aligned}
& \left\langle\ln x_{+}, x\left(x_{-}^{-1}\right)_{n}\right\rangle=-\int_{0}^{1 / n} x \ln x \int_{x}^{1 / n} \ln (t-x) \delta_{n}^{\prime}(t) d t d x \\
& =-n^{-1} \int_{0}^{1} \rho^{\prime}(u) \int_{0}^{u} v[\ln v-\ln n][\ln (u-v)-\ln u] d v d u \\
& =O\left(n^{-1} \ln n\right)
\end{aligned}
$$

Now let ϕ be an arbitrary function in \mathcal{D}. Then $\phi(x)=\phi(0)+x \phi^{\prime}(\xi x)$, where $0<\xi<1$. It follows that

$$
\begin{align*}
\left\langle\ln x_{+}\left(x_{-}^{-1}\right)_{n}, \phi(x)\right\rangle-\phi(0)\left\langle\ln x_{+},\left(x_{-}^{-1}\right)_{n}\right\rangle & =\left\langle\ln x_{+}, x\left(x_{-}^{-1}\right)_{n} \phi^{\prime}(\xi x)\right\rangle \\
& =O\left(n^{-1} \ln n\right) \tag{16}
\end{align*}
$$

since $\left\langle\ln x_{+}, x\left(x_{-}^{-1}\right)_{n}\right\rangle=O\left(n^{-1} \ln n\right)$. Thus

$$
\underset{n \rightarrow \infty}{N-\lim }\left\langle\ln x_{+}\left(x_{-}^{-1}\right)_{n}, \phi(x)\right\rangle=\underset{n \rightarrow \infty}{N-\lim } \phi(0)\left\langle\ln x_{+},\left(x_{-}^{-1}\right)_{n}\right\rangle=\left(c_{2}-\frac{\pi^{2}}{12}\right) \phi(0)
$$

on using equations (15) and (16). Equation (9) follows.
We now define the function $f\left(x_{+}, r\right)$ by

$$
f\left(x_{+}, r\right)=\frac{x_{+}^{r} \ln x_{+}-\psi(r) x_{+}^{r}}{r!}
$$

and it follows easily by induction that $f^{(i)}\left(x_{+}, r\right)=f\left(x_{+}, r-i\right)$, for $i=$ $0,1, \ldots, r$. In particular, $f^{(r)}\left(x_{+}, r\right)=\ln x_{+}$, so that

$$
f^{(i)}\left(x_{+}, r\right)=(-1)^{i-r-1}(i-r-1)!x_{+}^{-i+r},
$$

for $i=r+1, r+2, \ldots$. Now the product of the functions x_{+}^{i} and $x_{+}^{i} \ln x_{+}$ and the distribution x_{-}^{-1} exists by Definition 1 and it is easily seen that

$$
\begin{equation*}
x_{+}^{i} x_{-}^{-1}=\left(x_{+}^{i} \ln x_{+}\right) x_{-}^{-1}=0, \tag{17}
\end{equation*}
$$

for $i=1,2, \ldots, r$. Using equation (13) we have

$$
\begin{equation*}
f^{(r)}\left(x_{+}, r\right) \circ x_{-}^{-1}=\left(c_{2}-\frac{\pi^{2}}{12}\right) \delta(x) \tag{18}
\end{equation*}
$$

and using equation (7) we have

$$
\begin{equation*}
f^{(i)}\left(x_{+}, r\right) \circ x_{-}^{-1}=-\frac{c_{1}}{i-r} \delta^{(i-r)}(x) \tag{19}
\end{equation*}
$$

for $i=r+1, r+2, \ldots$.
Using equations (2) and (17) we now have

$$
\begin{aligned}
(s-1)!f\left(x_{+}, r\right) x_{-}^{-s} & =\sum_{i=0}^{s-1}\binom{s-1}{i}(-1)^{i}\left[f^{(i)}\left(x_{+}, r\right) x_{-}^{-1}\right]^{(s-i-1)} \\
& =\frac{(s-1)!}{r!}\left[x_{+}^{r} \ln x_{+}-\psi(r) x_{+}^{r}\right] x_{-}^{-s}=0,
\end{aligned}
$$

for $r=s, s+1, s+2, \ldots$ and $s=1,2, \ldots$ Equations (9) follow on using equations (3).

When $r<s$ we have

$$
\begin{aligned}
(s-1)!f\left(x_{+}, r\right) \circ x_{-}^{-s} & =\sum_{i=r}^{s-1}\binom{s-1}{i}(-1)^{i}\left[f^{(i)}\left(x_{+}, r\right) \circ x_{-}^{-1}\right]^{(s-i-1)} \\
& =\binom{s-1}{r}(-1)^{r}\left(c_{2}-2+\frac{\pi^{2}}{12}\right) \delta^{(s-r-1)}(x)+
\end{aligned}
$$

$$
-\sum_{i=r+1}^{s-1}\binom{s-1}{i} \frac{(-1)^{i} c_{1}}{i-r} \delta^{(s-r-1)}(x)
$$

on using equations (2), (17), (18) and (19). It now follows that

$$
\left(x_{+}^{r} \ln x_{+}\right) \circ x_{-}^{-s}=r!f\left(x_{+}, r\right) \circ x_{-}^{-s}+\psi(r) x_{+}^{r} \circ x_{-}^{-s}
$$

