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ALMOST PERIODIC HARMONIZABLE PROCESSES

RANDALL J. SWIFT

Abstract. The class of harmonizable processes is a natural extension
of the class of stationary processes. This paper provides sufficient con-
ditions for the sample paths of harmonizable processes to be almost
periodic uniformly, Stepanov and Besicovitch.

1. Introduction

The concept of almost periodic (a.p.) stationary stochastic processes
was first introduced and studied by Slutsky [1], who obtained sufficient
conditions for the sample paths of a stationary process to be Besicovitch
or B2a.p.. Later, Udagawa [2], gave conditions for the sample paths to be
Stepanov or S2a.p.. Kawata [3], extended these results to a very general
setting and also gave conditions for uniformly a.p. (u.a.p.) sample paths.

The class of harmonizable stochastic processes provide a natural exten-
sion to the class of stationary stochastic processes. This nonstationary class
of processes was first introduced by Loéve, [4] and later independently, by
Rozanov [5]. These processes have been extensively studied by Rao [6], [7],
[8], along with his students: Chang and Rao [9], [10], Mehlman [11] and
Swift [12], [13], [14], [15]. The sample path behavior of harmonizable pro-
cesses has not yet been throughly investigated, Swift [12], [15] considered the
analyticity of the sample paths of harmonizable processes. This paper pro-
vides sufficient conditions for harmonizable processes to be almost periodic,
similar to Kawata’s in the stationary case, of which these are extensions.

The basic background and structure of harmonizable processes is out-
lined in the next section. The remaining sections of the paper develop the
sufficient conditions of harmonizable processes to be almost periodic.
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2. Preliminaries

To introduce the desired class of random functions, recall that if a process
X : R→ L2

0(P ) is stationary then it can be expressed as

X(t) =
∫

R

eiλtdZ(λ), (1)

where Z(·) is a σ-additive stochastic measure on the Borel sets of R, with
orthogonal values in the complex Hilbert space, L2

0(P ), of centered random
variables. The covariance, r(·, ·), of the process is

r(s, t) =
∫

R

ei(s−t)λdF (λ), (2)

where E(Z(A)Z(B)) = F (A ∩B), F a bounded Borel measure on R.
A generalization of the concept of stationarity which retains the power-

ful tools of Fourier analysis is given by processes X : R → L2
0(P ) with

covariance r(·, ·) expressible as

r(s, t) =
∫

R

∫

R

eiλs−iλ′tdF (λ, λ′), (3)

where F (·, ·) is a complex bimeasure, called the spectral bimeasure of the pro-
cess, of bounded variation in Vitali’s sense or more inclusively in Fréchet’s
sense; in which case the integrals are strict Morse–Transue (cf. [6] of
Rao). The covariance as well as the process are termed strongly or weakly
harmonizable respectively. Every weakly or strongly harmonizable pro-
cess X : R → L2(P ) has an integral representation given by (1), where
Z : B → L2(P ) is a stochastic measure (not necessarily with orthogonal
values) and is called the spectral measure of the process. Both of these con-
cepts reduce to the stationary case if F concentrates on the diagonal λ = λ′

of R×R. The interested reader is encouraged to pursue the papers by Rao
and the others cited earlier.

3. Almost Periodic Harmonizable Processes

For convenient reference the classical definitions of the classes u.a.p.,
S2a.p and B2a.p are recalled here. The standard classical theory will be
used throughout and may be found in Besicovitch’s book [16].

Let A be the class of all finite trigonometric polynomials

S(t) =
n

∑

k=1

akeiλkt. (4)
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The various forms of almost periodicity are obtained by considering the
following distances between two functions f(t) and φ(t) from the class A.

(i) the uniform distance:

Du[f(t), φ(t)] = sup
−∞<t<∞

|f(t)− φ(t)| ; (5)

(ii) the S2 (Stepanov) distance:

DS2 [f(t), φ(t)] = sup
−∞<t<∞





t+1
∫

t

| f(x)− φ(x) |2 dx





1
2

; (6)

(iii) the B2 (Besicovitch) distance:

DB2 [f(t), φ(t)] =



 lim
t→∞

sup
1
t

t
∫

0

| f(x)− φ(x) |2 dx





1
2

. (7)

The classical results show that these are norms on A, and that the class
of all uniformly almost periodic functions are given by the closure of A
under Du[·, ·]. Similarly, the class of all S2 almost periodic (S2a.p) func-
tions, (respectively B2 a.p.) is the closure of A under DS2 [·, ·] (respectively
DB2 [·, ·]).

