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THE WEIGHTED BMO CONDITION AND A
CONSTRUCTIVE DESCRIPTION OF CLASSES OF

ANALYTIC FUNCTIONS SATISFYING THIS CONDITION

L. CHIKVINIDZE

Abstract. The problem of local polynomial approximation of analy-
tic functions prescribed in finite domains with a quasiconformal boun-
dary is investigated in weighted plane integral metrics; a constructive
description of the class of analytic functions satisfying a weak version
of the known BMO condition is obtained.

The First results of the investigation of the problem (formulated by
V. I. Belyi) dealing with a local polynomial approximation of analytic func-
tions prescribed in finite domains with quasiconformal boundary have been
described in [1, 2] for weighted plane integral metrics. This problem is in-
vestigated in [3] for the nonweighted case, where a constructive description
of Hölder classes as well as of some other classes of analytic functions has
been obtained. In the present paper we continue the investigation of the
above-mentioned problem for the weighted case; moreover, a constructive
description of one more class of analytic functions in weighted plane integral
metrics is obtained.

1. Notation and Definitions. The Basic Results

Let G be the domain with a quasiconformal boundary ∂G = Γ, and
let y = y(ζ)− be a quasiconformal reflection across the curve Γ [4]. We
will be concerned only with the special, so-called canonical, quasiconformal
reflection (see relations (2.1) and (2.2)). Let w be some weight function (i.e.,
nonnegative and measurable) defined in the domain Γ. Let us introduce the
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notation

H ′(G) = {f : f holomorphic in G},
Lp(G, w) = {f : |f |pw ∈ L1(G)}, H ′

p(G,w) = Lp(G,w) ∩H ′(G) (p ≥ 1).

Furthermore, let σ be the plane Lebesgue measure, and let µ be the Borel
measure defined by the equality

µ(E) =
∫∫

E

w(z)dσz (E ⊂ G). (1.1)

The integral with respect to the measure µ of the function f will be denoted
by the symbols

∫∫

E

f(z)dµz =
∫∫

E

fdµ.

If µ = σ, then (in cases where this does not cause misunderstanding) we
shall use the brief notation

∫∫

E

f(z)dσz =
∫∫

E

f.

Let Q = Q(z, r) be an open square with center at the point z, whose
sides are parallel to the coordinate axes and have the length r, and let

F (G) = {Q = Q(z, r) : z ∈ Γ, r > 0}.

For a square Q denote |Q| = σ(Q).
Let the function f and the weight function w be defined in the domain

G, let the measure µ be defined by equality (1.1), and

fµ,Q∩G =
1

µ(Q ∩G)

∫∫

Q∩G

fdµ. (1.2)

We say that f satisfies the weighted BMO condition BMOp(G, w) (briefly,
f ∈ BMOp(G,w)), if

sup
Q∈F (G)

(

1
µ(Q ∩G)

∫∫

Q∩G

|f − fµ,Q∩G|pdµ
) 1

p df
= ‖f‖BMOp(G,w)< ∞. (1.3)

When p = 1 and w(z) = 1 everywhere in G, we shall use the usual notation
f ∈ BMO(G) and ‖f‖BMO(G) respectively.

The BMO(G) condition is a weaker analogue of the well-known BMO
(bounded mean oscillation) condition (see, e.g., [5, Ch. VI]).



THE WEIGHTED BMO CONDITION 219

Next, we say that the weight function w given in the domain G satisfies
the condition Ap(F (G)) (1 < p < ∞) (briefly w ∈ Ap(F (G))), if (assuming
0 · ∞ = 0)

sup
Q∈F (G)

(

1
|Q ∩G|

∫∫

Q∩G

w
)(

1
|Q ∩G|

∫∫

Q∩G

w−
1

p−1

)p−1

< ∞.

The condition Ap(F (G)), introduced for the first time in [6] (with the
unit circle as G), is a weaker analogue of the well-known Muckenhoupt
condition (Ap) [7].

Let z0 ∈ Γ, ρn(z0) (n ∈ N) be the distance from the point z0 to the
external level line Γ1+1/n of G, u(z0, r) = {z : |z − z0| < r}, c0 > 0. Set

G(z0, c0) =
{

z ∈ G : |ζ − z| ≥ c0|ζ − z0| ∀ζ ∈ CG
}

,

Gn(z0, c0) = G(z0, c0) ∪
{

u(z0, ρn(z0)) ∩G
}

.

