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SEMIDIRECT PRODUCTS AND WREATH PRODUCTS OF
STRONGLY π-INVERSE MONOIDS


YUFEN ZHANG, SHIZHENG LI, AND DESHENG WANG


Abstract. In this paper we determine the necessary and sufficient
conditions for the semidirect products and the wreath products of
two monoids to be strongly π-inverse. Furthermore, we determine
the least group congruence on a strongly π-inverse monoid, and we
give some important isomorphism theorems.


1. Introduction


Our terminology and notation will follow [1] and [2].
Let S and T be two monoids, and let End(T ) be the endomorphism


monoid of T , and write endomorphisms as exponents to the right of argu-
ments. If α : S → End(T ) is a homomorphism, and if s ∈ S and t ∈ T ,
write ts for tα(s), since α(s) ∈ End(T ) for s ∈ S, then for t1, t2 ∈ T ,
(t1, t2)s = ts1t


s
2. Since α is a homomorphism, (ts1)s2 = ts1s2 for every t ∈ T


and s1, s2 ∈ S.
The semidirect product S×αT is the monoid with elements {(s, t) : s ∈ S,


t ∈ T} and multiplication (s1, t1)(s2, t2) = (s1s2, ts2
1 t2).


In [3], [4] the authors have determined the necessary and sufficient con-
ditions for S ×α T to be regular, inverse, and orthodox. In this paper we
determine the necessary and sufficient conditions for S ×α T to be strongly
π-inverse and give their applications to the wreath product.


For a monoid S, E(S) and Reg S denote the set of idempotents of S and
the set of regular elements of S, respectively.


A semigroup is π-regular if for every s ∈ S there is an m ∈ N such that
sm ∈ Reg S. If S is π-regular and E(S) is a commutative subsemigroup,
then we call S a strongly π-inverse semigroup. It is easy to see that Reg S
is an inverse subsemigroup of a strongly π-inverse semigroup S.
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2. Semidirect Products


Let S and T be two monoids and let S ×α T be the semidirect product
of S and T , where α : S → End(T ) is a given homomorphism.


Lemma 1. Let S ×α T be a strongly π-inverse monoid; then
(1) both S and T are strongly π-inverse monoids;
(2) ue = u for every e ∈ E(S) and every u ∈ E(T );
(3) if tet = t for t ∈ T and e ∈ E(S), then te = t;
(4) te = t for every t ∈ Reg T and every e ∈ E(S);
(5) for every s ∈ S and t ∈ T , there exists m ∈ N such that sm ∈ Reg S


and ts(m) ∈ Reg T , where ts(m) = ts
m−1


ts
m−2 · · · tst.


Proof. (1) For arbitrary s ∈ S, there exist m ∈ N and (s1, t1) ∈ T such that
(s, 1)m(s1, t1)(s, 1)m = (s, 1)m. Hence (sms1sm, ts


m


1 ) = (sm, 1), sms1sm =
sm and then S is π-regular.


Since (e, 1), (f, a) ∈ E(S ×α T ) for e, f ∈ E(S), we have (e, 1)(f, 1) =
(f, 1)(e, 1), and then ef = fe. Hence S is strongly π-inverse monoid.


For arbitrary t ∈ T , there exist m ∈ N and (s2, t2) ∈ S ×α T such that
(1, t)m(s2, t2)(1, t)m = (1, t)m, that is, (s2, (tm)s2t2tm) = (1, tm). Then
s2 = 1 and tmt2tm = (tm)s2t2tm = tm. Thus T is π-regular.


Since (1, u), (1, v) ∈ E(S ×α T ) for u, v ∈ E(T ) and S ×α T is strongly
π-inverse, we have (1, u)(1, v) = (1, v)(1, u), so that uv = vu, which implies
that T is strongly π-inverse.


(2) Let e ∈ E(S) and u ∈ E(T ). Then (e, 1), (1, u) ∈ E(S ×α T ) and
(e, 1)(1, u) = (1, u)(e, 1), which implies ue = u.