The generalization of almost periodicity introduced by H. Weyl (cf. Besi-
covitch [16]), as well as the further generalizations obtained by T. Hillmann
[17], for classes of Besicovitch–Orlicz almost periodic functions, (BΦ, where
Φ is a Young’s function) are not considered in the following work. These
generalizations provide further extensions and await a serious investigation.

The results that will subsequently be developed follow from assumptions
on the covariance r(·, ·) being a u.a.p. function of two variables. More
precisely,

Definition 3.1. A stochastic process X : R→ L2
0(P ) is quadratic mean

uniformly almost periodic (q.m.u.a.p.) if for each ε > 0,

{

τ : sup
−∞<t<∞

E | X(t + τ)−X(t) |2< ε
}

(8)

is relatively dense on R.

Simiarly, we may consider q.m. S2 a.p. processes:
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Definition 3.2. A stochastic process X : R→ L2
0(P ) is quadratic mean

S2 almost periodic (q.m. S2 a.p.) if for each ε > 0,






τ : sup
−∞<t<∞

t+1
∫

t

E | X(t + τ)−X(t) |2 dt < ε







(9)

is relatively dense on R.

The concept of a relatively dense set may be found in Besicovitch [16],
and is recalled here in the following definition.

Definition 3.3. A set E ⊂ R is relatively dense if there exists a number
l > 0 such that any interval of length l contains at least one number of E.

The following observation shows that these concepts coincide for u.a.p.
covariances r(·, ·) without any further assumptions on r(·, ·).

Proposition 3.1. X(·) is q.m.u.a.p. iff r(·, ·) is u.a.p.. X(·) is q.m. S2

a.p. iff r(·, ·) is S2 a.p..

Proof. The statement X(·) q.m.u.a.p. implies r(·, ·) u.a.p. was recently
observed by Hurd [18]. For the converse, suppose r(·, ·) is u.a.p. as a
function of two variables. So, sets of the form

{

(u, v) : sup
u,v∈R

| r(s + u, t + v)− r(s, t) |< ε
}

are relatively dense in the plane. Further, since a u.a.p. function of two
variables is u.a.p. with respect to each of the variables, the following is true.
Using

E | X(t + τ)−X(t) |2 ≤| r(t + τ, t + τ)− r(t + τ, t) | +
+ | r(t, t + τ)− r(t, t) |,

for each term on the right side a relatively dense set on R may be chosen
appropriately so that

{

τ : sup
−∞<t<∞

E | X(t + τ)−X(t) |2< ε
}

is relatively dense on R. Thus X(·) is q.m.u.a.p..
The equivalence X(·) q.m. S2 a.p. ⇐⇒ r(·, ·) S2 a.p. is a consequence

of a classical result of Bochner’s, as was noted by Kawata [3]. This finishes
the proof.

Combining the concepts of uniform almost periodicity with harmoniz-
ability, the following important characterization can be given.
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Theorem 3.1. The spectral bi-measure F (·, ·) of a strongly harmonizable
process has countable support iff the covariance r(·, ·) is a uniformly almost
periodic function of two variables.

Proof. If F (·, ·) has countable support {(λj , λ′k)}∞j,k=1, letting

a(λ, λ′) = F (λ + 0, λ′ + 0)− F (λ + 0, λ′)− F (λ, λ′ + 0) + F (λ, λ′)

with X(·) harmonizable implies

r(s, t) =

∞
∫

−∞

∞
∫

−∞

eiλs−iλ′tdF (λ, λ′) =
∞
∑

k=1

∞
∑

j=1

a(λj , λ′k)eiλjs−iλ′kt.

