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THE SKOROKHOD OBLIQUE REFLECTION PROBLEM IN
A CONVEX POLYHEDRON

M. SHASHIASHVILI

Abstract. The Skorokhod oblique reflection problem is studied in
the case of n-dimensional convex polyhedral domains. The natu-
ral sufficient condition on the reflection directions is found, which
together with the Lipschitz condition on the coefficients gives the
existence and uniqueness of the solution. The continuity of the cor-
responding solution mapping is established. This property enables
one to construct in a direct way the reflected (in a convex polyhedral
domain) diffusion processes possessing the nice properties.

1. Introduction.

This paper is concerned with the Skorokhod oblique reflection problems
that have applications in queuing and storage theory ([1], [2],[3]). The Sko-
rokhod problem was used for constructing the reflected diffusion processes
in an n-dimensional domain G by Tanaka [4], Lions and Sznitman [5], and
Saisho [6]. These authors obtained solutions to the Skorokhod problem
under the following assumptions: Tanaka [4] – G convex and a normal di-
rection of reflection; Lions and Sznitman [5] – ∂G smooth save at “convex
corners” and a normal direction of reflection, or ∂G smooth and smoothly
varying direction of reflection together with the admissibility condition on
∂G; Saisho [6] – as in [5], but without the admissibility condition and only
for the case of normal direction of reflection.

The case of “convex corners” with oblique reflection has received a good
deal of attention lately.

The case of G = Rn
+ (i.e., of the nonnegative orthant) has been considered

by Harrison and Reiman [7]. Under some restrictions on possible directions
of reflection they have obtained the existence, uniqueness, and Lipschitz
continuity of the solution mapping.
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The Lipschitz continuity of the solution mapping to the Skorokhod prob-
lem with oblique reflection has been extensively investigated recently by
Dupuis and Ishii [8] for the case where G is a convex polyhedral domain.
Dupius and Ishii [8], as well as Harrison and Reiman [7], supposed that the
reflection directions are constant for each boundary hyperplane forming the
faces of the polyhedron.

The aim of the present paper is to investigate and solve the Skorokhod
oblique reflection problem for a convex polyhedral domain when the re-
flection directions are the functions of state and control, where the control
strategy can depend on the whole past trajectory.

2. Statement of the Skorokhod and the Modified Skorokhod
problems. Principal Assumption

Let G denote the bounded convex polyhedral domain in Rn defined by

G = {x ∈ Rn : ni · x > ci, i = 1, . . . , N}, (1)

where G is assumed to be non-empty, and each of the faces Fi of the poly-
hedron G has dimension n − 1. Here ni is a unit vector normal to the
hyperplane Hi = {x ∈ Rn : ni · x = ci}, i = 1, . . . , N , Fi is a part of Hi,
Fi = {x ∈ G : ni · x = ci}, i = 1, . . . , N , ni · x denotes the inner product of
the vectors ni and x.

Let a bounded closed subset U of the space Rm be given, which plays the
role of a set of possible controls, and for each pair (x, u), x ∈ Hi, u ∈ U ,
let the vector qi(x, u) be defined. By this vector is meant the reflection
direction at the point x, x ∈ Hi, and for the control u, u ∈ U . Naturally,
each of the vector-valued function qi(x, u), i = 1, . . . , N , is supposed to
be the continuous function of the pair (x, u). The following condition of
normalization of the length of the vector qi(x, u) will considerably simplify
the presentation of the main results

ni · qi(x, u) = 1, x ∈ Hi, u ∈ U, i = 1, . . . , N. (2)

In the sequel we shall need to extend vector-valued functions qi(x, u) for
arbitrary values x ∈ Rn. Trivially, we define qi(x, u) = qi(prHi

x, u), x ∈ Rn,
u ∈ U . Suppose also that we are given a vector-valued function b(t, x, u),
t ≥ 0, x ∈ G, u ∈ U (with values in Rn) which is assumed to be continuous
as a function of the triple (t, x, u). Since the set G×U is a compact subset of
Rn×Rm, it is not a serious restriction to suppose that the function b(t, x, u)
is bounded by a constant C,

|b(t, x, u)| ≤ C, t ≥ 0, x ∈ G, u ∈ U. (3)
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Of course, the functions qi(x, u), i = 1, . . . , N are bounded in the set G×U .
Let they be bounded by the same constant C,

|qi(x, u)| ≤ C, x ∈ G, u ∈ U, i = 1, . . . , N. (4)

We will need one more nondecreasing continuous real-valued function At

with A0 = 0 which has the meaning of an integrator function.
Consider now the space C(R+,Rn), i.e., the space of all continuous n-

dimensional functions x = x(·) = xt, t ≥ 0, defined on the time interval
[0,∞), and then define the control strategy u = ut = ut(x(·)) = ut(x[0, t]),
where for each x = xt, t ≥ 0, the corresponding function u = ut(x[0, t]) is
supposed to be continuous in t and takes its values in the set U of controls.
The control strategy is naturally assumed to depend continuously on the
trajectory x = xt, t ≥ 0, in the following sense: if for some time interval
[0, t]

sup
0≤s≤t

|xn
s − xs| →

n→∞
0

then necessarily

sup
0≤s≤t

|us(xn[0, s])− us(x[0, s])| →
n→∞

0.

Now we are ready to formulate the Skorokhod oblique reflection problem
in a convex polyhedron G. Given x = xt ∈ C(R+,Rn) with the initial
condition x0 ∈ G, find a pair (z, y) = (zt, yt)t≥0 of the continuous functions
z = zt and y = yt with values in Rn and RN , respectively, which jointly
satisfy the following conditions:

(1) zt ∈ G, t ≥ 0,

(2) zt = xt +
∫ t

0
b(s, zs, us)dAs +

N
∑

k=1

∫ t

0
qk(zs, us)dyk

s , t ≥ 0,
(5)

where u = us = us(z[0, s]);
(3) every component-function yk

t , k = 1, . . . , N , is nondecreasing with
yk
0 = 0, k = 1, . . . , N , and satisfies the requirement

∫ t

0
I(ni · zs > ci)dyi

s = 0, i = 1, . . . , N, t ≥ 0, (6)

i.e., yi
t increases only at those times t, when ni · zt = ci, i.e., when the

function z = zt, t ≥ 0, is at the face Fi. For the solution of this problem we
shall follow the method of Hiroshi Tanaka in [4]. Namely, we generalize this
problem for functions x = xt from the space D(R+,Rn) (the space of all
n-dimensional right continuous functions with left-hand limits on the time
interval [0,∞)), prove the existence of the solution of this problem for a
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certain subspace of D(R+,Rn), and then pass to the solution of the initial
problem. To this end we have to assume:

(a) there is a given nondecreasing right continuous real-valued function
A = At with A0 = 0 (the integration function);

(b) the control strategy u = ut = ut(x[0, t]) can be extended continuously
for the functions x = xt ∈ D(R+,Rn) in the following sense:

for each x = xt ∈ D(R+,Rn) the function ut(x[0, t]) should be right
continuous with left-hand limits (with values in U), and if

sup
0≤s≤t

|xn
s − xs| → 0

n→∞
,

where xn = xn
t ∈ D(R+,Rn), x = xt ∈ C(R+,Rn), then necessarily

sup
0≤s≤t

|us(xn[0, s])− us(x[0, s])| → 0
n→∞

.

