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ON KRULL DIMENSION OF ORE EXTENSIONS


E. RTVELIASHVILI


Abstract. The Krull dimension of rings of skew polynomials is stu-
died. Earlier the problem of Krull dimension was investigated only for
some particular cases, namely, for Weyl algebras [2], a ring of differ-
ential operators [7,8], as well as for rings of Laurent skew polynomials
[9–10].


Let R be a ring with unity and let R[x] be a ring of left polynomials
(i.e., polynomials with coefficients from the left to the powers of x) over R.
Suppose that α is an endomorphism of R and δ is an α-differentiation of R,
i.e., δ(a+b) = δ(a)+δ(b) and δ(ab) = δ(a)b+α(a)δ(b) for any a, b ∈ R. Let
R[x; α; δ] denote the ring of left skew polynomials over R [1] (the additive
group of this ring coincides with the one of R[x] and the multiplication in
it is defined by means of operators in R[x] and the following commutation
formula:


x · a = α(a)x + δ(a), a ∈ R). (1)


If δ is the zero mapping of R, we use the notation R[x;α] for R[x;α; δ].
Denote by K.dim(A) the Krull dimension of a ring A in the sense of


Gabriel and Rentschler (i.e., the deviation of the set of left ideals of A) [2].


Theorem 1. Let R be a ring with unity, let α be its automorphism, and
let δ be a nilpotent (δd = 0) α-differentiation of R. Suppose that δ−i(1R) 6=
∅ for i = 1, 2, . . . , d− 1. Then


K. dim(R[x; α; δ]) = K. dim(R[x; α]) = K. dim(R[x]).


Theorem 1 is a trivial consequence of the following propositions:
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Proposition 1. Let R be a ring with unity, let α be its automorphism,
and let δ be a nilpotent (δd = 0) α-differentiation of R. If δ−i(1R) 6= ∅ for
i = 1, 2, . . . , d− 1, then


K. dim(R[x;α]) ≤ K. dim(R[x; α; δ]).


Proposition 2. Let α be an injective endomorphism of a ring R with
unity satisfying


α(a) < Rα(m) ⇒ a < m


for any left ideals a and m of R, where


Rα(m) =
{


n
∑


p=1


λpα(mp); mp ∈ m; λp ∈ R
}


.


Then
K. dim(R[x]) ≤ K. dim(R[x;α]).


Proposition 3. Let α be an automorphism of a ring R with unity. Then


K. dim(R[x;α; δ]) ≤ K. dim(R[x]).


The proofs of these propositions as well as of the other ones given in this
paper are based on


Lemma 1 [2]. Let E and F be partially ordered sets. If there exists a
strictly isotonic mapping Φ : E → F , then dev E ≤ dev F .


To prove Proposition 1, we shall also need


Lemma 2. Let α be an automorphism of a ring R with unity, and let δ
be an α-differentiation of R. Then the condition


f1c1 + f2c2 + · · ·+ fncn = c, (2)


where f1, f2, . . . , fn ∈ R[x; α; δ] and c1, c2, . . . , cn, c ∈ R, implies


c = b1c1 + b2c2 + · · ·+ bncn


with b1, b2, . . . , bn ∈ R.


Proof. Suppose that k is the maximum of degrees of polynomials
f1, f2, . . . , fn. We can write these polynomials as


f1 = a1kxk + a1,k−1xk−1 + · · ·+ a10,


f2 = a2kxk + a2,k−1xk−1 + · · ·+ a20,


. . . . . . . . . . . . . . . . . . . . . . . . .


fn = ankxk + an,k−1xk−1 + · · ·+ an0,


aip ∈ R, i = 1, 2, . . . , n, p = 0, 1, . . . , k.
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Here some of the aip’s may be equal to zero.
Calculate the left side of (2) (using aα and aδ instead of α(a) and δ(a)).