Hence, by a classical approximation theorem, r(·, ·) is u.a.p. in two variables.
For the converse, if r(·, ·) was u.a.p. then the approximation theorem

gives

r(s, t) =
∞
∑

k=1

∞
∑

j=1

a(λj , λ′k)eiλjs−iλ′kt.

But, the uniqueness of Fourier transforms implies F (·, ·) has countable sup-
port {(λj , λ′k)}∞j,k=1.

Since the support {(λj , λ′k)}∞j,k=1, of F (·, ·) may have limit points in the
plane, some regularity conditions on these limit points are needed and they
will now be stated. The following assumptions will be in force for all sub-
sequent analysis.

Assumption 1: Let {(µj , µ′k)}∞j,k=1 be the set of limit points of the
support {(λj , λ′k)}∞j,k=1 of F (·, ·). It is required that

inf
k 6=j

{

| µk − µj |, | µ′k − µ′j |
}

> 1. (10)

The constant 1 on the right side here is chosen for simplicity; it may be
replaced by any positive constant. Condition (10) implies that each semi-
open square (n, n + 1] × (m,m + 1], n,m ∈ Z, contains at most only one
limit point. Assume further that the limit points are enumerated so that
µk < µk+1 in each strip (k, k + 1] × {µ′j} with the second coordinate µ′j
ordered µ′j < µ′j+1.

Assumption 2: When µkn 6= n, let Nn(α) be the number of discontinu-
ities between n and µkn −α, where 0 < α < µkn −n, and when µkn 6= n+1,
let Mn(α) be the number of discontinuities between µkn + α and n + 1,
where 0 < α < n + 1− µkn . Suppose there is a nondecreasing function h(·)
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on R+ such that h(x) ↗ ∞ as x ↗ ∞, with h(x) ≡ C > 0 for 0 ≤ x < 2
and

Nn(α) ≤ h(
1
α

) for 0 < α < µkn − n,

Mn(α) ≤ h(
1
α

) for 0 < α < n + 1− µkn

if [n, n + 1]× [m,m + 1] had no limiting point, it will be assumed that the
set of discontinuities of F (·, ·) is bounded.

The following integral plays a key role in the analysis. Let

Φn,m =

n+1
∫

n

φ(| λ− µkn |)dF (λ, λ′m) (11)

where

φ(u) =
{

g( 1
u )h( 2

u ), if u > 0,
1, if u = 0

with g(·) a nondecreasing function on R+ such that
∫∞
1 dx/(xg(x)) < ∞

and g(x) = 1 for 0 ≤ x ≤ 1. The uniform almost periodicity of the sample
paths may now be given.

Theorem 3.2. If assumptions 1 and 2 are satisfied and if
∞
∑

m=−∞

∞
∑

n=−∞
Φ

1
2
n,m < ∞ (12)

then X(·) has almost all sample paths uniformly almost periodic.

Proof. Let A(λ) = Z(λ + 0)−Z(λ) and a(λ, λ′) = F (λ + 0, λ′ + 0)−F (λ +
0, λ′)−F (λ, λ′+0)+F (λ, λ′) where Z(·) is the stochastic measure satisfying
the condition E(Z(B1)Z(B2)) = F (B1, B2), F (·, ·) a function of bounded
Vitali variation. (Z(·) and F (·, ·) are assumed to be left continuous.) Let
Jn,k = {j : µln − 2−k ≤ λn,j < µln − 2−(k+1), n < λn,j}. Suppose that there
were infinitely many λn,j in [n, µln). Then

∑

n<λn,j<µln

|a| 12 (λn,j , λ′) =
∞
∑

k=0

∑

j∈Jn,k

|a| 12 (λn,j , λ′) ≤

≤
∞
∑

k=0





∑

j∈Jn,j

|a|(λn,j , λ′)





1
2





∑

j∈Jn,k

1





1
2

≤

≤
∞
∑

k=0





∑

j∈Jn,j

|a|(λn,j , λ′)Nln(2−(k+1))





1
2

. (13)
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Now since Nln(2−(k+1)) ≤ h(2k+1) and 2k+1 ≤ 2
µln−λ , one has Nln(2−(k+1))