The set G(z0, c0) is a kind of a “nontangential” subset of G with the
vertex at the point z0.

In the sequel, for brevity we shall write
(

∫∫

Gn(z0,c0)

|f(z)− Pn(z)|pw(z)dσz

) 1
p df

= ‖f − Pn‖z0,p,w.

Let us now formulate the basic results in which G denotes a finite domain
with a quasiconformal boundary Γ, the weight function w ∈ Ap(F (G))
(1 < p < ∞), and µ is the measure defined by equality (1.1).

Theorem 1. For the function f to belong to the class BMOp(G,w) ∩
H ′(G) (neglecting its values on the set of measure zero), it is necessary and
sufficient that a sequence of algebraic polynomials Pn of order not higher
than n exist such that for all z0 ∈ Γ and n ∈ N the relation

‖f − Pn‖z0,p,w ≤ c(c0)
(

µ{u(z0, ρn(z0)) ∩G}
) 1

p
(1.4)

holda, where the constant c(c0) does not depend on z0 and n.

Theorem 2. Let f ∈ H ′(G). The following conditions are equivalent:
(a) f ∈ BMO(G);
(b) f ∈ BMOp(G,w).

This theorem is an analogue of the well-known John and Nirenberg the-
orem (see, e.g., [5]).

Obviously, Theorem 2 allows us to formulate Theorem 1 as follows:

Theorem 1∗. Theorem 1 remains valid when the class BMOp(G) is
replaced by the class BMO(G).
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Thus we have given the constructive description of the class of functions
BMO(G) ∩H ′(G) in the weighted plane integral metrics.

2. Auxiliary Results

Let G be the domain with a quasiconformal boundary Γ, and let 0 ∈ G,
y = y(ζ) be a quasiconformal reflection across the curve Γ [4]. As follows
from the Ahlfors theorem [4] (see also [8]), the reflection y = y(ζ) can always
be chosen to be canonical in the sense that it is differentiable for ζ 6∈ Γ, and
for any fixed sufficiently small δ > 0 it will satisfy the relations

|yζ̄(ζ)| � M, |yζ(ζ)| 4 M, δ < |ζ| < 1/δ, ζ 6= Γ, (2.1)

|yζ̄(ζ)| 4 M |ζ|−2, |y(ζ) � | M |ζ|−1, |ζ| ≤ δ, |ζ| ≥ 1
δ
, (2.2)

where M = M(δ,Γ) is a constant depending only on δ and Γ.
The symbol A 4 B for the numbers A and B depending on some para-

meters denotes that A ≤ cB, where c = const > 0 does not depend on those
parameters; the symbol A < B means that B 4 A; A � B if simultaneously
A 4 B and A < B.

Let w ∈ Ap(F (G)) (1 < p < ∞), and let y = y(ζ) be a canonical
quasiconformal reflection across the curve Γ = ∂G. Let us introduce the
notation

w∗(z) =

{

w(z) for z ∈ G,
w(y(z)) for z 6∈ G,

µ∗(E) =
∫∫

E

w∗dσ. (2.3)

It is clear that if E ⊂ G, then µ(E) = µ∗(E). Suppose further that

ρ(E1, E2) = inf
{

|z1 − z2| : z1 ∈ E1, z2 ∈ E2
}

,

diam E = sup
{

|z1 − z2| : z1, z2 ∈ E
}

,

F (G, k) =
{

Q : diam Q ≥ kρ(Q, Γ), Q ∩G 6= ∅} (k > 0). (2.4)

Let w ∈ Ap(F (G)) (1 < p < ∞), and let w∗(z) be the function defined by
equality (2.3). Then owing to relations (2.1) and (2.2), we can conclude that
for all Q ∈ F (G, k), diam Q < k0 (k0, k > 0 are arbitrary fixed numbers)
the inequality

(

1
|Q|

∫∫

Q

w∗
)(

1
|Q|

∫∫

Q

w∗−
1

p−1

)p−1

≤ c(k, k0) < ∞ (2.5)

holds, where c(k, k0) is a constant independent of Q.
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Lemma 1 ([9], [10]). Let w ∈ Ap(F (G)), and let w∗(z) be the function
defined by equality (2.3). There exist numbers 0 < δ = δ(k, k0) < 1, 0 <
ε = ε(k, k0) < 1 such that for every e ⊂ Q the inequality |e| < δ|Q| implies

∫∫

e

w∗ < ε
∫∫

Q

w∗

for all Q ∈ F (G, k), diam Q < k0.