f1c1 + f2c2 + · · ·+ fncn =
n


∑


i=1


aikcαk


i xk +


+
n


∑


i=1


(


aik(cδαk−1


i + cαδαk−2


i + · · ·+ cαk−1δ
i ) + ai,k−1cαk−1


i


)


xk−1 + · · ·+


+
n


∑


i=1


(


aik(cδdαk−d


i + cδd−1αδαk−d−1


i + · · ·+ cδd−1αk−dδ
i + cδd−2αδ2αk−d−1


i +


+ · · ·+ cαk−dδd


i ) + ai,k−1(cδd−1αk−d


i + · · ·+ cαk−dδd−1


i ) + · · ·+


+aidcαd


i


)


xd + · · ·+
n


∑


i=1


(aikcδk


i + ai,k−1cδk−1


i + · · ·+ ai0ci).


Taking into consideration (2), we have


n
∑


i=1


aikcαk


i = 0,


n
∑


i=1


(


aik(cδαk−1


i + cαδαk−2


i + · · ·+ cαk−1δ
i + ai,k−1cαk−1


i


)


= 0,


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
n


∑


i=1


(


aik(cδk−1α
i + cδk−2αδ


i + · · ·+ cαδk−1


i ) +


+ ai,k−1(cδk−2α
i + · · ·+ cαδk−2


i ) + · · ·+ ai1cα
i


)


= 0,
n


∑


i=1


(aikcδk


i + ai,k−1cδk−2


i + · · ·+ ai0ci) = c.


Using these equalities and calculating
(∑n


i=1 aikcαk


i


)(α−1δ)k


, we obtain


0=
(


n
∑


i=1


aα−1


ik cαk−1


i


)δ(α−1δ)k−1


=
(


n
∑


i=1


(aα−1δ
ik cαk−1


i +aikcαk−1δ
i )


)(α−1δ)k−1


=


=
(


n
∑


i=1


(


aα−1δ
ik cαk−1


i −aik(cδαk−1


i +· · ·+cαk−2δα
i )−ai,k−1cαk−1


i


)


)(α−1δ)k−1


=


=
(


n
∑


i=1


(


aα−1δα−1δ
ik cαk−2


i +aα−1δ
ik cαk−2δ


i −aα−1δ
ik (cδαk−2


i +· · ·+cαk−2δ
i )−
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−aik(cδαk−2δ
i +· · ·+cαk−2δ2


i )−aα−1δ
i,k−1c


αk−2


i −ai,k−1cαk−2δ
i


)


)(α−1δ)k−2


=


=
(


n
∑


i=1


(


a(α−1δ)2


ik cαk−2


i −aα−1δ
ik (cδαk−2


i +· · ·+cαk−3δα
i )+aik(cδ2αk−2


i +


+cδαδαk−3


i + · · ·+ cαk−3δ2α
i ) + ai,k−1(cδαk−2


i + · · ·+ cαk−3δα
i )−


−aα−1δ
i,k−1c


αk−2


i + ai,k−2cαk−2


i


)


)(α−1δ)k−2


= · · · =
(


n
∑


i=1


(


a(α−1δ)k−1


ik cα
i −


−a(α−1δ)k−2


ik cδα
i + · · ·+ (−1)k−1aikcδk−2α


i − a(α−1δ)k−2


i,k−1 cα
i +


+a(α−1δ)k−3


i,k−1 cδα
i + · · ·+ (−1)k−1ai,k−1cδk−3α


i + · · ·+ (−1)k−1ai1cα
i


)α−1δ
=


=
n


∑


i=1


(


a(α−1δ)k


ik ci − a(α−1δ)k−1


i,k−1 ci + · · ·+


+(−1)k−1aα−1δ
i1 ci + (−1)k−1(aikcδk


i + ai,k−1cδk−1


i + · · ·+ ai1cδ
i )


)


,


and therefore


c =
n


∑


i=1


(


(−1)k(


a(α−1δ)k


ik − a(α−1δ)k−1


i,k−1 + · · ·+ (−1)k−1aα−1δ
i1


)


+ ai0


)


ci.


