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ON THE NON-COMMUTATIVE NEUTRIX PRODUCT
(xr


+ ln x+) ◦ x−s
−


ADEM KILIÇMAN AND BRIAN FISHER


Abstract. The non-commutative neutrix product of the distribu-
tions xr


+ ln x+ and x−s
− is evaluated for r = 0, 1, 2, . . . and s =


1, 2, . . . . Further neutrix products are then deduced.


In the following, we let N be the neutrix (see van der Corput [1]) having
domain N ′ = {1, 2, . . . , n, . . . } and range the real numbers, with negligible
functions finite linear sums of the functions nλ lnr−1 n, lnr n, λ > 0, r =
1, 2, . . . , and all functions which converge to zero in the normal sense as n
tends to infinity.


We now let ρ(x) be any infinitely differentiable function having the fol-
lowing properties:


(i) ρ(x) =0 for |x| ≥ 1,
(ii) ρ(x) ≥ 0,
(iii) ρ(x) = ρ(−x),


(iv)
∫ 1
−1 ρ(x) dx = 1.


Putting δn(x) = nρ(nx) for n = 1, 2, . . . , it follows that {δn(x)} is a regular
sequence of infinitely differentiable functions converging to the Dirac delta-
function δ(x).


Now let D be the space of infinitely differentiable functions with compact
support and let D′ be the space of distributions defined on D. Then if f is an
arbitrary distribution in D′, we define fn(x) = (f ∗δn)(x) = 〈f(t), δn(x−t)〉
for n = 1, 2, . . . . It follows that {fn(x)} is a regular sequence of infinitely
differentiable functions converging to the distribution f(x).


A first extension of the product of a distribution and an infinitely differ-
entiable function is the following (see for example [2] or [3]).
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Definition 1. Let f and g be distributions inD′ for which on the interval
(a, b), f is the kth derivative of a locally summable function F in Lp(a, b)
and g(k) is a locally summable function in Lq(a, b) with 1/p+1/q = 1. Then
the product fg = gf of f and g is defined on the interval (a, b) by


fg =
k


∑


i=0


(


k
i


)


(−1)i[Fg(i)](k−i).


The following definition for the neutrix product of two distributions was
given in [4] and generalizes Definition 1.


Definition 2. Let f and g be distributions in D′ and let gn(x) = (g ∗
δn)(x). We say that the neutrix product f ◦ g of f and g exists and is equal
to the distribution h on the interval (a, b) if


N - lim
n→∞


〈f(x)gn(x), φ(x)〉 = 〈h(x), φ(x)〉1


for all functions φ in D with support contained in the interval (a, b).


Note that if


lim
n→∞


〈f(x)gn(x), φ(x)〉 = 〈h(x), φ(x)〉,


we simply say that the product f.g exists and equals h (see [4]).
It is obvious that if the product f.g exists then the neutrix product f ◦ g


exists and f.g = f ◦ g. Further, it was proved in [4] that if the product
fg exists by Definition 1 then the product f.g exists by Definition 2 and
fg = f.g. Note also that although the product defined in Definition 1 is
always commutative, the product and neutrix product defined in Definition
2 is in general non-commutative.


The following theorem holds (see [5]).


Theorem 1. Let f and g be distributions in D′ and suppose that the
neutrix products f ◦ g(i) (or f (i) ◦ g) exist on the interval (a, b) for i =
0, 1, 2, . . . , r. Then the neutrix products f (k) ◦ g (or f ◦ g(k)) exist on the
interval (a, b) for k = 1, 2, . . . , r and


f (k) ◦ g =
k


∑


i=0


(


k
i


)


(−1)i[f ◦ g(i)](k−i) (1)


or


f ◦ g(k) =
k


∑


i=0


(


k
i


)


(−1)i[f (i) ◦ g](k−i) (2)


on the interval (a, b) for k = 1, 2, . . . , r.


1See [1] or [4] for the definition of N -lim.
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In the next two theorems, which were proved in [5] and [6] respectively,
the distributions x−r


+ and x−r
− are defined by


x−r
+ =


(−1)r−1


(r − 1)!
(ln x+)(r), x−r


− = − 1
(r − 1)!


(lnx−)(r),


for r = 1, 2, . . . and not as in the book of Gel’fand and Shilov [7].


Theorem 2. The neutrix products xr
+ ◦ x−s


− and x−s
− ◦ xr


+ exist and


xr
+ ◦ x−s


− = xr
+x−s


− = 0, (3)


x−s
− ◦ xr


+ = x−s
− xr


+ = 0 (4)


for r = s, s + 1, . . . and s = 1, 2, . . . and


xr
+ ◦ x−s


− =
s


∑


i=r+1


(


s
i


)


(−1)i−1r!
(s− 1)!


c1(ρ)δ(s−r−1)(x), (5)


x−s
− ◦ xr


+ =
s


∑


i=r+1


(


s
i


)


(−1)i−1r!
(s− 1)!


[c1(ρ)+ 1
2ψ(i−r−1)]δ(s−r−1)(x) (6)


for r = 0, 1, . . . , s− 1 and s = 1, 2, . . . , where


c1(ρ) =
∫ 1


0
ln tρ(t) dt, ψ(r) =


{


0, r = 0,
∑r


i=1 i−1, r ≥ 1.