Next, by virtue of the Hölder inequality and relation (2.5), we find that
for all Q(z, r), Q(z, R) ∈ F (G, k) (0 < r ≤ R ≤ k0 < ∞) the inequality

( r
R

)2
≤ c(k, k0)

µ∗(Q(z, r))
µ∗(Q(z, R))

(2.6)

holds, where µ∗ is defined by equality (2.3).
In particular, it follows from (2.6) that µ∗ satisfies the known “doubling”

condition

µ∗(2Q) 4 µ∗(Q), (Q ∈ F (G, k), diam Q < k0). (2.7)

Let us now prove that for all squares Q ∈ F (G) (diam Q < k0) the
relation

µ(Q ∩G) < µ∗(Q) (2.8)

holds, where µ and µ∗ are defined respectively by equalities (1.1) and (2.3).
Indeed, let Q = Q(z0, r) (z0 ∈ Γ, r > 0), diam Q < k0. Owing to relations

(2.1) and (2.2), we get

µ∗(Q(z0, (1/M)r) ∩ CG) 4 c(M)µ∗(Q(z0, r) ∩G) = c(M)µ(Q ∩G),

where M > 1 is the constant from (2.1) and (2.2), and CG is the complement
to the domain G. But then, using the “doubling” condition (2.7), we get

µ∗(Q) 4 µ∗(Q(z0, (1/M)r) ∩G) + µ∗(Q(z0, (1/M)r) ∩ CG) 4

4 c(M)µ∗(Q(z0, r) ∩G) 4 µ(Q ∩G).

Let w be a weight function, and let µ∗ be the measure defined by equality
(2.3). Let f be a function given in the domain G, and let Q be a square.
Introduce the notation

f∗(z) =

{

f(z) for z ∈ G,
f(y(z)) for z 6∈ G,

f∗µ∗,Q =
1

µ∗(Q)

∫∫

Q

f∗dµ∗. (2.9)

In the case of the Lebesgue measure σ, we shall use f∗Q instead of f∗σ∗,Q.
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Lemma 2. Let w be some weight function, p > 1, f ∈ BMOp(G,w).
Then for all squares Q ∈ F (G, k), diam Q < k0 (k, k0 > 0 are fixed numbers)
the relation

(

1
µ∗(Q)

∫∫

Q

|f∗ − f∗µ∗,Q|pdµ∗
) 1

p

≤ c∗‖f‖BMOp(G,w) (2.10)

holds, where c∗ is a constant independent of Q, p, f , and w.

Proof. Assume first that Q ∈ F (G), diam Q < k0. Let M > 1 be the
number from relations (2.1) and (2.2), and let MQ be the square obtained
by an M -fold increase of the square Q. It follows from the “doubling”
condition (2.7) that

µ∗(Q) < c(M)µ∗(MQ) ≥ c(M)µ(MQ ∩G). (2.11)

On account of relations (2.1) and (2.2) we obtain

( ∫∫

Q∩CG

|f∗ − fµ,MQ|pdµ∗
) 1

p

4 M2
( ∫∫

MQ∩G

|f − fµ,MQ|pdµ
) 1

p

. (2.12)

Hence, using the Minkowsky inequality and relations (2.11), (2.12), and
(1.3), we obtain

(

1
µ∗(Q)

∫∫

Q

|f∗ − f∗µ∗,Q|pdµ∗
) 1

p

4

(

2
µ∗(Q)

∫∫

Q

|f∗ − fµ,MQ∩G|pdµ∗
) 1

p

4

4

(

M2 + 1
c(M)

1
µ(MQ ∩G)

∫∫

MQ∩G

|f − fµ,MQ∩G|pdµ
) 1

p

4 c∗‖f‖BMOp(G,w).