Thus the modified Skorokhod oblique reflection problem can be formu-
lated as follows:

For the function x = xt ∈ D(R+,Rn) with the initial condition x0 ∈ G
we seek a pair (z, y) = (zt, yt)t≥0 of functions belonging to the spaces
D(R+,Rn) and D(R+,RN ) such that they jointly satisfy the following con-
ditions:

(1) zt ∈ G, t ≥ 0,

(2) zt = xt +
∫ t

0
b(s, zs− , us−)dAs +

N
∑

k=1

∫ t

0
qk(zs− , us−)dyk

s , t ≥ 0,
(7)

(3) every component-function yk
t is nondecreasing with yk

0 = 0 and sat-
isfies

∫ t

0
I(ni · zs > ci)dyi

s = 0, i = 1, . . . , N, t ≥ 0, (8)

Now we shall give a condition which turns out to be sufficient for the
existence of the solution of the Skorokhod and the modified Skorokhod
problem (for a certain subclass of functions). We may call this condition
the principal assumption, since it is proved to be crucial in all constructions
given in this paper. For each x ∈ ∂G denote by I(x) the set of those indices
ik for which x ∈ Fik . The principal assumption consists in the following:

For each x ∈ ∂G with I(x) = (i1, . . . , im) we require the existence of
positive numbers a1, . . . , am, λ with 0 < λ < 1 such that for an arbitrary
control u ∈ U we have

m
∑

k=1,k 6=l

ak|qil(x, u) · nik | < λal, l = 1, . . . , m. (9)
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From the fact that the set G × U is compact and the functions qi(x, u),
i = 1, . . . , N , are continuous it is easy to see that the principal assumption
(9) provides (for fixed x ∈ ∂G) the existence of r > 0 such that

m
∑

k=1,k 6=l

ak|qil(y, u) · nik | < λal, l = 1, . . . , m,

when y ∈ B(x, r) = {y : |y − x| < r}.
On the other hand, from the definition of I(x) we have

nil · x− cil = 0, l = 1, . . . , m,

nj · x− cj > 0, j 6= i1, . . . , im.

Obviously, by reducing r > 0 we have

nj · x− cj > 3r, j 6= i1, . . . , im,
m

∑

k=1,k 6=l

ak|qil(y, u) · nik | < λal, l = 1, . . . , m,
(10)

for all y ∈ B(x, 2r), u ∈ U .
Thus, for every fixed x ∈ ∂G there do exist positive numbers a1, . . . , am, λ,

0 < λ < 1, and r > 0 such that for all y ∈ B(x, 2r) and u ∈ U the condition
(10) does hold.

Take now the open covering B(x, r) of the compact set ∂G. Then there

exists its finite covering B(xp, rp), p = 1, . . . , M , i.e., ∂G ⊆
M
∪

p=1
B(xp, rp),

where each point xp (with the corresponding rp) possesses the property
(10). It is interesting (and useful for verification in practical problems) that
this condition is, in fact, equivalent to the condition (9), i.e., our principal
assumption (9), which is the assumption on the uncountable number of
points of the boundary ∂G, is actually the assumption on a finite number of
points xp, p = 1, . . . , M , of the boundary: we require the existence of a finite
covering B(xp, rp), p = 1, . . . ,M of the boundary ∂G, where xp ∈ ∂G, such
that for each point xp, p = 1, . . . , M , with I(xp) = (i1, . . . , im) there do exist
positive numbers a1, . . . , am, λ, 0 < λ < 1, such that for all y ∈ B(xp, 2rp)
and u ∈ U the condition

nj · xp − cj > 3rp, j 6= i1, . . . , im,
m

∑

k=1,k 6=l

ak|qil(y, u) · nik | < λal, l = 1, . . . , m,
(11)
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holds. Indeed, let y ∈ ∂G; then necessarily y ∈ B(xp, rp) for some p =
1, . . . , M . Suppose I(xp) = (i1, . . . , im). Then by (11)

m
∑

k=1,k 6=l

ak|qil(y, u) · nik | < λal, l = 1, . . . , m,

for all controls u ∈ U .
If we now show that I(y) ⊆ I(xp), then, obviously, the corresponding

subset of a1, . . . , am will suffice for a boundary point y ∈ ∂G, i.e., the
requirement (9) will be true. Take j ∈ I(y). We have to show that j ∈ I(xp).
Let us have on the contrary j 6∈ I(xp). Then nj · xp − cj > 3rp; hence
nj ·y−cj = nj · (y−xp)+nj ·xp−cj > −rp +3rp = 2rp > 0. Thus j 6∈ I(y),
which is a contradiction.

Denote further B =
M
∪

p=1
B(xp, rp). Then G = G∩B+(G\B) ⊆ B+(G\B).

G\B is a closed set, and ∂G ⊆ B. Therefore G\B ⊆ G. Thus a closed set is
a subset of an open set; hence there exists its open neighborhood Oε(G\B)
such that Oε(G\B) ⊆ G. Let us denote δ > 0 as follows:

δ = min











min(r1, . . . , rM )

C · max
p=1,...,M

∑m(p)

k=1
ak(p)

(1−λ(p)) min
k=1,...,m(p)

ak
+ 1

,
ε
2











(12)

where m(p), ak(p), λ(p) are the numbers from the condition (11) for a
boundary point xp.

3. Existence of a Solution of a Modified Skorokhod Problem
for Step-Functions with Small Jumps

The purpose of this paragraph is to give an algorithm for the construction
of the solution of the modified Skorokhod problem for the data x = xt,
A = At being the step-functions. We recall that in this case there exists a
time sequence 0 = t0 < t1 < · · · < tr < · · · tending to infinity, such that
(xt, At) = (xtr , Atr ) if tr ≤ t < tr+1, r = 0, 1, . . . .