Proof of Proposition 1. Taking into account that the Krull dimension of the
ring A is equal to dev(Id A), where Id A is the set of left ideals of A, by
Lemma 1 it suffices to construct a strictly isotonic mapping F from the set
of left ideals of R[x;α] into the set of left ideals of R[x; α; δ].


First of all, let us show by induction on k that for any a, b ∈ R we can
write δk(a · b) as


δk(ab) = akδk(b) + ak−1δk−1(b) + · · ·+ a1δ(b) + a0b, (3)


where a0, a1, . . . , ak ∈ R are the coefficients found from the representation


xka = akxk + ak−1xk−1 + · · ·+ a0.


Indeed, if k = 1, then


δ(ab) = α(a)δ(b) + δ(a)b and xa = α(a)x + δ(a).


Suppose the validity of (3) for some natural k. Then


δk+1(ab) = δ(δk(ab)) = δ(akδk(b) + ak−1δk−1(b) + · · ·+ a0b) =


= a′k+1δ
k+1(b) + a′kδk(b) + · · ·+ a′0b,


where a′k+1 = α(ak), a′0 = δ(a0), and a′n = δ(an) + α(an−1) for n =
1, 2, . . . , k.
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On the other hand,


xk+1a = x(xka) = x(akxk + ak−1xk−1 + · · ·+ a0) =


= α(ak)xk+1 + (δ(ak) + α(ak−1))xk + · · ·+ (δ(a1) + α(a0))x + δ(a0) =


= a′k+1x
k+1 + a′kxk + · · ·+ a′0.


The induction is thus completed.
Now calculate xda. Suppose that


xda = adxd + ad−1xd−1 + · · ·+ a0, a0, a1, . . . , ad ∈ R.


We have


δd(ab) = adδd(b) + ad−1δd−1(b) + · · ·+ a0b, b ∈ R,


where a0 = δd(a). Since δd = 0, we obtain


ad−1δd−1(b) + · · ·+ a2δ2(b) + a1δ(b) = 0. (4)


Since b is an arbitrary element of R and δ−1(1R) 6= ∅, we can assume
in (4) that b ∈ δ−1(R). Taking into account that δ(0) = 0 and δ(1R) =
δ(1R · 1R) = δ(1R) + δ(1R) = 0, we have a1 = 0. Further, assuming that
b ∈ δ−2(1R), we obtain a2 = 0, and so on. Finally, we have


a0 = a1 = · · · = ad−1 = 0.


Therefore xda = adxd. Using the commutation formula (1), we easily obtain
that ad = αd(a), and hence


xda = αd(a)xd.


Moreover, if p = md + q, we can write


xpa = xqαmd(a)xmd, p, q, m ∈ N ∪ {0}. (5)


Now we begin the construction of the mapping F .
Let I be an arbitrary left ideal of R[x;α]. Let n be the minimum of


degrees of nonzero polynomials from I. For any k ≥ n denote by ak the set
of highest-degree coefficients of kth polynomials from I. Thus we obtain
the sequence of left ideals of R:


an, an+1, . . .


satisfying


α(an+i) ⊆ an+i+1 for i ∈ N ∪ {0}. (6)


(This means that this sequence is α-nondecreasing.)
Consider all monomials of the form


α(n+i)(d−1)(an+i)x(n+i)d, an+i ∈ an+i, i ∈ N ∪ {0}, (7)
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and let J be the left ideal of R[x; α; δ] generated by them. Define the
mapping F by


F (I) = J,


and show that it is strictly isotonic.
Let us first study the structure of J . Taking into account (5) and the set


of generators of J , we easily check that any polynomial from J with degree
divisible by d is a monomial. Let


g = αr(d−1)(ar)xdr, ar ∈ ar,


be any of them, and suppose that


g =
m


∑


λ=1


fλgλ, fλ ∈ R[x; α; δ],


where gλ is of the form (7).
Take any λ ∈ {1, 2, . . . ,m} and let the degree of gλ be d · k. By (5) we


can assume: if k > r, then fλ = 0; if k = r, then the degree of fλ is less
than d; if k < r, then fλ contains only terms of the degree from the interval
[dr − dk; d(r + 1)− dk) of natural numbers.