Theorem 3. The neutrix products x−r
+ ◦ x−s


− and x−s
− ◦ x−r


+ exist and


x−r
+ ◦ x−s


− =
(−1)rc1(ρ)
(r + s− 1)!


δ(r+s−1)(x), (7)


x−s
− ◦ x−r


+ =
(−1)r−1c1(ρ)
(r + s− 1)!


δ(r+s−1)(x) for r, s = 1, 2, . . . . (8)


It was shown in [8] that with suitable choice of the function ρ, c1(ρ) can
take any negative value.


We now prove the following theorem.


Theorem 4. The neutrix products (xr
+ ln x+) ◦x−s


− and x−s
− ◦ (xr


+ ln x+)
exist and


(xr
+ ln x+) ◦ x−s


− = (xr
+ ln x+)x−s


− = 0, (9)


x−s
− ◦ (xr


+ ln x+) = x−s
− (xr


+ ln x+) = 0 (10)
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for r = s, s + 1, s + 2 . . . and s = 1, 2, . . . and


(xr
+ lnx+) ◦ x−s


− =
(−1)r


(s− r − 1)!


(


c2 −
π2


12


)


δ(s−r−1)(x)


−
s−1
∑


i=r+1


(−1)ir!c1


(s− i− 1)!i!(i− r)
δ(s−r−1)(x)


− ψ(r)
s


∑


i=r+1


(−1)isr!c1


i!(s− i)!
δ(s−r−1)(x), (11)


x−s
− ◦ (xr


+ ln x+)=
(−1)r


(s− r − 1)!


(


c2 −
π2


12


)


δ(s−r−1)(x)


−
s−1
∑


i=r+1


(−1)ir!c1


(s− i− 1)!i!(i− r)
δ(s−r−1)(x)


− ψ(r)
s


∑


i=r+1


(−1)isr!
i!(s− i)!


[c1+ 1
2ψ(i−r−1)]δ(s−r−1)(x) (12)


for r = 0, 1, 2, . . . , s− 1 and s = 1, 2 . . . , where


c2(ρ) =
∫ 1


0
ln2 tρ(t) dt.


Proof. We first of all prove that


lnx+ ◦ x−1
− =


(


c2 −
π2


12


)


δ(x). (13)


We put (x−1
− )n = x−1


− ∗ δn(x) so that


(x−1
− )n = −


∫ 1/n


x
ln(t− x)δ′n(t) dt


on the interval [0, 1/n], the intersection of the supports of ln x+ and (x−1
− )n.


Then


〈ln x+, (x−1
− )n〉 = −


∫ 1/n


0
ln x


∫ 1/n


x
ln(t− x)δ′n(t) dt dx


= −
∫ 1/n


0
δ′n(t)


∫ t


0
lnx ln(t− x) dx dt


= −
∫ 1


0
ρ′(u)


∫ u


0
[ln v − lnn][ln(u− v)− ln n] dv du
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on making the substitutions nt = u and nx = v. It follows that


N - lim
n→∞


〈ln x+, (x−1
− )n〉 = −


∫ 1


0
ρ′(u)


∫ u


0
ln v ln(u− v) dv du


= −
∫ 1


0
uρ′(u)


∫ 1


0
[ln u + ln y][lnu + ln(1− y)] dy du (14)


on making the substitution v = uy.
Now


∫ 1


0
ln y dy =


∫ 1


0
ln(1− y) dy = −1,


∫ 1


0
ln y ln(1− y) dy = −


∫ 1


0
ln(1− y) dy +


∫ 1


0


y ln y
1− y


dy


= 1 +
∞
∑


i=1


∫ 1


0
yi ln y dy = 1−


∞
∑


i=1


(i + 1)−2 = 2− π2


6
,


∫ 1


0
uρ′(u) du = −


∫ 1


0
ρ(u) du = − 1


2 ,


∫ 1


0
u ln uρ′(u) du = −


∫ 1


0
(1 + ln u)ρ(u) du = − 1


2 − c1,


∫ 1


0
u ln2 uρ′(u) du = −


∫


(2 ln u + ln2 u)ρ(u) du = −2c1 − c2


and it follows from these equations and equation (14) that


N - lim
n→∞


〈ln x+, (x−1
− )n〉 = c2 −


π2


12
. (15)


Further, it follows as above that


〈ln x+, x(x−1
− )n〉 = −


∫ 1/n


0
x ln x


∫ 1/n


x
ln(t− x)δ′n(t) dt dx


= −n−1
∫ 1


0
ρ′(u)


∫ u


0
v[ln v − ln n][ln(u− v)− ln u] dv du


= O(n−1 lnn).