(3) If tet = t, then (e, t) ∈ E(S ×α T ) and (e, t)(e, 1) = (e, 1)(e, t) since
(e, 1) ∈ E(S ×α T ). Hence te = t.


(4) From (1), for every t ∈ Reg T , there exists a unique t1 ∈ T such that
tt1t = t, t1tt1 = t1. Then tetei t


e = te, further, (tet1)etet1 = tet1. From (3)
we have (tet1)e = tet1, that is, (tt1)e = tet1. Since tt1 ∈ E(T ), from (2)
we have (tt1)e = tt1 = tet1, and then t1tt1 = t1tet1 = t1, tet1te = te. Thus
both t and te are inverses of t1, and then te = t.


(5) Since S×α T is a strongly π-inverse monoid, for every (s, t) ∈ S×α T
there exist m ∈ N and (s1, t1) ∈ S ×α T such that (s, t)m(s1, t1)(s, t)m =
(s, t)m. Then


(


sms1sm, (ts(m))s1sm
ts


m


1 ts(m)) =
(


sm, ts(m)),


so that sms1sm =sm, (ts(m))s1sm
ts


m


1 ts(m) = ts(m). Then


(ts(m)ts
m


1 )s1sm
ts(m)ts


m


1 = ts(m)ts
m


1 .


From (3) we have (ts(m)ts
m


1 )s1sm
= ts(m)ts


m


1 . Thus ts(m)ts
m


1 ts(m) = ts(m),
and then sm ∈ Reg S and ts(m) ∈ Reg T .
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Theorem 2. Let S and T be two monoids and let α : S → End(T ) be
the given homomorphism, and let S×α T be the semidirect product of S and
T . Then S ×α T is a strongly π-inverse monoid iff


(1) both S and T are strongly π-inverse monoids,
(2) te = t for every t ∈ Reg T and every e ∈ E(S), and
(3) for every s ∈ S and t ∈ T there exists m ∈ N such that sm ∈ Reg S


and ts(m) ∈ Reg T , where ts(m) = ts
m−1


ts
m−2 · · · tst.


Proof. The necessity of the assertion is obvious by Lemma 1. We only prove
the sufficient part.


For every (s, t) ∈ S ×α T , from (3) there exist m ∈ N, s1 ∈ S and t1 ∈ T
such that


sms1sm = sm,


ts(m)t1ts(m) = ts(m).


From (2) we have (ts(m)t1)s1sm
= ts(m)t1. Hence (ts(m))s1sm


ts1sm


1 ts(m) =
ts(m), and then (s, t)m(s1, ts1


1 )(s, t)m = (s, t)m. This means that S ×α T is
π-regular.


For arbitrary (e, u) ∈ E(S ×α T ) we prove that e ∈ E(S) and u ∈ E(T ).
In fact, if (e, u)2 = (e, u), then e2 = e, ueu = u. Thus ue ∈ E(T ), and then,
from (3) there exists m ∈ N such that uem−1 · · ·ueu = ueu ∈ Reg T . From
(2), (ueu)e = ueu = ueue = ue = u. So that u2 = u.


Now, for (e, u), (f, v) ∈ E(S×α T ), we have e, f ∈ E(S) and u, v ∈ E(T ).
By (1) and (2) we have


(e, u)(f, v) = (ef, ufv) = fe, veu) = (f, v)(e, u).


Therefore S ×α T is strongly π-inverse.


Theorem 3. Let S and T be two monoids and let S ×α T be a strongly
π-inverse monoid.


(1) (e, u) ∈ E(S ×α T ) iff e ∈ E(S) and u ∈ E(T ).
(2) For every e ∈ E(S), let α∗(e) be the restriction of α(e) on E(T ); then


α∗(e) ∈ End(E(T )).
(3) Let α∗ : E(S) → End(E(T )) such that e → α∗(e); then α∗ is a


homomorphism from E(S) to End(T ).
(4) E(S ×α T ) ∼= E(S)× E(T ) ∼= E(S)×α∗ E(T ).