Theorem 1. Let the condition (11) hold. Then for any pair (x, A) =
(xt, At)t≥0 of the step-functions with the initial condition x0 ∈ G, A0 = 0
and sufficiently small jumps |∆xt|+C∆At < δ, t ≥ 0 (where δ > 0 has been
defined in (12)), there exists a solution of the modified Skorokhod problem.

Proof. Since the function (xt, At) is constant on the time interval [tr, tr+1),
we can define (zt, yt) = (ztr , ytr ) on the same time interval. Therefore
the main problem consists in defining the function (zt, yt) at times tr, r =
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0, 1, . . . . At the initial moment t = 0 we have (z0, y0) = (x0, 0). At the
other moments tr we have to find pairs (ztr ,∆ytr ) such that:

(1) ztr ∈ G, ∆ytr ≥ 0,

(2) ztr = ztr−1 + ∆xtr + b(tr, ztr−1 , utr−)∆Atr +

+
N

∑

k=1

qk(ztr−1 , utr−)∆yk
tr

,

(3) I(ni · ztr > ci)∆yi
tr

= 0, i = 1, . . . , N.

(13)

The key observation for solving the problem (13) consists in the fact that,
as it turns out, this problem is equivalent to the following one: solve first
the system

∆yi
tr

= max
[

0,−(ni · ztr−1 − ci)−

−
(

ni ·∆xtr + ni · b(tr, ztr−1 , utr−)∆Atr

)

−

−
N

∑

k=1, k 6=i

ni · qk(ztr−1 , utr−)∆yk
tr

]

, i = 1, . . . , N, (14)

at time tr, and then define ztr from

ztr = ztr−1 + ∆xtr + b(tr, ztr−1 , utr−)∆Atr +

+
N

∑

k=1

qk(ztr−1 , utr−)∆yk
tr

. (15)

Indeed, suppose (13) holds for (ztr , ∆ytr ). Then, taking the inner product
with vectors ni, i = 1, . . . , N , we obtain

ni · ztr − ci = (ni · ztr−1 − ci) + ni ·∆xtr + ni · b(tr, ztr−1 , utr−)∆Atr +

+ni · qi(ztr−1 , utr )∆yi
tr

+
N

∑

k=1, k 6=i

ni · qk(ztr−1 , utr−)∆yk
tr

,

where

ni · ztr − ci ≥ 0, ∆yi
tr
≥ 0, i = 1, . . . , N,

(ni · ztr − ci)∆yi
tr

= 0, i = 1, . . . , N,

ni · qi(ztr−1 , utr−) = 1, i = 1, . . . , N.
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Now, to prove that each of these systems (for i = 1, . . . , N) is equivalent to

∆yi
tr

= max
[

0,−(ni · ztr−1 − ci)− (ni ·∆xtr +

+ni · b(tr, ztr−1 , utr−)∆Atr)−
N

∑

k=1, k 6=i

ni · qk(ztr−1 , utr−)∆yk
tr

]

,

it suffices only to note that for real numbers x, y, z the following two condi-
tions are equivalent:

{

z ≥ 0, y ≥ 0, zy = 0,
z = x + y,

{

y = max(0,−x),
z = x + y,

Suppose on the contrary that (14)–(15) hold. Taking in (15) again the inner
product with vectors ni, i = 1, . . . , N , we get

ni · ztr − ci = ni · ztr−1 − ci + ni ·∆xtr + ni · b(tr, ztr−1 , utr−)∆Atr +

+
N

∑

k=1, k 6=i

ni · qk(ztr−1 , utr−)∆yk
tr

+ ∆yi
tr

, i = 1, . . . , N.

But as we have just seen, this, together with (14), gives

ni · ztr − ci ≥ 0, ∆yi
tr
≥ 0,

(ni · ztr − ci)∆yi
tr

= 0, i = 1, . . . , N.

In their turn, the last relations together with (15) are, obviously, the same
as the relations (13).

Therefore we have to suggest a method of solution of the system (14)–
(15). This method will be given by induction. Suppose we have defined the
pair (Tp, zTp

), where Tp takes its values from t0, t1, . . . , tr−1, tr, . . . . Assume
that Tp = tr−1 (for some r = 1, . . . ). Then the algorithm will be proposed
to define the next values ztr , . . . , zTp+1

until the time Tp+1, where the terms
of this sequence and the time Tp+1 are defined simultaneously. Define

jp =

{

min(j : 1 ≤ j ≤ M, zTp
∈ B(xj , rj) if such a j exists,

M + 1, otherwise.

Since zTp
∈ B + (G\B), obviously,

zTp
∈ G\B if jp = M + 1,

zTp
∈ B(xjp , rjp) if jp ≤ M.
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Suppose first that jp = M + 1; then zTp
∈ G\B. In this case it is easy to

define the sequence (ztr , ∆ytr ), . . . , (ztr+k ,∆ytr+k) until ztr+k 6∈ Oδ(G\B).
Indeed, we define

∆ytr = 0, . . . , ∆ytr+k = 0, ztr = ztr−1 + ∆xtr + b(tr, ztr−1 , utr−))∆Atr ,

. . .

ztr+k = ztr+k−1 + ∆xtr+k + b(tr+k, ztr+k−1 , utr+k−)∆Atr+k ,

and have ztr+k−1 ∈ Oδ(G\B), |∆xtr+k | + C∆Atr+k < δ, Therefore ztr+k ∈
O2δ(G\B) ⊆ G. In this case Tp+1 is defined as follows:

Tp+1 = inf{tr : tr > Tp, ztr 6∈ Oδ(G\B)}.

Suppose now the second case, i.e., when jp ≤ M and zTp
∈ B(xjp , zjp).

Then zTp
is situated near the boundary ∂G. So the construction of the

next values of the solution ztr , ztr+1 , . . . is indeed a serious problem. For
simplicity, we denote the pair (xjp , rjp) by (x, r), and the corresponding ball
by B(x, r). Let I(x) = (i1, . . . , im). By our assumption (11) we have

nj · x− cj > 3r, j 6= i1, . . . , im,
m

∑

k=1,k 6=l

ak|qil(y, u) · nik | < λal, l = 1, . . . , m,
(16)

for all y ∈ B(x, 2r) and all u ∈ U .
We begin by considering the following auxiliary system:

∆yik
tr

= max
[

0,−(nik · ztr−1 − cik)−

−
(

nik ·∆xtr + nik · b(tr, ztr−1 , utr−)∆Atr

)

−

−
m

∑

l=1,l 6=k

nik · qil(ztr−1 , utr−)∆yil
tr

]

, k = 1, . . . , m. (17)

We shall show that this system has a unique solution. Rewrite it in a simpler
way:

yk = max
[

0, bk −
m

∑

l=1,l 6=k

nik · qily
l
]

, k = 1, . . . , m, (18)

where

bk = −(nik · ztr−1 − cik)−
(

nik ·∆xtr + nik · b(tr, ztr−1 , utr−)∆Atr

)

,

yk = ∆yik
tr

, qil = qil(ztr−1 , utr−
).
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Consider the space Rm with the metric

d(y, ỹ) =
m

∑

k=1

ak|yk − ỹk|

and introduce the mapping ψy of this space into itself,

(ψy)k = max
[

0, bk −
m

∑

l=1,l 6=k

nik · qily
l
]

, k = 1, . . . ,m.