Thus we have proved that inequality (2.10) is true for all Q ∈ F (G),
diam Q < k0. Using the “doubling” condition (2.7), it is not difficult to
show that (2.10) holds for all Q ∈ F (G, k) as well.

Lemma 3. Let f ∈ BMO(G) be an analytic function in the domain G,
ζ ∈ G, Q = Q(ζ, a) 6∈ F (G, k) (k ≤ 1), Q ⊂ G. Then

|f(ζ)− f(z)| ≤ 4‖f‖BMO(G) ∀(z ∈ Q(ζ, a)).

Proof. Since Q = Q(ζ, a) 6∈ F (G, k) (k ≤ 1), it follows from the definition
of the set F (G, k) (see (2.4)) that diam Q < kρ(Q, Γ) (k ≤ 1). Hence

|ζ − z| ≤ 1
2

diam Q <
1
2
kρ(Q, Γ) <

1
2
kρ(ζ, Γ) <

1
2
ρ(ζ, Γ)
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for all z ∈ Q. Then assuming for brevity that ρ(ζ, Γ) = ρ, owing to the
mean value theorem and the condition f ∈ BMO(G), we obtain

|f(z)− f(ζ)| ≤ 1
|u(z, ρ/2)|

∫∫

u(z,ρ/2)

|f(ξ)− f(ζ)|dσξ ≤

≤ 4
|u(ζ, ρ)

|
∫∫

u(ζ,ρ)

|f(ξ)− fu(ζ,ρ)|dσξ ≤ 4‖f‖BMO(G).

for all z ∈ Q(ζ, a).

Lemma 4. Let f ∈ BMO(G) be an analytic function in the domain G,
and let f∗ and f∗Q be defined by equalities (2.9) (the case µ = σ), Q ∈
F (G, k) (k ≤ 1), α > c∗‖f‖BMO(G) (c∗ is a constant from (2.10)). Then
there exists at most a countable set of nonintersecting squares A = {Qj}
such that Qj ∈ F (G, k), and

(1) |f∗(z)− f∗Q| ≤ 12α ∀(z ∈ Q\Qj, Qj ∈ A); (2.13)

(2) α ≤ 1
|Qj |

∫∫

Qj

|f∗(z)− f∗Q|dσz < 4α ∀(Qj ∈ A); (2.14)

(3)
∑

Qj∈A

|Qj | ≤
1
α
‖f‖BMO(G)|Q|. (2.15)

Proof. It is obvious that the conditions (2.10) and α > c∗‖f‖BMO(G) yield

1
|Q|

∫∫

Q

|f∗(z)− f∗Q|dσz < α.

Let Q∗ be the square obtained by partitioning Q into four equal squares.
In the case Q∗ ∈ F (G, k) we insert Q∗ in A if

∫∫

Q∗ |f(z)−fQ|dσz ≥ α|Q∗|,
while when the opposite inequality holds we again partition Q∗ in four equal
squares and argue as above.

Let us show that the squares Qj ∈ A obtained in such a way satisfy all
the requirements of Lemma 2.

Let ζ ∈ {Q ∩ G}\ ∪ {Qj : Qj ∈ A}. Then, obviously, there exist the
squares Q1 and Q2 from the above-mentioned partitioning such that ζ ∈
Q1 ⊂ Q2, Q1 6∈ F (G, k), Q2 ∈ F (G, k), and

1
|Q2|

∫∫

Q2

|f∗(z)− f∗Q| < α,
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whence it follows that
1
|Q1|

∫∫

Q1

|f∗(z)− f∗Q|dσz <
4
|Q2|

∫∫

Q2

|f∗(z)− f∗Q|dσz < 4α.

Then, denoting by z1 the center of the square Q1 and using Lemma 3 and
the mean value theorem, we obtain

|f(ζ)− fQ1 | ≤ |f(ζ)− f(z1)|+ |f(z1)− fQ1 | ≤

≤ 4‖f‖BMO(G) +
2
|Q1|

∫∫

Q1

|f(z)− fQ1 |dσz ≤ 12α.

Thus the validity of the first requirement of Lemma 2 is proved.
Further, it is evident that the left-hand side of the “double” inequality

(2.14) holds for all Qj ∈ A. Let us show that the right-side of that inequality
is also valid.