Proof. It is a immediate consequence of Lemma 1 and Theorem 2.


Theorem 4. Let S and T be two monoids and let S ×α T be a strongly
π-inverse monoid.


(1) (s, t) ∈ Reg(S ×α T ) iff s ∈ Reg S and t ∈ Reg T .
(2) For every s ∈ Reg S, let α∗(s) be the restriction of α(s) on Reg T ;


then α∗(s) ∈ End(Reg T ).
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(3) Define α∗ : Reg S → End(Reg T ) by s → α∗(s); then α∗ is a homo-
morphism from Reg S to End(Reg T ).


(4) Reg(S ×α T ) ∼= Reg(S)×α∗ Reg(T ).


Proof. (1) Let (s, t) ∈ Reg(S×α T ); then there exists (s1, t1) ∈ S×α T such
that (s, t)(s1, t1)(s, t) = (s, t), and then ss1s = s, ts1sts1t = t. From the
latter equation we have (tts1)


s1stts1 = tts1, and from Lemma 1 (3), (tts1)
s1s =


tts1, that is, tts1t = t. So that s ∈ Reg S and t ∈ Reg T .
Conversely, let s ∈ Reg S and t ∈ Reg T ; then there exist s1 ∈ S and


t1 ∈ T such that ss1s = s, tt1t = t. Hence


(s, t)(s1, ts1
1 )(s, t) = (ss1s, ts1s


1 ts1s
1 t) = (s, tt1t)− (s, t).


Therefore (s, t) ∈ Reg(S ×α T ).
(2) For every s ∈ Reg S and t ∈ Reg T , ts ∈ Reg T ; then α∗(s) ∈


End(Reg T ).
(3) and (4) are obvious.


3. Least Group Congruence on a Strongly π-Inverse Monoid


Theorem 5. Let S be a strongly π-inverse monoid; then the relation


δ =
{


(s1, s2) ∈ S × S : s1e = s2e for some e ∈ E(S)
}


is the least group congruence on S.


Proof. It is obvious that δ is a left compatible equivalent relation on S. Let
xe = ye, for x, y ∈ S and e ∈ E(S). For any z ∈ S, since S is a strongly
π-inverse monoid, there exist m ∈ N and s ∈ S such that zmszm = zm,
szms = s; and we have


xz(zm−1sez) = xezmsez = yezmsez = yz(zm−1sez)


and


(zm−1sez)2 = zm−1sezmsez = zm−1szmsez = zm−1szmsez = zm−1sez.


Thus (xz, yz) ∈ δ.
It is obvious that eδ = fδ = 1 is the identity of S/δ for every e, f ∈ E(S).


Now, for sδ ∈ S/δ there exist m ∈ N, s1 ∈ S such that sms1, s1sm ∈ E(S).
Thus (sms1)δ = sδ(sm−1s1)δ = 1 and (s1sm)δ = (s1sm−1)δ(sδ) = 1, so
that sδ has an inverse element. This means that S/δ is a group.


Let ρ be an arbitrary group congruence on S. If (x, y) ∈ δ, then there
exists e ∈ E(S) such that xe = ye, so that (xe)ρ = (ye)ρ. Since eρ = 1 ∈
S/ρ, we have xρ = yρ. Hence δ ⊂ ρ.
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Theorem 6. Let S and T be two monoids, let S ×α T be a strongly π-
inverse monoid, and let δS×αT , δS and δT be the least group congruences
on S ×α T , S and T , respectively. Then


(1) for every sδS ∈ S/δS define α∗(sδS) : T/δT → T/δT by tδT → tsδT ;
then α∗(sδS) ∈ End(T/δT );


(2) define α∗ : S/δS → End(T/δT ) by sδS → α∗(sδS); then α∗ is a
homomorphism;


(3) S/δS ×α∗ T/δT ∼= (×αT )/δS×αT .