We have

|(ψy)k − (ψỹ)k| ≤
m

∑

l=1,l 6=k

|nik · qil | |yl − ỹl|, k = 1, . . . ,m.

Multiplying the above inequality by ak and then taking the sum, we get
(using the inequalities (16))

m
∑

k=1

ak|(ψy)k − (ψỹ)k| ≤
m

∑

k=1

ak

(
m

∑

l=1,l 6=k

|nik · qil | |yl − ỹl|
)

=

=
m

∑

l=1

(
m

∑

k=1,k 6=l

ak|nik · qil |
)

|yl − ỹl| < λ
m

∑

l=1

al|yl − ỹl|.

Thus d(ψ(y), ψ(ỹ)) < λd(y, ỹ), i.e., the mapping ψy is a contraction estab-
lishing thus the existence and uniqueness of the solution of the auxiliary
system (17)–(18). Using the unique solution (∆yi1

tr
, . . . , ∆yim

tr
) of this sys-

tem, we can now establish that the vector (∆y1
tr

, . . . , ∆yN
tr

), where ∆yj
tr

= 0,
j 6= i1, . . . , im, solves the system (14). In fact, we have only to verify that

max
[

0,−(nj · ztr−1 − cj)− (nj ·∆xtr + nj · b(tr, ztr−1 , utr−)∆Atr)−

−
m

∑

l=1

nj · qil(ztr−1 , utr−)∆yil
tr

]

= 0, j 6= i1, . . . , im.

To this end we have to bound the sum
∑m

l=1 ∆yil
tr

. Obviously, nik · ztr−1 −
cik ≥ 0, k = 1, . . . ,m; hence from (17) we can write

∆yik
tr
≤ |∆xtr |+ C∆Atr +

m
∑

l=1, l 6=k

|nik · qil(ztr−1 , utr−)|∆yil
tr

,

k = 1, . . . ,m.
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Multiplying these inequalities by ak and then taking the sum, we obtain

m
∑

k=1

∆yik
tr
≤

∑m
k=1 ak

(1− λ) min
k=1,...,m

ak
(|∆xtr |+ C∆Atr ),

but by the assumption of Theorem 1, |∆xt|+ C∆At < δ, t ≥ 0. Therefore

m
∑

k=1

∆yik
tr

<
∑m

k=1 ak

(1− λ)min ak
δ.

We have

nj · ztr−1 − cj = nj · (ztr−1 − x) + nj · x− cj > −2r + 3r = r,

hence

nj · ztr−1 − cj + nj ·∆xtr + nj · b(tr, ztr−1 , utr−
)∆Atr +

+
m

∑

l=1

nj · qil(ztr−1 , utr−)∆yil
tr

> r − δ − C
∑m

k=1 ak

(1− λ)min ak
δ ≥ 0

by the definition of δ in (12). Therefore the vector (∆y1
tr

, . . . , ∆yN
tr

) is indeed
the solution of (14). Then ztr is defined from (15).

The same procedure works recurrently and gives the values (∆ytr+1 , ztr+1),
. . . , (∆ytr+k , ztr+k) until it turns out that ztr+k 6∈ B(xjp , 2rjp), i.e.,

zTp
= ztr−1 ∈ B(xjp , rjp), . . . , ztr+k−1 ∈ B(xjp , 2rjp), ztr+k 6∈ B(xjp , 2rjp).

We define Tp+1 = inf{tr : tr > Tp, ztr 6∈ B(xjp , 2rjp)}. In general, the
definition of Tp+1 admits the form

Tp+1 =

{

inf
(

tr : tr > Tp, ztr 6∈ B(xjp , 2rjp

)

if jp ≤ M,
inf

(

tr : tr > Tp, ztr 6∈ Oδ(G\B)
)

if jp = M + 1.
(19)

Thus by induction we have given the algorithm of the solution of the system
(14)–(15) which, in fact, results in the solution of the modified Skorokhod
problem (7)–(8).

Let us consider now the time interval [Tp, Tp+1] and suppose first that
jp ≤ M . Denote for simplicity B(xjp , rjp) = B(x, r); as previously I(x) =
(i1, . . . , im).

We have the following equation:

zt − zs = xt − xs +
∫ t

s
b(v, zv−, uv−)dAv +

N
∑

k=1

∫ t

s
qk(zv−, uv−)dyk

v .
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From our construction of the solution ∆yj
t = 0, j 6= i1, . . . , im, Tp ≤ t ≤

Tp+1. Therefore

zt − zs = xt − xs +
∫ t

s
b(v, zv−, uv−)dAv +

m
∑

l=1

∫ t

s
qil(zv−, uv−)dyil

v .

Multiplying this equality by the vectors nik , k = 1, . . . , m,

nik · zt − cik = nik · zs − cik + nik · (xt − xs) +

+
∫ t

s
nik · b(v, zv−, uv−)dAv +

m
∑

l=1, l 6=k

∫ t

s
nik · qil(zv−, uv−)×

×dyil
v + (yik

t − yik
s ), k = 1, . . . , m,

where nik · zs − cik ≥ 0, nik · zs − cik ≥ 0, yik
t − yik

s are nondecreasing in t,
and

∫ t

s
I(nik · zv − cik > 0)d(yik

v − yik
s ) = 0,

we get that the pair (nik · zt− cik , yik
t − yik

s ), s ≤ t ≤ Tp+1 is the solution of
the one-dimensional Skorokhod problem ([4], [10]) for the function

nik · zt − cik + nik · (xt − xs) +
∫ t

s
nik · b(v, zv−, uv−)dAv +

+
m

∑

l=1, l 6=k

∫ t

s
nik · qil(zv−, uv−)dyil

v .

As is well known ([4], [10]), the solution of this problem can be written
explicitly in terms of a maximal function

yik
t − yik

s = sup
s≤u≤t

max
[

0,−(nik · zs − cik)− nik · (xu − xs)−

−
∫ u

s
nik · b(v, zv−, uv−))dAv −

m
∑

l=1, l 6=k

∫ u

s
nik · qil(zv−, uv−)dyil

v

]

≤

≤ sup
s≤u≤t

|xu − xs|+ C(At −As) +
m

∑

l=1, l 6=k

∫ t

s
|nik · qil(zv−, uv−)|dyil

v .