Suppose that


gλ = αk(d−1)(ak)xdk, k < r, ak ∈ ak.


We can assume that


fλ = c1xd(r+1)−1−dk + · · ·+ cdxdr−dk; c1, c2, . . . , cd ∈ R.


Then using (5), we obtain


fλ · gλ = (c1xd−1 + c2xd−2 + · · ·+ cd)αdr−dk(αk(d−1)(ak))xdr.


But
αdr−dk(


αk(d−1)(ak)
)


= αrd−k(ak) = αr(d−1)(αr−k(ak)
)


.


By (6), αr−k(ak) ∈ ar. Therefore any product fλ · gλ such that the degree
of gλ is less than the degree of g can be replaced by the product f ′λ · g′λ,
where the degree of f ′λ is less than d, the degree of g′λ is equal to the degree
of g, and g′λ ∈ J . Hence by Lemma 2 the coefficient of g can be rewritten
as


m
∑


λ=1


bλαr(d−1)(arλ), bλ ∈ R.


Since ar is an ideal, we conclude that


a = αr(d−1)(a) with a ∈ ar. (8)


Now we can show that the mapping F constructed above is strictly iso-
tonic.
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Let I1 be any left ideal of R[x; α] such that I ⊂ I1, and let F (I1) = J1.
We have to show that J ⊂ J1. By the construction of F it is clear that
J ⊆ J1.


Since I1 ⊃ I, there exists a polynomial


h = bkxk + bk−1xk−1 + · · ·+ b0, bk, bk−1, . . . , b0 ∈ R,


in I1 such that it is not an element of I. More than that we can assume that
bk cannot be obtained as a left linear combination of the highest coefficients
of polynomials of kth degree from I. Indeed, if it is not the case, we can
take the appropriate difference h −


∑


µ cµfµ which will be an element of
I1\I whose degree will be less than that of h, and so on.


Obviously, αk(d−1)(bk)xdk ∈ J1. Let us show that this monomial does
not belong to J . Suppose the contrary. Then by (8),


bkxk ∈ I


which contradicts the choice of h.
Before proving Proposition 2 note that for the first time an endomorphism


of the type considered in this proposition has been studied by Lesieur [3].
He proved that the condition


α(a) ⊂ Rα(m) ⇒ a ⊂ m


is equivalent to


α(a) =
n


∑


j=1


λjα(bj) ⇒ a =
n


∑


j=1


µjbj , a, λj , µj , bj ∈ R. (9)


It was also shown by him that elements of the left ideal


Rα
︸︷︷︸


(Rα(· · · (Rα(a)) · · · ))
︸ ︷︷ ︸


n times


of R generally have the form


d
∑


i=1


µiαn(ai), µi ∈ R; ai ∈ a.


Proof of Proposition 2. By Lemma 1 it suffices to construct a strictly isotonic
mapping F from the set of left ideals of R[x] into the set of left ideals of
R[x;α].


Let I be any left ideal of R[x]. Let n be the minimum of the degrees of
nonzero polynomials from I. Consider the nondecreasing sequence


an ⊆ an+1 ⊆ · · · , n ∈ N ∪ {0}, (10)







270 E. RTVELIASHVILI


of left ideals of R, where an+i (i = 0, 1, 2, . . . ) is the set (in fact, the left
ideal) of highest coefficients of all polynomials of degree n + i from I. With
the help of this sequence we can construct the α-nondecreasing sequence of
left ideals of R:


a′n
α
↪→ Rα(a′n+1)


α
↪→ Rα(Rα(a′n+2))


α
↪→ · · · , (11)


where a′n+i = Rα
︸︷︷︸


(Rα(· · · (Rα(an+i)) · · · ))
︸ ︷︷ ︸


n times


, i = 0, 1, 2, . . . .