≤ h( 2
µln−λ ) since h(·) is nondecreasing. But this implies, since F (·, ·) has

countable support, that

∑

j∈Jn,j

|a|(λn,j , λ′)Nln(2−(k+1)) ≤
µln−2−(k+1)

∫

µln−2−k

h(
2

µln − λ
)d|F |(λ, λ′)

so equation (13) becomes

∑

n<λn,j<µln

|a| 12 (λn,j , λ′) ≤
∞
∑

k=0







µln−2−(k+1)
∫

µln−2−k

h(
2

µln − λ
)d|F |(λ, λ′)







1
2

. (14)

Letting

η(k) =
{

1 for µln − 2−k > n,
0 for µln − 2−k ≤ n,

the right side of equation (14) becomes

∞
∑

k=0







g(2k)
g(2k)

η(k)

µln−2−(k+1)
∫

µln−2−k

h(
2

µln − λ
)d|F |(λ, λ′)







1
2

≤

≤

( ∞
∑

k=0

1
g(2k)

) 1
2







∞
∑

k=0

g(2k)η(k)

µln−2−(k+1)
∫

µln−2−k

h(
2

µln − λ
)d|F |(λ, λ′)







1
2

.

But
∞
∑

k=0

1
g(2k)

≤ 2

∞
∫

1

dx
xg(x)

= C2, (say)

so that
∑

n<λn,j<µln

|a| 12 (λn,j , λ′) ≤

≤ C







∞
∑

k=0

η(k)

µln−2−(k+1)
∫

µln−2−k

g(22k)h(
2

µln − λ
)d|F |(λ, λ′)







1
2

≤

≤ C







∞
∑

k=0

η(k)

µln−2−(k+1)
∫

µln−2−k

g(
1

µln − λ
)h(

2
µln − λ

)d|F |(λ, λ′)







1
2

=
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= C





µln−0
∫

n

φ(µln − λ)|F |(λ, λ′)





1
2

. (15)

A similar calculation shows that, if there are infinitely many λn,j in
(µln , n + 1],

∑

µln<λn,j<n+1

|a| 12 (λn,j,λ′) ≤ C1







n+1
∫

µln+0

φ(λ− µlm)d|F |(λ, λ′)







1
2

hence

∑

n<λn,j<n+1

|a| 12 (λn,j , λ′) ≤ C ′





n+1
∫

n

φ(| λ− µln |)d|F |(λ, λ′)





1
2

= C ′Φ
1
2
n,m.

Summing over all support points of F (λ, λ′) in [n, n + 1] × [m,m + 1], we
have

∑

m<λ′<m+1

∑

n<λ<n+1

|a| 12 (λ, λ′) < KΦ
1
2
n,m (16)

(using the boundedness condition in assumption 2).
Thus considering the spectral representation of the harmonizable pro-

cess, which has the form X(t) =
∑

j,k A(λk,j)eiλk,jt and since F (·, ·) has
countable support, one sees that the convergence of this series is in L2(P ).

For the uniform almost periodicity,
∑

j,k | A(λk,j) | < ∞ with proba-
bility one must be shown. By the first Borel–Cantelli lemma, it suffices for
this to show that for a given ε > 0,

∑

k,j P (| A(λk,j) | ≥ ε) < ∞. Now

P (| A(λk,j) |≥ ε) ≤ 1
ε
E(| A(λk,j) |) = (by Markov’s inequality)

≤ [E | A(λk,j) |2]
1
2 =

|a| 12 (λk, λ′j)
ε

.

But, (16) implies
∑

k,j P (| A(λk,j) |≥ ε) ≤ (1/ε)
∑

k
∑

j |a|
1
2 (λk, λ′j) < ∞.

So
∑

k,j

| A(λk,j) | < ∞ with probability one. (17)

Recalling that A(λ) = Z(λ+0)−Z(λ), so that E(A(λ)A(λ′)) = F (λ+0, λ′+
0) − F (λ + 0, λ′) − F (λ, λ′ + 0) + F (λ, λ′) = a(λ, λ′), one sets Sn,m(t) =
∑

n<λ<n+1 A(λ)eiλt. By the spectral representation, converging in L2(P ),
this series exists in L2(P ) as a sum representing X(·). Hence, equation (17)
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implies that Sn,m(·) converges absolutely and uniformly with probability
one.