Multiplying this inequality by ak and taking the sum, we obtain

m
∑

k=1

(yik
t − yik

s ) ≤
∑m

k=1 ak

(1− λ)min ak
( sup
s≤u≤t

|xu − xs|+ C(At −As)),
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Hence
N

∑

k=1

(yk
t − yk

s ) ≤
∑m

k=1 ak

(1− λ)min ak
( sup
s≤u≤t

|xu − xs|+ C(At −As)).

Using this inequality in the above-mentioned equation, we get

|zt − zs| ≤
(

1 +
C

∑m
k=1 ak

(1− λ)min ak

)

( sup
s≤u≤t

|xu − xs|+ C(At −As)).

From the definition of δ these bounds admit the form

|zt − zs| ≤
min(r1, . . . , rM )

δ
( sup
s≤u≤t

|xu − xs|+ C(At −As)),

N
∑

k=1

(yk
t − yk

s ) ≤ min(r1, . . . , rM )
C · δ

( sup
s≤u≤t

|xu − xs|+ C(At −As)),
(20)

where Tp ≤ s ≤ t ≤ Tp+1, p = 0, 1, . . .
If jp = M + 1, i.e., zTp ∈ G\B, then we have ∆yk

t = 0, k = 1, . . . N ,
Tp ≤ t ≤ Tp+1. Hence in this case these bounds are also true.

4. Existence of the Solution of the Skorokhod Problem for
Arbitrary Continuous Data

Theorem 2. Suppose the assumption (11) holds. Then there exists the
solution of the Skorokhod problem for every continuous pair of functions
(X,A) = (Xt, At)t≥0 with x0 ∈ G, A0 = 0. For arbitrary 0 ≤ s ≤ t ≤ T it
satisfies the inequality

N
∑

i=1

(yi
t − yi

s) ≤
min(r1, . . . , rM )

Cδ

((T
h

+ 1
)

×

× sup
s≤u,v≤t

|xu − xv|+ C(At −As)
)

,

|zt − zs| ≤
min(r1, . . . , rM )

δ

((T
h

+ 1
)

×

× sup
s≤u,v≤t

|xu − xv|+ C(At −As)),

(21)

where h > 0 is defined from the condition

∆x,A
T (h) <

δ2

4 min(r1, . . . , rM )
, where

∆x,A
T (h) = sup

0≤s,t≤T
|t−s|≤h

(|xt − xs|+ C|At −As|). (22)
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Proof. We define the time sequence

Rk
0 = 0, Rk

1 = inf
(

t > 0 : |xt − x0|+ C(At −A0) >
1
k

)

∧ 1, . . .

Rk
m = inf

(

t > Rk
m−1 : |xt − xRk

m−1
|+ C(At −ARk

m−1
) >

1
k

)

∧m, . . .

for each k = 1, 2, . . . .
It is easy to see that limm→∞Rk

m = +∞, k = 1, 2, . . . . From the defini-
tion of these times we can write

sup
Rk

m−1≤t<Rk
m

(|xt−xRk
m−1

|+C(At−ARk
m−1

)) ≤ 1
k

k = 1, 2, . . . , m = 1, 2, . . . .

Hence, defining the step-functions (Xk, Ak) = (Xk
t , Ak

t )t≥0, where

(Xk, Ak
t ) = (XRk

m−1
, ARk

m−1
) if Rk

m−1 ≤ t < Rk
m,

k = 1, 2, . . . , m = 1, 2, . . .

we see that this sequence of step-functions (xk, Ak) converges uniformly to
the continuous pair (x,A)

sup
t≥0

(|xk
t − xt|+ C(Ak

t −At)) ≤
1
k

and from the continuity of the function (x,A) we have

|xRk
m
− xRk

m−1
|+ C(ARmk −ARk

m−1
) ≤ 1

k
, k = 1, 2, . . . , m = 1, 2, . . . .

Therefore |∆xk
t |+C∆Ak

t ≤ 1
k , t ≥ 0, k = 1, 2, . . . . If we take k so large that

1
k ≤ δ, then Theorem 1 ensures the existence of a solution of the modified
Skorokhod problem for the step-functions (xk, Ak) = (xk

t , Ak
t ). For this case

denote this solution by (zk, yk) = (zk
t , yk

t )t≥0 and rewrite the inequalities
(20) as

N
∑

i=1

(yk,i
t − yk,i

s ) ≤ min(r1, . . . , rm)
Cδ

(

sup
s≤u≤t

|xk
u − xk

s |+ C(Ak
t −Ak

s)
)

,

|zk
t − zk

s | ≤
min(r1, . . . , rM )

δ
(

sup
s≤u≤t

|xk
u − xk

s |+ C(Ak
t −Ak

s)
)

,

(23)

where T k
p ≤ s ≤ t ≤ T k

p+1, p = 0, 1, . . . . Here zk
T k

p
∈ B(xjp , rjp) if jp ≤ M ,

zk
T k

p
∈ G\B if jp = M + 1 and

T k
p+1 =

{

inf
(

t : t > T k
p , zk

t 6∈ B(xjp , 2rjp

)

if jp ≤ M,
inf

(

t : t > T k
p , zk

t 6∈ Oδ(G\B)
)

if jp = M + 1.
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From the definition of times T k
P we get

|zk
T k

p+1
− zk

T k
p
| ≥ min(r1, . . . , rM ) if jp ≤ M,

|zk
T k

p+1
− zk

T k
p
| ≥ δ if jp = M + 1.

In any case we have |zk
T k

p+1
− zk

T k
p
| ≥ δ, k = 1, 2, . . . , p = 0, 1, . . . .

Hence from the inequality (23) we obtain

δ2 ≤ min(r1, . . . , rm)
(

sup
T k

p≤u≤T k
p+1

|xk
u − xk

T k
p
|+ C(Ak

T k
p+1

−Ak
T k

p
)
)

.

It is easy to verify that

sup
T k

p≤u≤T k
p+1

|xk
u − xk

T k
p
|+ C(Ak

T k
p+1

−Ak
T k

p
) ≤ 4

k
+

+ sup
T k

p≤u≤T k
p+1

|xu − xT k
p
|+ C(AT k

p+1
−AT k

p
).

Therefore we get

δ2

min(r1, . . . , rM )
≤ 4

k
+ sup

T k
p≤u≤T k

p+1

|xu − xT k
p
|+ C(AT k

p+1
−AT k

p
).