Consider all monomials of the form


an+ixn+i, an+i ∈ Rα(Rα(· · · (Rα(a′n+i)) · · · ))
︸ ︷︷ ︸


i times


, i = 0, 1, . . . , (12)


and let J be the left ideal of R[x;α] generated by them.
Define the mapping F by


F (I) = J.


Let I1 ⊃ I be any left ideal, and let J1 = F (I1). It follows from the
construction of F that J ⊆ J1.


As in proving Proposition 1, choose a polynomial


g = adxd + · · ·+ a0, a0, · · · , ad ∈ R, d ∈ N ∪ {0},


from I1 which does not belong to I. Here we can also assume that the highest
term of g cannot be obtained as a left linear combination of highest terms of
the polynomials from g having the same degree. Obviously, αd(ad)xd ∈ J1.
Show that this monomial is not in J .


Suppose the contrary. Then the monomial αd(ad)xd can be represented
as the sum of the products of monomials of the form


cd−pxd−p · apxp, cd−p ∈ R, ap ∈ Rα(Rα(· · · (Rα(ap)) · · · ))
︸ ︷︷ ︸


p times


, (13)


where p ≤ d and ap =
∑k


i=1 µiαp(bi), bi ∈ ap.
If we carry out the multiplication in (13), we obtain


cd−pxd−papxp =
k


∑


i=1


λiαd(bi)xd,


where λi = cd−pαd−p(µi), λi ∈ R. Moreover, by (11) we can assume that
bi ∈ ad (i = 1, 2, . . . , k).


Thus we have


αd(ad) =
n


∑


j=1


k
∑


i=1


λijαd(bij), λij ∈ R; bij ∈ ad.
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This equality can be rewritten as


αd(ad) =
q


∑


l=1


νlαd(bl), νl ∈ R, bl ∈ ad, q ≤ nk.


Using here equality (9) d times, we get


ad =
q


∑


l=1


βlbl, βl ∈ R, bl ∈ ad.


But this contradicts the choice of g.
Thus we have proved that F is strictly isotonic.


Proof of Proposition 3. Let I be any left ideal of R[x; α; δ]. Consider all the
monomials of the form


α−n(an)xn, an ∈ an, (14)


where an is the left ideal of all polynomials of degree n from I.
Let J be the left ideal of R[x] generated by monomials (14). Define the


mapping F from the set of left ideals of R[x; α; δ] into the set of left ideals
of R[x] by


F (I) = J.


Since α is the automorphism of R and α−n(an) ⊆ α−(n+1)(an+1), ∀n ∈ N,
it can be proved quite analogously to the proofs of Propositions 1 and 2 that
F is strictly isotonic.


Remark 1. As an example let us show that the equality given in Propo-
sition 3 can be strict.


Let R = K[y], where K is a field of characteristic zero. Let α be the
identical automorphism of R, and let δ be the partial differentiation by the
variable y. Then δ is the α-differentiation of R, and thus we obtain the
ring of skew polynomials R[x; α; δ] which can be considered as the Weyl
algebra over K. Its Krull dimension is equal to 1 [2]. On the other hand,
R[x] = K[y][x] = K[y; x]. Therefore, the Krull dimension of R[x] is 2.