Let Q∗
j be a square whose partitioning into four equal squares gives the

square Qj ∈ A. Clearly, Q∗
j ⊃ Qj , and

1
|Q∗

j |

∫∫

Q∗j

|f∗(z)− f∗Q|dσz < α.

Taking into account the above inequality, we obtain

1
|Qj |

∫∫

Qj

|f∗(z)− f∗Q|dσz <
4
|Q∗

j |

∫∫

Q∗j

|f∗(z)− f∗Q|dσz < 4α.

Thus relation (2.14) is proved.
Finally, using the already proven relation (2.14) and inequality (2.10)

(the case where µ = σ is the Lebesgue measure), we get

| ∪
A

Qj | =
∑

Qj∈A

|Qj | ≤
1
α

∑

Qj∈A

∫∫

Qj

|f∗(z)− f∗Q|dσz ≤

≤ 1
α

∫∫

Q

|f∗(z)− f∗Q|dσz ≤
1
α
|Q| ‖f‖BMO(G).

The proof of the following lemma can be found in [11]. Let us formulate
it in a way convenient for us.

Lemma 5. Let G be a finite domain with a quasiconformal boundary Γ,
z0 ∈ Γ, n,m ∈ N , n > m. Then

(m
n

)2
4

ρn(z0)
ρm(z0)

4
(m

n

)β
, (2.16)
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where β = β(G) > 0 is a constant depending only on G.

In particular, from relation (2.16) we obtain the known inequality

ρn(z0) <
( 1

n

)2
. (2.17)

Lemma 6. Let G be a finite domain with a quasi-conformal boundary
Γ, p > 1, w ∈ Ap(F (G)), z0 ∈ Γ, u(z0, r) = {z : |z − z0| < r}, let µ be
a measure defined by equality (1.1), and let {Πn(z)}∞n=1 be a sequence of
algebraic polynomials of order not higher than n such that

‖Πn‖z0,p,w ≤ c1
(

µ{u(z0, ρn(z0))}
) 1

p ,

where c1 is a constant not depending on z0 and n.
Then for all z ∈ u(z0, ρn(z0)) we have the inequality

|Π′n(z)| ≤ c2|ρn(z0)|−1,

where c2 is a constant not depending on z0 and n.

This lemma is the analogue of the well-known theorem on the derivatives
of algebraic polynomials [12, p.420], [13] which can be proved analogously
to the result of [3, p.14].

3. Proofs of the Basic Results

Proof of Theorem 1. For brevity we shall use the notation µ{u(z0, t)∩G} =
µ(z0, t) (t ≥ 0).

Let us prove first the necessity. Assume that f ∈ BMOp(G,w) ∩H ′(G)
and let us show that relation (1.4) holds.

Let n ∈ N , z0 ∈ Γ, Q = Q(z0, ρn(z0)), and µ and µ∗ be the measures
defined by the equalities (1.1) and (2.3). Relations (2.8), (2.6), and (2.17)
yield

µ(Q ∩G) < µ(Q∗) < [ρn(z0)]2 <
( 1
n

)4
,

but then, obviously, we shall have

fµ,Q∩G 4
1

µ(Q ∩G)

∫∫

G

|f |dµ 4 c(f, µ)
( 1
n

)−4
. (3.1)

Clearly, f ∈ H ′
p(G, w). But then, repeating the arguments (and taking

into account (3.1)) cited in [2, pp. 174, 182], we can see that there exists a
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sequence of algebraic polynomials Pn of order not higher than n, such that

‖f − Pn‖z0,p,w ≤ cρn(z0)
(

µ(z0, ρn(z0))
) 1

p ×

×
∞
∫

ρn(z0)

σp(f − fµ,Q∩G , w, z0, t)
t2µ1/p(z0, t)

dt. (3.2)

Now let us estimate the value σp(f − fµ,Q∩G , w, z0, t) for t ≥ ρn(z0).
Let Qm = Q(z0, 2mρn(z0)) (m ∈ N), Q0 = Q. Using relations (2.8) and

(2.3) for all m ≥ 1, we get

µ(Qm−1 ∩G) < µ∗(Qm−1) < µ∗(2Qm−1) = µ∗(Qm) ≥ µ(Qm ∩G).