Thus Sn,m(t) =
∑

n<λ<n+1 A(λ)eiλt is u.a.p. with probability one. So
there is a set Ωn,m with P (Ωn,m) = 1 such that on Ωn,m, Sn,m(t) is u.a.p.
Now

∞
∑

n=0

∑

n<λ<n+1

E | A(λ) | ≤
∞
∑

n=0

∑

n<λ<n+1

|a| 12 (λ, λ′) ≤

≤ C ′
∞
∑

m=0

∞
∑

n=0

Φ
1
2
n,m < ∞.

Thus
∑∞

n=0

∑∞
m=0 Sn,m(t) is uniformly and absolutely convergent with prob-

ability one.
A similar argument applies for

∑−1
n=−∞

∑−1
m=−∞ Sn,m(t). Hence

∑∞
n=−∞

∑∞
m=−∞ Sn,m(t) is uniformly and absolutely convergent, but each

term of this series is u.a.p. for ω ∈
⋃∞

m=−∞
⋃∞

n=−∞ Ωn,m, where P (
⋃∞

n=−∞
⋃∞

m=−∞ Ωn,m) is one. Thus
∑∞

n=−∞
∑∞

m=−∞ Sn,m(t) is u.a.p. with prob-
ability one. But, this series converges to X(t) in L2(P ), so X(t) is u.a.p.
with probability one.

The proof of this theorem actually showed some further aspects, in partic-
ular; under the assumptions of the previous theorem, the uniformly almost
periodic strongly harmonizable process X(·) has an absolutely convergent
Fourier series and spectral measure satisfying

∞
∫

−∞

∞
∫

−∞

d|F |(λ, λ′) < ∞.

4. Stepanov Almost Periodic Processes

The result for S2 a.p. sample paths will follow from analysis done in
the u.a.p. case. The following classical result (see, Kawata [3, p. 389]) is
needed.

Lemma 4.1. For any Borel measureable set E of R and a positive in-
terger r, let

σr(E) = Cr

∫

E

sin2r( t
2 )

( t
2 )2r

dt,

where Cr is a constant such that σr(R) = 1 with σr(t) = σr((−∞, t)), then
∞
∫

−∞

eiλtdσr(t) = 0 for | λ |≥ r.
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This lemma implies for any sequence {vj} of real numbers such that
| vj − vk |≥ r, j 6= k, the sequence {eivt} is orthonormal with respect to
σn(E). The S2 a.p. result may now be given.

Theorem 4.1. If assumptions 1 and 2 are satisfied and if

∞
∑

m=−∞

∞
∑

n=−∞
Φn,m < ∞, (18)

then X(·) has almost all sample paths S2-almost periodic.

Proof. As was noted earlier, Sn,m(t) is u.a.p. with probability one. Let
Ωn,m be a set such that Sn,m(t, ω) is u.a.p. for ω ∈ Ωn,m and let

Ω′ =
∞
⋂

m=−∞

∞
⋂

n=−∞
Ωn,m.

Consider the sequence {S2n,2m(t)} since the limit points of discontinuity
satisfy assumption 1, the absolute convergence of Sn,m(·) and the lemma
imply that {S2n,2m(t)} forms an orthogonal sequence with respect to σ1(E).

Hence, for any y, {S2n,2m(t + y)} is also an orthonormal sequence with
respect to σ1(E). Thus for any ω ε Ω′ and N,M integers,

∞
∫

−∞

∣

∣

∣

∣

∣

∣

M
∑

n,m=N+1

S2n,2m(t + y)

∣

∣

∣

∣

∣

∣

2

dσ1(t) ≤

≤
∞
∫

−∞

M
∑

n,m=N+1

(

∑

2n<λ<2n+1

| A(λ) |

)2

dσ1(t) =

=
M
∑

n=N+1

(

∑

2n<λ<2n+1

| A(λ) |

)2

. (19)

(Note that the measure σ1(·) provided a useful aid in computation.)
So,

sup
y

∞
∫

−∞

∣

∣

∣

∣

∣

∣

M
∑

n,m=N+1

S2n(t + y)