Now let φ be an arbitrary function in D. Then φ(x) = φ(0) + xφ′(ξx),
where 0 < ξ < 1. It follows that


〈lnx+(x−1
− )n, φ(x)〉 − φ(0)〈ln x+, (x−1


− )n〉 = 〈ln x+, x(x−1
− )nφ′(ξx)〉


= O(n−1 lnn) (16)
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since 〈ln x+, x(x−1
− )n〉 = O(n−1 ln n). Thus


N - lim
n→∞


〈ln x+(x−1
− )n, φ(x)〉 = N - lim


n→∞
φ(0)〈ln x+, (x−1


− )n〉 =
(


c2 −
π2


12


)


φ(0)


on using equations (15) and (16). Equation (9) follows.
We now define the function f(x+, r) by


f(x+, r) =
xr


+ ln x+ − ψ(r)xr
+


r!


and it follows easily by induction that f (i)(x+, r) = f(x+, r − i) , for i =
0, 1, . . . , r. In particular, f (r)(x+, r) = ln x+ , so that


f (i)(x+, r) = (−1)i−r−1(i− r − 1)!x−i+r
+ ,


for i = r + 1, r + 2, . . . . Now the product of the functions xi
+ and xi


+ ln x+


and the distribution x−1
− exists by Definition 1 and it is easily seen that


xi
+x−1


− = (xi
+ ln x+)x−1


− = 0, (17)


for i = 1, 2, . . . , r. Using equation (13) we have


f (r)(x+, r) ◦ x−1
− =


(


c2 −
π2


12


)


δ(x) (18)


and using equation (7) we have


f (i)(x+, r) ◦ x−1
− = − c1


i− r
δ(i−r)(x) (19)


for i = r + 1, r + 2, . . . .
Using equations (2) and (17) we now have


(s− 1)!f(x+, r)x−s
− =


s−1
∑


i=0


(


s− 1
i


)


(−1)i[f (i)(x+, r)x−1
− ](s−i−1)


=
(s− 1)!


r!
[xr


+ ln x+ − ψ(r)xr
+]x−s


− = 0,


for r = s, s + 1, s + 2, . . . and s = 1, 2, . . . . Equations (9) follow on using
equations (3).


When r < s we have


(s− 1)!f(x+, r) ◦ x−s
− =


s−1
∑


i=r


(


s− 1
i


)


(−1)i[f (i)(x+, r) ◦ x−1
− ](s−i−1)


=
(


s− 1
r


)


(−1)r
(


c2 − 2 +
π2


12


)


δ(s−r−1)(x) +
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−
s−1
∑


i=r+1


(


s− 1
i


)


(−1)ic1


i− r
δ(s−r−1)(x)


on using equations (2), (17), (18) and (19). It now follows that


(xr
+ ln x+) ◦ x−s


− = r!f(x+, r) ◦ x−s
− + ψ(r)xr


+ ◦ x−s
−


and equation (11) follows on using equation (5).
We now consider the product x−s


− ◦ (x−r
+ ln x+). The product ln x− ln x+


exists by Definition 1 and ln x− ln x+ = 0. Differentiating, we get


x−1
− ◦ ln x+ = ln x− ◦ x−1


+ =
(


c2 −
π2


12


)


δ(x) (20)


on replacing x by −x in equation (13).
As above, we have


x−1
− xi


+ = x−1
− (xi


+ lnx+) = 0, (21)


for i = 0, 1, . . . , r − 1. Using equation (20) we have


x−1
− ◦ f (r)(x+, r) =


(


c2 −
π2


12


)


δ(x) (22)


and using equation (8) we have


x−1
− ◦ f (i)(x+, r) =


c1


i− r
δ(i−r)(x), (23)


for i = r + 1, r + 2, . . . . Equations (10) follow as above on using equations
(1) and (21) and equations (12) follow on using equations (1), (6), (20),
(21), (22), and (23).


Corollary. The neutrix products (x−r
− ln x−) ◦ x−s


+ and x−s
+ ◦ (xr


− ln x−)
exist and


(xr
− ln x−) ◦ x−s


+ = (x−r
− ln x−)x−s


+ = 0,


x−s
+ ◦ (xr


− ln x−) = x−s
+ (xr


− lnx−) = 0,


for r = s, s + 1, s + 2, . . . and s = 1, 2, . . . and


(xr
− ln x−) ◦ x−s


+ =
(−1)s+1


(s− r − 1)!


(


c2 −
π2


12


)


δ(s−r−1)(x)


+
s−1
∑


i=r+1


(−1)s−r+ir!c1


(s− i− 1)!i!(i− r)
δ(s−r−1)(x)


+ ψ(r)
s


∑


i=r+1


(−1)s−r+isr!c1


i!(s− i)!
δ(s−r−1)(x),
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x−s
+ ◦ (xr


− ln x−) =
(−1)s+1


(s− r − 1)!


(


c2 −
π2


12


)


δ(s−r−1)(x)


+
s−1
∑


r+1


(−1)s−r+ir!c1


(s− i− 1)!i!(i− r)
δ(s−r−1)(x)


+ ψ(r)
s


∑


i=r+1


(−1)s−r+isr!
i!(s− i)!


[c1 + 1
2ψ(i− r − 1)]δ(s−r−1)(x)


for r = 0, 1, 2, . . . , s− 1 and s = 1, 2, . . . .


Proof. The results follow immediately on replacing x by −x in equations
(9), (10), (11), and (12).
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