From this, starting from sufficiently large k with k ≥ 8min(r1, . . . , rM )
δ2 we

have

δ2

4min(r1, . . . , rM )
≤ sup

T k
p≤s,t≤T k

p+1

(|xt − xs|+ C|At −As|).

Fix T > 0 arbitrarily large and introduce the modulus of continuity of
(x,A) = (xt, At)t≥0 on the time interval [0, T ]:

∆x,A
T (h) = sup

0≤s,t≤T
|t−s|≤h

(|xt − xs|+ C|At −As|);

then if h > 0 is so small that

∆x,A
T (h) <

δ2

4min(r1, . . . , rM )

then T k
p+1 ≤ T implies T k

p+1 − T k
p > h. Thus on the time interval [0, T ]

there may lie at most T
h intervals [T k

p , T k
p+1], p = 0, 1, . . . .
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This fact, together with the bounds (23), implies

N
∑

i=1

(yk,i
t − yk,i

s ) ≤ min(r1, . . . , rM )
Cδ

((T
h

+ 1
)

×

× sup
s≤u,v≤t

|xk
u − xk

v |+ C(Ak
t −Ak

s)
)

,

|zk
t − zk

s | ≤
min(r1, . . . , rM )

δ

((T
h

+ 1
)

×

× sup
s≤u,v≤t

|xk
u − xk

v |+ C(Ak
t −Ak

s)
)

(24)

for any s ≤ t from the interval [0, T ], 0 ≤ s ≤ t ≤ T .
The sequence (xk, Ak) = (xk

t , Ak
t )t≥0 converges uniformly to the func-

tion (x,A) = (xt, At)t≥0, and therefore it converges also in the Skorokhod
metric. From the bounds (24) and the criterion of relative compactness in
the Skorokhod metric [9] we obtain that the sequence (zk, yk) = (zk

t , yk
t )

is relatively compact. Let us choose its convergent subsequence, which for
simplicity we denote again by (zk, yk). Then there exists a scaling sequence
λk(t) such that

sup
0≤t≤T

|λk(t)− t| →
k→∞

0, sup
0≤t≤T

(

|zk
λk(t) − zt|+ |yk

λk(t) − yt|
)

→
k→∞

0,

where (zt, yt)t≥0 is a pair of functions which are right continuous with left-
hand limits, zt and yt are respectively n-dimensional and yt N -dimensional,
and the component-functions yi

t, i = 1, . . . , N , are nondecreasing.
Performing a time change t → λk(t) in the inequalities (24) and then

making k tend to infinity, we shall have

N
∑

i=1

(yi
t − yi

s) ≤
min(r1, . . . , rm)

Cδ

((T
h

+ 1
)

×

× sup
s≤u,v≤t

|xu − xv|+ C(At −As)
)

|zt − zs| ≤
min(r1, . . . , rM )

δ

((T
h

+ 1
)

×

× sup
s≤u,v≤t

|xu − xv|+ C(At −As)
)

,

(25)

where 0 ≤ s ≤ t ≤ T .
In this inequality let s tend to t. Then, obviously, we have

N
∑

i=1

(yi
t − yi

t−) = 0, |zt − zt− | = 0.
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Hence the pair (zt, yt) is continuous in t.
In this case the convergence in the Skorokhod metric is equivalent to the

uniform convergence (on bounded time interval), i.e., we have

sup
0≤t≤T

(|zk
t − zt|+ |yk

t − yt|) →
k→∞

0.

Let us show that the pair (zt, yt)t≥0 is the solution of the Skorokhod
problem for the functions (xt, At). We have

(1) zk
t ∈ G, t ≥ 0,

(2) zk
t = xk

t +
∫ t
0 b(s, zk

s− , uk
s−)dAk

s +
∑N

j=1

∫ t
0 qj(zk

s− , uk
s−)dyk,j

s , where
uk

s = us(zk[0, s]),
(3)

∫ t
0 I(ni · zk

s − ci > 0)dyk,i
s = 0, i = 1, . . . , N .

Passing to the limit in the first relation, we obtain zt ∈ G, t ≥ 0. The
third relation is obviously equivalent to the following one:

(3′) For every bounded continuous function f(x) with f(0) = 0 we should
have

∫ t

0
f(ni · zk

s − ci > 0)dyk,i
s = 0, i = 1, . . . , N.

Consider the time interval [0, T ]. The function b(t, x, u) is continuous,
and therefore uniformly continuous on [0, T ] × G × U . The same is true
for the functions qj(x, u), j = 1, . . . , N . They are uniformly continuous on
G× U .

From the continuity of the control strategy u = us = us(z(0, s]) we have

sup
0≤s≤T

|uk
s − us| →

k→∞
0, sup

0<s≤T
|uk

s− − us| →
k→∞

0.

Using now these uniform continuity properties and Helly’s theorem on
passing to the limit in the Stieltjes integrals, it is not difficult to pass to
the limit in the relations (2) and (3′) and to get that the continuous pair
(zt, yt)t≥0 is indeed the solution of the Skorokhod problem.

5. Uniqueness of the Solution of the Skorokhod Problem and
the Continuity of the Solution Mapping under the Natural

Lipschitz Condition

Theorem 3. Let the assumption (11) hold and suppose the vector-valued
functions b(t, x, u) and qj(x, u), j = 1, . . . , N , to be Lipschitz continuous in
(x, u):

for every T > 0 and arbitrary t ≤ T ,

|b(t, x, u)− b(t, x̃, ũ)| ≤ LT (|x− x̃|+ |u− ũ|),
|qj(x, u)− qj(x̃, ũ)| ≤ L(|x− x̃|+ |u− ũ|). j = 1, . . . , N.

(26)
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Suppose also that the control strategy ut(z[0, t]) is Lipschitz continuous:

sup
0≤t≤T

|ut(z[0, t])− ut(z̃[0, t])| ≤ KT sup
0≤t≤T

|zt − z̃t|. (27)

Then for every pair of continuous functions (x,A) = (xt, At)t≥0 with
x0 ∈ G, A0 = 0 there does exist a unique solution of the Skorokhod problem,
and the solution mapping (x,A) → (x,A, z, y) is continuous in the uniform
topology (on bounded time intervals).