Then, on account of (1.3), we have

|fµ,Qm∩G−fµ,Qm−1∩G|4
1

µ(Qm ∩G)

∫∫

Qm∩G

|f−fµ,Q−m∩G |dµ≤‖f‖BMOp(G,w).

Thus, using the Minkowsky inequality and relation (1.3) for all k ≥ 1, we
obtain

σp

(

f − fµ,Q∩G , w, z0, 2kρn(z0)
)

≤
( ∫∫

Qk∩G

|f − fµ,Qk∩G|pdµ
) 1

p

+

+
k

∑

m=1

|fµ,Qm∩G − fµ,Qm−1∩G|
( ∫∫

Qk∩G

dµ
) 1

p

≤

≤ ‖f‖BMOp(G,w)(1 + k)
(

∫∫

Qk∩G

dµ
) 1

p
=

= ‖f‖BMOp(G,w)

(

1 + log2
2kρn(z0)
ρn(z0)

)

· µ
1
p (z0, 2kρn(z0)),

whence, obviously,

σp(f − fµ,Q∩G , w, z0, t) ≤ ‖f‖BMOp(G,w)

(

1 + log2
t

ρn(z0)

)

· µ
1
p (z0, t)

for all t ≥ ρn(z0).
Consequently, owing to (3.2), we have

‖f − Pn‖z0,p,ω 4

4 ‖f‖BMOp(G,w)ρn(z0)
(

µ(z0, ρn(z0))
) 1

p

∞
∫

ρn(z0)

(

1 + log2
t

ρn(z0)

)

t2
dt =
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= ‖f‖BMOp(G,w)

(

µ(z0, ρn(z0))
) 1

p

∞
∫

1

(

1 + log2 τ
)

τ2 dτ 4

4 ‖f‖BMOp(G,w)
(

µ{u(z0, ρn(z0)) ∩G}
) 1

p .

Assume now that relation (1.4) is fulfilled for some function f given in
G. Then, obviously, f ∈ Lp(G,w). Moreover, f ∈ H ′(G) if we neglect the
values of the function f on the set of measure zero. Indeed, if z ∈ G is an
arbitrary point and z∗ ∈ Γ is a point such that |z − z∗| = ρ(z, Γ), then it is
easy to check that u(z, ρ(z, Γ)) ⊂ Gn(z∗, c0) (c0 ≤ 1

2 ).Taking into account
relation (1.4) it is not difficult to prove that the polynomials Pn converge
uniformly on u(z, 1

2ρ(z, Γ)). Cleary, the limiting analytic function coincides
with the functions f a.e.

Further, let z0 ∈ Γ, r > 0, Q = Q(z0, r), and let n ∈ N be a number such
that

ρ2n+1(z0) < r ≤ ρ2n(z0). (3.3)

Using the Minkowsky inequality, we can see that

(
∫∫

Q∩G

|f(z)− fµ,Q∩G|pdµz

) 1
p ≤

(

∫∫

Q∩G

|f(z)− P2n(z)|pdµz

) 1
p

+

(
∫∫

Q∩G

|P2n(z)− fµ,Q∩G|pdµz

) 1
p df

= I1 + I2.

By virtue of (1.4),

I1 ≤ constµ1/p(z0, ρn(z0)). (3.4)

It remains to estimate I2. Evidently,

I2 4 µ1/p(Q ∩G) · max
z∈Q∩G

|P2n(z)− fµ,Q∩G|. (3.5)

Then it is obvious that for all z ∈ Q ∩G

|P2n(z)− fµ,Q∩G| ≤
1

µ(Q ∩G)

∫∫

Q∩G

|f(ζ)− P2n(z)|dµζ ≤

≤ 1
µ(Q ∩G)

∫∫

Q∩G

|f(ζ)− P2n(ζ)|dµζ +

+ max
ζ∈Q∩G

|P2n(ζ)− P2n(z)| df
= I ′2 + I ′′2 .
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Using the Hölder inequality and relation (1.4), we obtain

I ′2 ≤
1

µ(Q ∩G)

(

∫∫

Q∩G

|f − P2n |pdµ
) 1

p
(

∫∫

Q∩G

dµ
)1− 1

p
4 const . (3.6)

To estimate I ′′1 , let us consider the polynomial

Π2k(z) = P2k(z)− P2k−1(z) (k ≥ 1).