∣

∣

∣

∣

∣

∣

2

dσ1(t) ≤

≤
M
∑

n,m=N+1

(

∑

2n<λ<2n+1

| A(λ) |

)2

. (20)
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Thus,

E





∞
∑

n,m=−∞

(

∑

2n<λ<2n+1

| A(λ) |

)2


 ≤

≤
∞
∑

n,m=−∞

(

∑

2n<λ<2n+1

(

E | A(λ) |2
) 1

2

)2

=

(since the inside sum is finite, Liaponouv’s and

Minkowski’s inequalities apply)

=
∞
∑

n,m=−∞

(

∑

2n<λ<2n+1

|a| 12 (λ, λ′)

)2

≤
∞
∑

n,m=−∞
Φ2n,2m < ∞.

Hence by the first Borel–Cantelli lemma,

∞
∑

n,m=−∞

(

∑

2n<λ<2n+1

| A(λ) |

)2

< ∞ with probability one.

So,

lim
M,N→±∞

sup
y

∞
∫

−∞

∣

∣

∣

∣

∣

∣

M
∑

n,m=N+1

S2n,2m(t)

∣

∣

∣

∣

∣

∣

2

dσ1(t− y) = 0 a.e. (21)

Using Lemma 4.1,

∞
∫

−∞

∣

∣

∣

∣

∣

∣

M
∑

n,m=N+1

S2n,2m(t)

∣

∣

∣

∣

∣

∣

2

dσ1(t− y) =

=

∞
∫

−∞

∣

∣

∣

∣

∣

∣

M
∑

n,m=N+1

S2n,2m(t)

∣

∣

∣

∣

∣

∣

2

c1 sin2 ( t−y
2

)

( t−y
2

) dt (22)

and the elementary results,
∫∞
−∞ sin2 ( t

2

)

/
( t

2

)

dt = π and sin2 u/u2 ≥ 4/π2

for | u |< ε, imply

∞
∫

−∞

∣

∣

∣

∣

∣

∣

M
∑

n,m=N+1

S2n,2m(t)

∣

∣

∣

∣

∣

∣

2

sin2 ( t−y
2

)

π
( t−y

2

) dt ≥

≥ 4
π3

y+π
∫

y−π

∣

∣

∣

∣

∣

∣

M
∑

n,m=N+1

S2n,2m(t)

∣

∣

∣

∣

∣

∣

2

dt. (23)
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This gives that

lim
M,N→±∞

sup
y

∞
∫

−∞

∣

∣

∣

∣

∣

∣

M
∑

n,m=N+1

S2n,2m(t)

∣

∣

∣

∣

∣

∣

2

dt = 0 a.e., (24)

that is,
∑M

n,m=N+1 S2n,2m(t) converges to an S2 a.p. function in S2 a.p.-
norm with probability one. The same calculations are valid for
∑M

n,m=N+1 S2n+1,2m+1(t). Thus,

TN (t) =
N

∑

n,m=−N

Sn,m(t)

converges in L2 to an S2 a.p. function, say X1(t), with probability one.
Thus, using the spectral representation of X(·),

T
∫

−T

E |TN (t)−X(t)|2 dt =

=

T
∫

−T

E

∣

∣

∣

∣

∣

−N+1
∑

−∞
A(λk,j)eiλk,jt +

∞
∑

N+1

A(λk,j)eiλk,jt

∣

∣

∣

∣

∣

2

dt. (25)

Interchanging the sum and expectation here, equation (25) becomes

T
∫

−T

E |TN (t)−X(t)|2 dt =

= 2T





∞
∫

N+1

∞
∫

N+1

| dF (λ, λ′) | +
−N
∫

−∞

−N
∫

−∞

| dF (λ, λ′) |



 .

So for fixed T as N ↗ ∞,
∫∞
−∞E|TN (t) − X(t)|2dt → 0. Hence, Tn(t) −

X(t) → 0 in L2(P ), so some subsequence {Tnk(t)} converges in Ω× (−T, T )
almost everywhere. That is, for ω ∈ Ω fixed, Tnk(t, ω) → X(t, ω), but this
implies X(t) = X1(t) for almost all t with probability one. Hence, X(·) is
S2 a.p. with probability one.