Remark 2. Let R be any division ring and let α be its automorphism.
Then the definition of the Krull dimension and Proposition 3 imply that


K. dim(R[x; α; δ]) = 1.


Taking into consideration the already known results concerning the Krull
dimension of polynomial rings, from Theorem 1 we obtain
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Corollary 1. Let R be a left Noetherian ring with the Krull dimension
n. Let α be an automorphism of R and let δ be a nilpotent (δd = 0) α-
differentiation of R. Moreover, let δ−i(1) 6= ∅, i = 1, 2, . . . , d− 1. Then


K.dim(R[x; α; δ]) = K. dim(R[x;α]) = n + 1.


Let R be a ring and let α and δ satisfy the conditions of Theorem 1.
Denote by R[[x; α;∆]] the ring of left skew formal power series over R[s] for
which


xa = aδ0x + aδ1x2 + · · ·+ aδd−1xd−1, a ∈ R,


where δ0 = α, δ1 = δα, . . . , δd−1 = δd−1α.


Proposition 4. K. dim(R[x; α; δ]) ≤ K.dim(R[[x;α;∆]]).


Proof. In order to construct a strictly isotonic mapping from the set of left
ideals of R[x; α; δ] into the set of left ideals of R[[x;α; ∆]], it suffices to
associate with any left ideal I of R[x; α; δ] the left ideal J of R[[x; α;∆]]
generated by the monomials of the form


αdr
(ad) · xdr; ad ∈ R,


where adxd is the highest-degree term of the dth degree polynomial from I.
The fact that this mapping is strictly isotonic, can be proved as above.


Consider now the ring R[x1, . . . , xn; α1, . . . , αn; δ1, . . . , δn] of left skew
polynomials in n variables over R [6], where


aαiαj = aαjαi , aδiδj = aδjδi , i, j = 1, 2, . . . , n;


aαiδj = aδjαi , i 6= j;


xixj = xjxi, xia = αi(a)xi + δi(a), a ∈ R.


(15)


It is easy to show that if the endomorphisms αi (i = 1, 2, . . . , n) of R
and the corresponding αi-differentiations δi (i = 1, 2, . . . , n) of R satis-
fy (15), then R[x1, . . . , xn; α1, . . . , αn; δ1, . . . , δn] can be represented as the
ring of left skew polynomials in one variable An−1[xn; αn; δn] over An−1 =
R[x1, . . . , xn−1; α1, . . . , αn−1; δ1, . . . , δn−1], where the mappings αn and δn


are defined as follows: if


f =
∑


ν


aνxν1
1 · · ·xνn−1


n−1 ∈ An−1, aν ∈ R,


then
αn(f) =


∑


ν


αn(aν)xν1
1 · · ·xνn−1


n−1


and
δn(f) =


∑


ν


δn(aν)xν1
1 · · ·xνn−1


n−1
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(the fact that δn is an αn-differentiation of An−1 can be checked by direct
calculation). If αn is an automorphism of R, then αn is an automorphism
of An−1. This enables us to generalize Proposition 3.


Proposition 5. Let αi (i = 1, 2, . . . , n) be automorphisms of R. Then


K.dim(R[x1, . . . , xn; α1, . . . , αn; δ1, . . . , δn]) ≤ K.dim(R[x1, . . . , xn]).


Taking into account that if δn is a nilpotent αn-differentiation of R, then
δn is a nilpotent αn-differentiation of An−1m from Theorem 1 we obtain


Theorem 2. Let αi (i = 1, 2, . . . , n) be automorphisms of R, and let δi
(i = 1, 2, . . . , n) be nilpotent (δdi


i = 0) αi-differentiations of R such that
δ−ki
i (1) 6= ∅ for ki = 1, 2, . . . , di − 1. Then


K. dim(R[x1, . . . , xn; α1, . . . , αn; δ1, . . . , δn]) =


K.dim(R[x1, . . . , xn;α1, . . . , αn]) = K.dim(R[x1, . . . , xn]).


If, in addition, R is a left Noetherian ring with finite Krull dimension, then


K. dim(R[x1, . . . , xn; α1, . . . , αn; δ1, . . . , δn]) = K.dim R + n.
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