By (2.15), the Minkowsky inequality and relation (1.4) imply

‖Π2k‖z0,p,w ≤ ‖f − P2k‖z0,p,w + ‖f − P2k−1‖z0,p,w 4 µ1/p(z0, ρn(z0)).

But then, according to Lemma 6, we have

|Π′2k(z)| 4 |ρ2k(z0)|−1 ∀(z ∈ u(z0, ρ2k(z0)), k ≥ 1).

Hence, taking into account (2.15), we obtain
∣

∣

∣P2n(ζ)− P2n(z)
∣

∣

∣ =
∣

∣

∣

(

P1(ζ)− P1(z)
)

+

+
n

∑

k=1

(

Π2k(ζ)−Π2k(z)
)∣

∣

∣ 4 |ζ − z|+
n

∑

k=1

∫

[ζ,z]

∣

∣

∣Π′2k(ξ)
∣

∣

∣|dξ| 4

4 |ζ − z|
(

1 +
n

∑

k=1

∣

∣ρ2k(z0)
∣

∣

−1
)

4
(

ρ2n(z0) +
n

∑

k=1

ρ2n(z0)
ρ2k(z0)

)

4

4
(

ρ2n(z0) +
n

∑

k=1

( 1
2n−k

)β
)

≤ const

for all z, ζ ∈ Q ∩G.
This means that I ′′2 ≤ const.
But then, taking into account (3.6) and (3.5), we get

I2 ≤ const µ1/p(z0, ρn(z0)),

which, with regard to (3.4), completes the proof of Theorem 1.

Proof of Theorem 2. Let us prove first that (b)⇒(a). Let ω ∈ Ap(F (G))
(1 < p < ∞), f ∈ BMOp(G, ω) and let us show that f ∈ BMO(G).

Indeed,

1
|Q ∩G|

∫∫

Q∩G

|f − fQ∩G|dσ ≤

≤ 2
|Q ∩G|

( ∫∫

Q∩G

|f − fµ,Q∩G|pwdσ
) 1

p
( ∫∫

Q∩G

w−
1

p−1 dσ
)

p−1
p

4
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4

(

1
µ(Q ∩G)

∫∫

Q∩G

|f − fµ,Q∩G|pdµ
) 1

p

×

×
(

1
|Q ∩G|

∫∫

Q∩G

w
) 1

p
(

1
|Q ∩G|

∫∫

Q∩G

w−
1

p−1

)
p−1

p

≤ const ‖f‖BMO(G).

It remains to prove that (a)⇒(b).
Let f ∈ BMO(G) be an analytic function in the domain G, let f∗ be a

function defined by the equality (2.9), ω ∈ AP (F (G)) (1 < p < ∞), and let
µ∗ be the measure defined by (2.3). We prove first that for all Q ∈ F (G)
and λ > 0 the relation

1
µ∗(Q)

µ∗
{

z ∈ Q : |f∗(z)− f∗Q| > λ
}

≤ C exp
( −cλ
‖f‖BMO(G)

)

(3.7)

holds, where C and c are the constants independent of f∗, Q, and λ.
Choose a square Q ∈ F (G). Let δ be the number from Lemma 1, and let

c∗ be the constant from (2.10). Without loss of generality we can assume
that δ < 1/c∗. In this case we can apply Lemma 4 to the function f∗ and
α = (1/δ)‖f‖BMO(G). Hence we get a family of disjoint squares A1 = {Q1

j :
Q1

j ∈ F (G, k)} such that

|f∗(z)− f∗Q| ≤ 12α

for all z ∈ Q\ ∪
A1

Q1
j ,

|f∗Q1
j
− f∗Q| < 4α (3.8)

according to (2.14), and by (2.15) we have

| ∪
A1

Q1
j | =

∑

A1

|Q1
j | ≤

1
α
‖f‖BMO(G) · |Q|.