and equation (11) follows on using equation (5).
We now consider the product $x_{-}^{-s} \circ\left(x_{+}^{-r} \ln x_{+}\right)$. The product $\ln x_{-} \ln x_{+}$ exists by Definition 1 and $\ln x_{-} \ln x_{+}=0$. Differentiating, we get

$$
\begin{equation*}
x_{-}^{-1} \circ \ln x_{+}=\ln x_{-} \circ x_{+}^{-1}=\left(c_{2}-\frac{\pi^{2}}{12}\right) \delta(x) \tag{20}
\end{equation*}
$$

on replacing x by $-x$ in equation (13).
As above, we have

$$
\begin{equation*}
x_{-}^{-1} x_{+}^{i}=x_{-}^{-1}\left(x_{+}^{i} \ln x_{+}\right)=0 \tag{21}
\end{equation*}
$$

for $i=0,1, \ldots, r-1$. Using equation (20) we have

$$
\begin{equation*}
x_{-}^{-1} \circ f^{(r)}\left(x_{+}, r\right)=\left(c_{2}-\frac{\pi^{2}}{12}\right) \delta(x) \tag{22}
\end{equation*}
$$

and using equation (8) we have

$$
\begin{equation*}
x_{-}^{-1} \circ f^{(i)}\left(x_{+}, r\right)=\frac{c_{1}}{i-r} \delta^{(i-r)}(x) \tag{23}
\end{equation*}
$$

for $i=r+1, r+2, \ldots$ Equations (10) follow as above on using equations (1) and (21) and equations (12) follow on using equations (1), (6), (20), (21), (22), and (23).

Corollary. The neutrix products $\left(x_{-}^{-r} \ln x_{-}\right) \circ x_{+}^{-s}$ and $x_{+}^{-s} \circ\left(x_{-}^{r} \ln x_{-}\right)$ exist and

$$
\begin{aligned}
& \left(x_{-}^{r} \ln x_{-}\right) \circ x_{+}^{-s}=\left(x_{-}^{-r} \ln x_{-}\right) x_{+}^{-s}=0, \\
& x_{+}^{-s} \circ\left(x_{-}^{r} \ln x_{-}\right)=x_{+}^{-s}\left(x_{-}^{r} \ln x_{-}\right)=0,
\end{aligned}
$$

for $r=s, s+1, s+2, \ldots$ and $s=1,2, \ldots$ and

$$
\begin{aligned}
\left(x_{-}^{r} \ln x_{-}\right) \circ x_{+}^{-s} & =\frac{(-1)^{s+1}}{(s-r-1)!}\left(c_{2}-\frac{\pi^{2}}{12}\right) \delta^{(s-r-1)}(x) \\
& +\sum_{i=r+1}^{s-1} \frac{(-1)^{s-r+i} r!c_{1}}{(s-i-1)!i!(i-r)} \delta^{(s-r-1)}(x) \\
& +\psi(r) \sum_{i=r+1}^{s} \frac{(-1)^{s-r+i} s r!c_{1}}{i!(s-i)!} \delta^{(s-r-1)}(x)
\end{aligned}
$$

$$
\begin{aligned}
x_{+}^{-s} \circ\left(x_{-}^{r} \ln x_{-}\right) & =\frac{(-1)^{s+1}}{(s-r-1)!}\left(c_{2}-\frac{\pi^{2}}{12}\right) \delta^{(s-r-1)}(x) \\
& +\sum_{r+1}^{s-1} \frac{(-1)^{s-r+i} r!c_{1}}{(s-i-1)!i!(i-r)} \delta^{(s-r-1)}(x) \\
& +\psi(r) \sum_{i=r+1}^{s} \frac{(-1)^{s-r+i} s r!}{i!(s-i)!}\left[c_{1}+\frac{1}{2} \psi(i-r-1)\right] \delta^{(s-r-1)}(x)
\end{aligned}
$$

for $r=0,1,2, \ldots, s-1$ and $s=1,2, \ldots$.
Proof. The results follow immediately on replacing x by $-x$ in equations (9), (10), (11), and (12).

References

1. J. G. van der Corput, Introduction to the neutrix calculus. J. Analyse Math. 7(1959-60), 291-398.
2. B. Fisher, The product of distributions. Quart. J. Math. Oxford (2) 22(1971), 291-298.
3. B. Fisher, On defining the product of distributions. Math. Nachr. 99(1980), 239-249.
4. B. Fisher, A non-commutative neutrix product of distributions. Math. Nachr. 108(1982), 117-127.
5. B. Fisher, E. Savaş, S. Pehlivan, and E. Özçağ, Results on the noncommutative neutrix product of distributions. Math. Balkanica 7(1993), 347-356.
6. B. Fisher and A. Kiliçman, The non-commutative neutrix product of the distributions x_{+}^{-r} and x_{-}^{-s}. Math. Balkanica (to appear).
7. I. M. Gel'fand and G. E. Shilov, Generalized functions. Vol. I: Properties and operations. Academic Press, New York-London, 1964; Russian original: Fizmatgiz, Moscow, 1958.
8. B. Fisher, Some results on the non-commutative neutrix product of distributions. Trabajos de Matematica 44, Buenos Aires, 1983.
(Received 10.08.1994)
Authors' address:
Department of Mathematics and Computer Science
University of Leicester, Leicester
LE1 7RH, England

[^0]: 1991 Mathematics Subject Classification. 46F10.
 Key words and phrases. Distribution, delta-function, neutrix, neutrix limit, neutrix product.

[^1]: ${ }^{1}$ See [1] or [4] for the definition of N-lim.