5. Besicovitch Almost Periodic Processes

B2 a.p. sample paths will now be considered. This result extends Slut-
sky’s theorem to harmonizable processes.
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Theorem 5.1. If assumptions 1 and 2 are satisfied and

Φn,m < ∞, (26)

for every n,m, then X(·) has almost all sample paths B2 almost periodic.

Proof. Using the same argument to derive equation (24) with S3n,3m(·),
S3n+1,3m+1(·) and S3n+2,3m+2(·) and σ2(·) in place of σ1(·) it follows that

y+π
∫

y−π

∣

∣

∣

∣

∣

∣

M
∑

|n|,|m|=k

Sn,m(t)

∣

∣

∣

∣

∣

∣

2

dt ≤

≤ K

∞
∫

−∞

2
∑

l=0

∣

∣

∣

∣

∣

∣

∣

∣

∑

k≤|3n+l|≤M

k≤|3m+l|≤M

S3n+l,3m+l(t)

∣

∣

∣

∣

∣

∣

∣

∣

2

dσ2(t− y). (27)

Let A > 0 be a fixed, large real number, and let N ∈ Z be the smallest
integer so that 2N + 1 ≥ A. Writing y = 2νπ, for ν = −N, . . . , N in
equation (27) and adding, one obtains

1
2A

A
∫

−A

∣

∣

∣

∣

∣

∣

M
∑

|n|,|m|=k

Sn,m(t)

∣

∣

∣

∣

∣

∣

2

dt ≤

≤ C
2A

N
∑

ν=−N

∞
∫

−∞

2
∑

l=0

∣

∣

∣

∣

∣

∣

∣

∣

∑

k≤|3n+l|≤M

k≤|3m+l|≤M

S3n+l,3m+l(t)

∣

∣

∣

∣

∣

∣

∣

∣

2

dσ2(t− 2νπ). (28)

By Lemma 4.1, {S3n+l,3m+l(·)}, n,m = 0, 1, 2, . . . , forms an orthogonal
sequence of functions of t, for each l, with respect to σ2(·). Using the same
computations as in the proof of the previous theorem, (see equation (24)),
the right-hand side of equation (28) is bounded by

C
2A

N
∑

ν=−N

∞
∫

−∞

Uk,m(t)dσ2(t− 2νπ) (29)

where

Uk,m(t) =
2

∑

l=0

∑

k≤|3n+l|≤M

k≤|3m+l|≤M

|S3n+l,3m+l(t)|2 dσ2(t− 2νπ).
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But by the lemma, σ2(·) has a specific form, which implies

C
2A

N
∑

ν=−N

∞
∫

−∞

Uk,m(t)dσ2(t− 2νπ) ≤

≤ C

∞
∫

−∞

Uk,m
sin4 ( t

2

)

2N

N
∑

ν=−N

2
(t− 2νπ)4

dt. (30)

But, a result of Kawata [3, p.394] implies

sin2 t
2N

N
∑

ν=−N

2
(t− 2νπ)4

≤
{

Ct4 for | t |> 3Nπ,
C
N for | t |≤ 3Nπ,

so that

1
2A

A
∫

−A

∣

∣

∣

∣

∣

∣

M
∑

|n|,|m|=k

Sn,m(t)

∣

∣

∣

∣

∣

∣

2

dt ≤

≤ C
∫

|t|>3Nπ

Uk,m(t)
t4

dt +
C
N

∫

|t|>3Nπ

Uk,m(t)dt. (31)

Now it was shown in the proof of the previous theorem that for t ∈ (−A,A)
as M →∞,

M
∑

|n|,|m|=k

Sn,m(t) → X(t)−
∑

|n|≤k

|m|≤k

Sn,m(t) in L2(P ).