Proof. Let (z, y) = (zt, yt), (z̃, ỹ) = (z̃t, ỹt) be two solutions of the Sko-
rokhod problem for the pair (x,A). By analogy with (19) define the follow-
ing time sequences:

Tp+1 =

{

inf
(

t : t > Tp, zt 6∈ B(xjp , 2rjp

)

if jp ≤ M,
inf

(

t : t > Tp, zt 6∈ Oδ(G\B)
)

if jp = M + 1, p = 0, 1, . . . ,

where

jp =

{

min(j : 1 ≤ j ≤ M, zTp
∈ B(xj , rj) if such a j exists,

M + 1 otherwise,

˜Tp+1 =

{

inf
(

t : t > ˜Tp, z̃t 6∈ B(x̃jp
, 2r̃jp

)

if ˜jp ≤ M,

inf
(

t : t > ˜Tp, z̃t 6∈ Oδ(G\B)
)

if ˜jp = M + 1, p = 0, 1, . . . ,

˜jp =

{

min(j : 1 ≤ j ≤ M, z̃
T̃p
∈ B(xj , rj) if such a j exists,

M + 1 otherwise.

Obviously, |zTp+1
− zTp

| ≥ δ, |z̃
T̃p+1

− z̃
T̃p
| ≥ δ, p = 0, 1, . . . .

Hence on the time interval [0, T ] there are only a finite number of times

T0, T1, . . . , Tp, . . . , ˜T0, ˜T1, . . . , ˜Tp, . . . , T0 = 0, ˜T0 = 0.

Fix the time interval [0, T ]. By induction we shall prove that Tp+1 = ˜Tp+1

and (z̃, ỹ) = (z, y) on the time interval [Tp, Tp+1]. For this purpose we
assume (z̃, ỹ) = (z, y) on the time interval [0, Tp] = [0, ˜Tp].

Consider the value zTp
= z̃

T̃p
∈ G. Then

(1) zTp
∈ B(xjp , rjp) if jp ≤ M ,

(2) zTp
∈ G\B if jp = M + 1.

Suppose the first case, i.e., zTp
∈ B(xjp , rjp). Then

Tp+1 = inf
(

t : t > Tp, zt 6∈ B(xjp , 2rjp

)

,

˜Tp+1 = inf
(

t : t > Tp, z̃t 6∈ B(xjp , 2rjp

)

.
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Define now T ∗p+1 = min(Tp+1, ˜Tp+1). For simplicity denote again the ball
B(xjp , rjp) by B(x, r). Let I(x) = (i1, . . . , im). Then we have zTp

= z̃
T̃p
∈

B(x, r),

m
∑

k=1,k 6=l

ak|qil(zt, ut) · nik | < λal,

m
∑

k=1,k 6=l

ak|qil (̃zt, ũt) · nik | < λal, l = 1, . . . , m,

when Tp ≤ t < T ∗p+1, and also nj · zt − cj > r > 0, nj · z̃t − cj > r > 0,
j 6= i1, . . . , im. Hence yt

j = yTp
j , ỹt

j = ỹTp
j , j 6= i1, . . . , im, Tp ≤ t < T ∗p+1.

Therefore we have

zt = zTp
+ xt − xTp

+
∫ t

Tp

b(s, zs, us)dAs +
m

∑

l=1

∫ t

Tp

qil(zs, us)dyil
s ,

z̃t = zTp
+ xt − xTp

+
∫ t

Tp

b(s, z̃s, ũs)dAs +
m

∑

l=1

∫ t

Tp

qil(z̃s, ũs)dỹs
il .

Multiplying these equations by the vectors nik , k = 1, . . . , m, we get

nik · zt − cik = nik · zTp
− cik +

+nik · (xt − xTp
) +

∫ t

Tp

nik · b(s, zs, us)dAs +

+
m

∑

l=1, l 6=k

∫ t

Tp

nik · qil(zs, us)dyil
s + (yik

t − yik
Tp

),

nik · z̃t − cik = nik · zTp
− cik +

+nik · (xt − xTp
) +

∫ t

Tp

nik · b(s, z̃s, ũs)dAs +

+
m

∑

l=1, l 6=k

∫ t

Tp

nik · qil(z̃s, ũs)dỹs
il + (ỹt

ik − ỹTp

ik), k = 1, . . . ,m,

Tp ≤ t < T ∗p+1.

Now we essentially use the variational lemma of maximal functions [10]
which implies that

∫ t

Tp

∣

∣d(yik
s − ỹs

ik)
∣

∣ ≤
∫ t

Tp

fk
v nik · (b(v, zv, uv)−
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−b(v, z̃v, ũv))dAv +
m

∑

l=1,l 6=k

∫ t

Tp

fk
v nik · qil(zv, uv)dyil

v −

−
m

∑

l=1,l 6=k

∫ t

Tp

fk
v nik · qil(z̃v, ũv)dỹv

il , k = 1, . . . ,m,

where fk
v , k = 1, . . . , m, are Borel measurable functions with two values ±1.

Multiplying again these inequalities by ak, taking the sum and using then
the Lipschitz continuity properties (26)–(27), we obtain

m
∑

k=1

ak

∫ t

Tp

∣

∣d(yik
s − ỹs

ik)
∣

∣ ≤
∑m

k=1 ak

(1− λ)
(L + LT )(1 + KT )×

×
∫ t

Tp

sup
s≤v

|zs − z̃s|d
(

Av +
m

∑

l=1

yil
v

)

. (28)

Further we have

zt − z̃t =
∫ t

Tp

(b(s, zs, us)− b(s, z̃s, ũs))dAs +
m

∑

l=1

∫ t

Tp

(qil(zs, us)−

−qil(z̃s, ũs))dyil
s +

m
∑

l=1

∫ t

Tp

qil(z̃s, ũs)d(yil
s − ỹs

il).

Taking into account the previous bound (28), we get

|zt − z̃t| ≤
∫ t

Tp

sup
s≤v

|zs − z̃s|dAv, Tp ≤ t < T ∗p+1, where

At = (L + LT )(1 + kT )
(

1 +
C

∑m
k=1 ak

(1− λ)min ak

)(

At +
m

∑

l=1

yil
t

)

.

Using now the Gronwall inequality, we have supTp≤s≤t |zs − z̃s| = 0, Tp ≤
t < T ∗p+1 and from the inequality (28) it follows that

m
∑

k=1

∫ t

Tp

∣

∣d(yik
s − ỹs

ik)
∣

∣ = 0,

i.e., yik
t = ỹt

ik , Tp ≤ t < T ∗p+1.
Thus (zt, yt) = (z̃t, ỹt) on Tp ≤ t < T ∗p+1. From the continuity we obtain

z
T∗

p+1
= z̃

T∗
p+1

, which implies Tp+1 = ˜Tp+1. In fact, suppose on the contrary

that Tp+1 6= ˜Tp+1 and let Tp+1 < ˜Tp+1 (the case ˜Tp+1 < Tp+1 can be
considered similarly). Then z̃Tp+1

∈ B(x, 2r), i.e., zTp+1
∈ B(x, 2r), which
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by the very definition is a contradiction. Thus ˜Tp+1 = Tp+1, (z̃, ỹ) = (z, y)
on Tp ≤ t < Tp+1.