Proof. (1) If t1δT = t1δT for t1, t2 ∈ T , then there exists u ∈ E(T ) such
that t1u = t2u and then ts1u


s = ts2u
s for s ∈ S. Since us ∈ E(T ), we have


ts1δT = ts2δT . Thus α∗(sδS) is well defined for every sδS ∈ S/δS . It is easy
to see that α∗(sδS) is a homomorphism.


(2) If s1δS = s2δS for s1, s2 ∈ S, then s1e = s2e for e ∈ E(S). For
arbitrary tδT ∈ T/δT , there exists t1δT ∈ T/δT such that (t1t)δT = 1 ∈
T/δT , and then t1tu = u for some u ∈ E(T ). Thus, tut1tu = tu, hence
tu ∈ Reg T . From Lemma 1, teu = tu for every e ∈ E(S) and then teδT =
tδT , so α∗(eδS) is an identity mapping on T/δT . Thus ts1δT = ts1eδT =
ts2eδT = ts2δT , and then α∗(s1δS) = α∗(s2δS), so that α∗ is well defined.


For arbitrary s1δS , s2δS ∈ S/δS and arbitrary tδT ∈ T/δT , we have
t(s1s2)δT = (ts1)s2δT , that is, α∗(s1s2) = α∗(s1δS)α∗(s2δS). Thus α∗ is a
homomorphism from S/δS to End(T/δT ).


(3) Define ϕ : (S ×α T )/δS×αT −→ S/δS × T/δT by (s, t)δS×αT −→
(sδS , tδT ). Suppose (s1, t1)δS×αT = (s1, t2)δS×αT . Then there exist (e, u) ∈
E(S×α T ) such that (s1, t1)(e, u) = (s2, t2)(e, u); then s1e = s2e, te1u = te2u.
So s1δS = s2δS , t1δT = t2δT , and then (s1δS , t1δT ) = (s2δS , t2δT ). Thus ϕ
is well defined. ϕ is obviously surjective.


If (s1δS , t1δT ) = (s2δS , t1δT ), then s1δS = s2δS , t1δT = t2δT , and then
there exist e ∈ E(S) and u ∈ E(T ) such that s1e = s2e, t1u = t2u. From
Lemma 1 (2), te1u = te1u


e = te2u
e = te2u. Hence (s1, t1)(e, u) = (s2, t2)(e, u),


and then (s1, t1)δS×αT = (s2, t2)δS×αT . Thus ϕ is one-to-one.
It is easy to see that ϕ is a homomorphism. Thus (S ×α T )/δS×α∗T ∼=


δS ×α∗ T/δT .


Corollary 7. Let S be a strongly π-inverse monoid. Then for every
s ∈ S there exist e, f ∈ E(S) such that se, fs ∈ Reg S.


Proof. From the proof of Theorem 6 we know that se ∈ Reg S for some
e ∈ E(S). Using a similar way, we can prove that the binary relation
defined on S by


σ =
{


(s1, s2) : fs1 = fs2 for some f ∈ E(S)
}


is also the least group congruence on S. Then there exists f ∈ E(S) such
that fs ∈ Reg S, using the same method as in the proof of Theorem 6.
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4. Wreath Products


Let S be a monoid, S acts on a set X from the left, that is, sx ∈ X, 1x = x
and s(rx) = (sr)x for every s, r ∈ S and x ∈ X. Let T also be a monoid,
then the wreath product SwxT = S ×α TX , where TX = {f : X −→ T
is a function} is the Cartesian power of T , that is, fg(x) = f(x)g(x) for
every f, g ∈ TX and every x ∈ X, and where the homomorphism α : S −→
End(TX) is defined by (fs)(x) = f(sx) for every s ∈ S, f ∈ TX and x ∈ X.


Lemma 8. Let T be a monoid and let R = {T ′ ⊂ T
∣


∣ |T ′| ≤ |X|}. Then
TX is a strongly π-inverse monoid iff


(1) T is a strongly π-inverse monoid, and
(2) for every T ′ ∈ R there exists m ∈ N such that (t′)m ∈ Reg T for all


t′ ∈ T ′.