Hence, there is a sequence Mj ∈ Z and a set Ω̃, P (Ω̃) = 1 such that

Mj
∑

|n|,|m|=k

Sn,m(t) → X(t)−
∑

|n|≤k

|m|≤k

Sn,m(t), a.e. (32)

This implies

1
2A

A
∫

−A

∣

∣

∣

∣

∣

∣

∣

∣

X(t)−
∑

|n|≤k

|m|≤k

Sn,m(t)

∣

∣

∣

∣

∣

∣

∣

∣

2

dt ≤

≤ lim
Mj→∞

inf
1

2A

A
∫

−A

∣

∣

∣

∣

∣

∣

Mj
∑

|n|,|m|=k

Sn,m(t)

∣

∣

∣

∣

∣

∣

2

dt ≤
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≤ C
∫

|t|>3Nπ

Uk,m(t)
t4

dt +
C
N

∫

|t|>3Nπ

Uk,m(t)dt. (33)

Now since Uk,m(t) ↗ Uk,∞ = limm→∞ Uk,m(t) it follows that

∑

N

∫

|t|>3Nπ

E





∞
∑

|n|,|m|=0

|S3n+l,3m+l(t)|2




dt
t4
≤

≤
∑

N

∫

|t|>3Nπ

dt
t4

∞
∫

−∞

∞
∫

−∞

| dF (λ, λ′) |≤ K̃
∑

N

1
N4 < ∞.

So by the first Borel–Cantelli lemma
∫

|t|>3Nπ

|S3n+l,3m+l(t)|2
dt
t4
→ 0

with probability one for l = 0, 1, 2. But, this implies
∫

|t|>3Nπ

Uk,∞(t)
dt
t4
→ 0, as N →∞.

However,

lim
N→∞

sup
1
N

∫

|t|≤3Nπ

∑

k≤|3n+l|
k≤|3m+l|

|S3n+l,3m+l(t)|2 dt =

= lim
N→∞

sup
∑

k≤|3n+l|
k≤|3m+l|

1
N

∫

|t|≤3Nπ

∣

∣

∣

∣

∣

∣

∑

|3n+l|<λ<|3n+l|+1

A(λ)eiλt

∣

∣

∣

∣

∣

∣

2

dt =

= lim
N→∞

sup









3π
∑

k≤|3n+l|
k≤|3m+l|

∑

|3n+l|<λ<|3n+l|+1

|A(λ)|2 +

+
1
N

∫

|t|≤3Nπ

∑

λ 6=λ′
A(λ)A(λ′)ei(λ−λ′)tdt





 ,

and since

lim
N→∞

1
N

∫

|t|≤3Nπ

eiλtdt = 0 for λ 6= 0,
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the second term of the last equation is zero. Thus

lim
N→∞

sup
1
N

∫

|t|≤3Nπ

Uk,∞(t)dt = 3π
∑

k<|n|
k<|m|

∑

n<λ≤n+1

|A(λ)|2 . (34)

Combining this inequality with (31) and (32) gives

lim
A→∞

sup

A
∫

−A

∣

∣

∣

∣

∣

∣

∣

∣

X(t)−
∑

|n|<k

|m|<k

Sn,m(t)

∣

∣

∣

∣

∣

∣

∣

∣

2

dt ≤ 3π
∑

|n|<k

|m|<k

∑

n<λ≤n+1

|A(λ)|2 .(35)

Here,

E





∑

n<λ≤n+1

|A(λ)|2


 =
∫

|λ′|>k

∫

|λ|>k

|dF (λ, λ′)| .

Choosing k = kj so that

∞
∑

j=1

∫

|λ′|>kj

∫

|λ|>kj

|dF (λ, λ′)| < ∞

one gets
∞
∑

j=1

E





∑

n<λ≤n+1

|A(λ)|2


 < ∞.

So by the first Borel–Cantelli lemma, limj→∞
∑

n<λ≤n+1 |A(λ)|2 = 0 with
probability one. This implies

lim
j→∞

lim
A→∞

sup

A
∫

−A

∣

∣

∣

∣

∣

∣

∣

∣

X(t)−
∑

|n|<k

|m|<k

Sn,m(t)

∣

∣

∣

∣

∣

∣

∣

∣

2

dt = 0,

with probability one. Now since Sn(·) is u.a.p. with probability one, it
follows that X(·) is B2 a.p. with probability one.
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