The same is true for the second case, jp = M + 1, which can be easily
verified.

Now we shall prove that the solution mapping (x,A) → (x,A, z, y) is
continuous. Let (xm, Am) = (xm

t , Am
t )t≥0 be a sequence of continuous pairs

converging to the pair (x,A) = (xt, At)t≥0:

sup
0≤t≤T

(|xm
t − xt|+ |Am

t −At|) →
m→∞

0

for arbitrary T > 0.
Let (zm, ym) = (zm

t , ym
t )t≥0 be the unique solution of the corresponding

Skorokhod problem. From the inequality (21) we have

N
∑

i=1

(ym,i
t − ym,i

s ) ≤ min(r1, . . . , rM )
Cδ

(( T
hm + 1

)

×

× sup
s≤u,v≤t

|xm
u − xm

v |+ C(Am
t −Am

s )
)

,

|zm
t − zm

s | ≤
min(r1, . . . , rM )

δ

(( T
hm + 1

)

×

× sup
s≤u,v≤t

|xm
u − xm

v |+ C(Am
t −Am

s )
)

,

where hm > 0 is defined from the condition ∆xm,Am

T (hm) < δ2

4 min(r1,...,rM ) ,
where

∆xm,Am

T (hm) = sup
0≤s,t≤T
|t−s|≤hm

(|xm
t − xm

s |+ C|Am
t −Am

s |).

Obviously,

|∆xm,Am

T (h)−∆x,A
T (h)| ≤ 2 sup

0≤t≤T
(|xm

t − xt|+ C|Am
t −At|).

Therefore, choosing h > 0 from the condition

∆x,A
T (h) <

δ2

8min(r1, . . . , rM )

and taking m so large that

sup
0≤t≤T

(|xm
t − xt|+ C|Am

t −At|) <
δ2

16min(r1, . . . , rM )
,

we have

∆xm,Am

T (h) <
δ2

4min(r1, . . . , rM )
.
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Thus hm can be chosen independent of m : hm = h. Therefore, by the
Arzela–Ascoli theorem the sequence (xm, Am, zm, ym) is relatively compact.

Now we shall show that (zm, ym) converges to (z, y), where (z, y) is the
solution of the Skorokhod problem for (x, A).

Choose an arbitrary subsequence m′ of m. Then by the relative compact-
ness there does exist its own subsequence m′′ such that (xm′′

, Am′′
, zm′′

, ym′′
)

is convergent to some (x,A, z̃, ỹ). By the standard arguments analogous
to those used in the proof of Theorem 2, it is not difficult to show that
(z̃, ỹ) is the solution of the Skorokhod problem for a pair (x, A). But
the solution is unique, and therefore (z̃, ỹ) = (z, y). Thus, whatever the
subsequence m′ may be, there exists its own subsequence m′′ such that
(xm′′

, Am′′
, zm′′

, ym′′
) converges to one and the same limit (x,A, z, y). But

this means that the sequence (xm, Am, zm, ym) itself converges to (x,A, z, y).
Thus we have established the continuity of the solution mapping.

6. Reflected Diffusion Processes in an n-dimensional
Polyhedral Domain

Let (Ω,F , P ) be any probability space on which there is given an m-
dimensional standard Brownian motion B = (Bt)t≥0, where Bt =
(B1

t , . . . , Bm
t ), B0 = 0. Define now an n-dimensional stochastic process

X = (Xt)t≥0, Xt = (X1
t , . . . , X

n
t )) with the initial condition X0(w) = x,

where x ∈ G, as follows:

Xt(w) = x +
m

∑

j=1

σjB
j
t (w),

where σj is the jth column of the matrix σ = (σkj) k = 1, . . . , n, j =
1, . . . , m. We seek a pair of continuous processes (z, y) = (zt, yt)t≥0, where
zt = (z1

t , . . . , zn
t ), yt = (y1

t , . . . , yN
t ), which jointly satisfy (P – a.s.) the

following conditions:
(1) zt ∈ G, t ≥ 0,
(2) zt =x+

∑m
j=1 σjB

j
t +

∫ t
0 b(zs)ds +

∑N
k=1

∫ t
0 qk(zs)dyk

s , t≥0, (29)
(3) the component functions yi

t, i = 1, . . . , N , are nondecreasing processes
with yi

0 = 0, i = 1, . . . , N , and with the property

∫ t

0
I(ni · zs > ci)dyi

s = 0, i = 1, . . . , N.

Let us introduce the σ-algebras Ft = σ(Xs, s ≤ t), t ≥ 0.
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Theorem 4. Let the assumption (11) hold and the functions b(x), qk(x),
k = 1, . . . , N , be Lipschitz continuous,

|b(x)− b(x̃)| ≤ L|x− x̃|,
|qk(x)− qk(x̃)| ≤ L|x− x̃|, k = 1, . . . , N.

Then there exists (P – a.s.) the unique solution of the system (29), which
is adapted to Ft, zt is a strong Markov process with stationary transition
probabilities.

Proof. First we consider the corresponding Skorokhod problem for an arbi-
trary continuous n-dimensional function x = xt, t ≥ 0, x0 ∈ G. As we know
from Theorem 3, there exists the unique solution (z, y) = (zt, yt)t≥0 of the
problem, and if we introduce the mappings z = Φ(x), y = ψ(x), then they
will be continuous in the uniform topology. Further, the restrictions of z
and y to [0, t] depend only on the restrictions of x to [0, t]. From the unique-
ness of the solution we obtain the following shift property of the mappings
Φ and ψ:

zs+t = Φ(zs + (xs+· − xs))t,

ys+t = ys + ψ(zs + (xs+· − xs))t.

Let us now define the continuous processes zt(w) = Φ(X(w))t, yt(w) =
ψ(X(w))t, where

Xt(w) = x +
m

∑

j=1

σjB
j
t (w).

Then we obtain the solution (zt, yt) of the system (29), which is obviously
unique. From the continuity of the above-mentioned mappings we get that
the processes zt and yt are adapted to the filtration Ft. Let τ(w) be an
arbitrary Ft+ -stopping time. Then we have zτ+t = Φ(zτ + (Xτ+· −Xτ ))t.

Now, since zτ is Fτ+ -measurable and the process (Xτ+u−Xτ ), u ≥ 0, is
independent of the σ-algebra Fτ+ (by the Markov property of the Brownian
motion B = Bt, t ≥ 0, with respect to the filtration FB

t+), having the
probability distribution which is also independent of τ , we assert that z =
zt, t ≥ 0, is indeed a strong Markov process with stationary transition
probabilities.
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