Since (1/α)‖f‖BMO(G) = δ, by virtue of Lemma 1 we obtain

µ∗{∪
A1

Q1
j} ≤ εµ∗(Q). (3.9)

Applying again Lemma 4 to the function f∗ and α = (1/δ)‖f‖BMO(G),
for every Q1

j we obtain a family of nonintersecting squares A2 = {Q2
j : Q2

j ∈
F (G, k)} such that each of these squares is contained in one of the Q1

j .
Thus, by (3.8) and (2.13) the relation

|f∗ − f∗Q| ≤ |f∗ − f∗Q1
j
|+ |f∗Q1

j
− f∗Q| < 12α + 4α < 2 · 12α
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is fulfilled on Q\ ∪
A2

Q2
j , while owing to (2.14) and (3.8) we have that

|f∗Q2
j
− f∗Q| ≤ |f∗Q2

j
− f∗Q1

j
|+ |f∗Q1

j
− f∗Q| < 4α + 4α < 2 · 12α.

Finally, according to (2.15), we have
∣

∣

∣ ∪
Q2

j⊂Q1
j

Q2
j

∣

∣

∣ =
∑

Q2
j⊂Q1

j

|Q2
j | ≤

1
α
‖f‖BMO(G) · |Q1

j |

for every Q1
j .

Then again, by virtue of Lemma 1 and (3.9), we obtain

µ∗{∪
A2

Q2
j} =

∑

Q1
j∈A1

µ∗{ ∪
Q2

j⊂Q1
j

Q2
j} ≤

∑

Q1
j∈A1

εµ∗(Q1
j ) ≤ ε2µ∗(Q).

Continuing this process ad infinitum, we obtain at the step n a family of
intersecting squares A={Qn

j } such that

|f∗ − f∗Q| ≤ 12α · n a.e. in Q\ ∪
An

Qn
j and µ∗{ ∪

An
Qn

j } ≤ εnµ∗(Q).

Assume now that λ > 12α. Let n ≥ 1 be a natural number such that
12αn < λ ≤ 12αn + 12α. Then, obviously, we shall have

µ∗
{

z ∈ Q : |f∗(z)− f∗Q| > λ
}

≤ µ∗
{

z ∈ Q : |f∗(z)− f∗Q| > 12αn
}

≤

≤ µ∗
{

∪
An

Qn
j

}

≤ εnµ∗(Q) ≤ ε
λ

12α−1µ∗(Q) =
1
ε

exp
( −cλ
‖f‖BMO(G)

)

µ∗(Q)

for c = (1/12)δ · ln(1/ε).
Hence, estimate (3.7) is valid for all λ > 12α. But for all 0 < λ ≤ 12α

we, obviously, have

µ∗{z ∈ Q : |f∗(z)− f∗Q| > λ} ≤ µ∗(Q) = exp
( cλ
‖f‖BMO(G)

)

×

× exp
( −cλ
‖f‖BMO(G)

)

µ∗(Q) ≤ exp
(12c

δ

)

exp
( −cλ
‖f‖BMO(G)

)

µ∗(Q).

Consequently, assuming C = max
{1

ε
, exp

(12c
δ

)}

, we get estimate (3.7)
for all λ > 0.

Relation (3.7) with regard to (2.8) implies that

1
µ(Q ∩G)

µ{z ∈ Q ∩G : |f(z)− f∗Q| > λ} 4 exp
( −cλ
‖f‖BMO(G)

)

.(3.10)

The latter relation allows us to complete the proof of Theorem 2. Indeed,
using first the Minkowsky inequality and then writing the corresponding
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integral in terms of a distribution function, applying estimate (3.10), we
obtain

(

1
µ(Q ∩G)

∫∫

Q∩G

|f−fµ,Q∩G|pdµ
)

≤
(

2
µ(Q ∩G)

∫∫

Q∩G

|f−f∗Q|pdµ
) 1

p

=

=
(

2p

∞
∫

0

λp−1 1
µ(Q ∩G)

µ{z ∈ Q ∩G : |f(z)− f∗Q| > λ}dλ
) 1

p

4

4

(

2p

∞
∫

0

λp−1 exp
(

−cλ
‖f‖BMO(G)

)

dλ
) 1

p

4 c(p)
(

‖f‖BMO(G)
) 1

p ,

which implies that f ∈ BMOp(G, w).
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