Proof. Suppose that TX is strongly π-inverse and T ′ ∈ R. Then there exists
g ∈ TX such that g(X) = T ′. Let m ∈ N such that gm ∈ Reg TX ; then
(t′)m = (g(x))m = gm(x) ∈ Reg T for all t′ ∈ T ′.


Now, for each t ∈ T , let T ′ = {t}; then there exists m ∈ N such that
tm ∈ Reg T . Thus T is π-regular.


For every u, v ∈ E(T ), define g : X −→ T by g(x) = u and h : X −→ T
by h(x) = v for all x ∈ X. Then, g, h ∈ E(TX) and


uv = g(x)h(x) = gh(x) = h(x)g(x) = vu.


Thus T is a strongly π-inverse monoid.
Conversely, for any g ∈ TX , we have g(x) ∈ R, and then there exists m ∈


N such that gm(x) = (g(x))m ∈ Reg T for all x ∈ X, so that gm ∈ Reg TX .
Thus TX is π-regular.


For each g, h ∈ E(TX) we have g(x), h(x) ∈ E(T ) for all x ∈ X. Then


gh(x) = g(x)h(x) = h(x)g(x) = (hg)(x)


for all x ∈ X, and then gh = hg. Thus TX is strongly π-inverse.


Lemma 9. Let S and T be two monoids; S acts on a set X from the
left. Then the following conditions are equivalent:


(1) for each e ∈ E(S) and g ∈ Reg TX , ge = g;
(2) |T | = 1 or ex = x for each e ∈ E(S) and x ∈ X.


Proof. Suppose that (1) holds. If there exist e ∈ E(S) and x ∈ X such that
ex 6= x, then for t′ ∈ Reg T define g : X −→ T by


g(y) =


{


1, if y = ex,
t′, if y 6= ex.
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We have g ∈ Reg TX . Hence ge = g, and then t′ = g(x) = ge(x) = g(ex) =
1. Thus Reg T = {1}. But for each t ∈ T there exists m ∈ N such that
tm ∈ Reg T . So tm = 1, and then t ∈ Reg T . Hence t = 1, therefore |T | = 1.


Conversely, assume (2) holds. Let e ∈ E(S) and g ∈ Reg TX . If |T | = 1,
then (1) holds. If |T | 6= 1, then ex = x for e ∈ E(S) and all x ∈ X. So
ge(x) = g(x) for all x ∈ X, which means that ge = g.


Theorem 10. Let S and T be two monoids; S acts on a set X from the
left. Then the wreath product SwxT is a strongly π-inverse monoid iff


(1) S and T are strongly π-inverse monoids,
(2) for each subset T ′ of T with |T ′| ≤ |X| there exists m ∈ N such that


(t′)m ∈ Reg T ′ for all t′ ∈ T ′,
(3) |T | = 1 or ex = x for every e ∈ E(S) and all x ∈ X, and
(4) for each x ∈ S and g ∈ TX there exists m ∈ N such that sm ∈ Reg S


and gs(m)(x) ∈ Reg T for all x ∈ X, where gs(m) = gsm−1 · · · gsg ∈ TX .


Proof. It is easy to see that gs(m) ∈ Reg TX iff gs(m)(x) ∈ Reg T for all
x ∈ X. Thus Theorem 10 is an immediate consequence of Lemma 8, Lemma
9, and Theorem 2.


Recall that the standard wreath product SwT of two monoids is formed
by the left regular representation of S on itself, and we have


Theorem 11. The standard wreath product SwT of two monoids S and
T is a strongly π-inverse monoid iff


(1) both S and T are strongly π-inverse monoids,
(2) for each subset T ′ of T with |T ′| ≤ |S| there exists m ∈ N such that


(t′)m ∈ Reg T for all t′ ∈ T ′,
(3) S is a group or |T | = 1, and
(4) for every s ∈ S and g ∈ TS there exists m ∈ N such that gs(m)(x) ∈


Reg T for all x ∈ S.
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