OSCILLATORY CRITERIA FOR NONLINEAR n TH-ORDER DIFFERENTIAL EQUATIONS WITH QUASIDERIVATIVES

MIROSLAV BARTUŠEK

Abstract

Sufficient conditions are given for the existence of oscillatory proper solutions of a differential equation with quasiderivatives $L_{n} y=f\left(t, L_{0} y, \ldots, L_{n-1} y\right)$ under the validity of the sign condition $f\left(t, x_{1}, \ldots, x_{n}\right) x_{1} \leq 0, f\left(t, 0, x_{2}, \ldots, x_{n}\right)=0$ on $\mathbb{R}_{+} \times \mathbb{R}^{n}$.

1. Introduction

Consider the n th-order differential equation

$$
\begin{equation*}
L_{n} y(t)=f\left(t, L_{0} y, L_{1} y, \ldots, L_{n-1} y\right) \quad \text { in } \quad \mathbb{D}=\mathbb{R}_{+} \times \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

where $n \geq 2, \mathbb{R}_{+}=[0, \infty], \mathbb{R}=(-\infty, \infty), L_{i} y$ is the i th quasiderivative of y defined as

$$
\begin{gather*}
L_{0} y(t)=\frac{y(t)}{a_{0}(t)}, L_{i} y(t)=\frac{\left(L_{i-1} y(t)\right)^{\prime}}{a_{i}(t)}, \quad i=1,2, \ldots, n-1 \tag{2}\\
L_{n} y(t)=\left(L_{n-1} y(t)\right)^{\prime}
\end{gather*}
$$

functions $a_{i} \in C^{\circ}\left(\mathbb{R}_{+}\right)$are positive, and $f: \mathbb{D} \rightarrow \mathbb{R}$ fulfills the local Carathéodory conditions.

Throughout the paper we assume that

$$
\begin{equation*}
f\left(t, x_{1}, \ldots, x_{n}\right) x_{1} \leq 0, f\left(t, 0, x_{2}, \ldots, x_{n}\right)=0 \quad \text { in } \quad \mathbb{D} \tag{3}
\end{equation*}
$$

Definition. A function $y:[0, T) \rightarrow \mathbb{R}, T \in(0, \infty]$, is called a solution of (1) if (1) is valid for almost all $t \in[0, T)$. It is called noncontinuable if either $T=\infty$ or $T<\infty$, and

$$
\limsup _{t \rightarrow T} \sum_{i=0}^{n-1}\left|L_{i} y(t)\right|=\infty
$$

[^0]Let $y:[0, T) \rightarrow \mathbb{R}, T \leq \infty$, be a noncontinuable solution of (1). It is said to be proper if $T=\infty$ and $\sup _{\tau<t<\infty}|y(t)|>0$ for all $\tau \in \mathbb{R}_{+}$. It is said to be singular of the first (second) kind if $t^{*} \in(0, \infty)$ exists such that

$$
y \equiv 0 \text { in }\left[t^{*}, \infty\right), \quad \sup _{0 \leq t \leq t^{*}} \sum_{i=0}^{n-1}\left|L_{i} y(t)\right|>0
$$

(if $T<\infty$). A proper solution y is said to be oscillatory if a sequence $\left\{t_{k}\right\}_{0}^{\infty}$ exists such that $t_{k} \in \mathbb{R}_{+}, \lim _{k \rightarrow \infty} t_{k}=\infty$ and $y\left(t_{k}\right)=0$ holds. Otherwise, it is called nonoscillatory.

Many authors studied the problem of structure and properties of proper nonoscillatory solutions of (1) (see, e.g., [1]-[3]). But as regards proper oscillatory solutions, their existence is proved only in the cases where $n \geq 3$ and $a_{i} \equiv 1$ (see [4]-[6]), or $n=3$ (see [1]).

Definition. Equation (1) has property A if every proper solution y is oscillatory for even n and it is either oscillatory or

$$
\begin{equation*}
\lim _{t \rightarrow \infty} L_{i} y(t)=0 \text { monotonically, } \quad i=0,1, \ldots, n-1 \tag{4}
\end{equation*}
$$

for odd n.
Similarly to a differential equation without quasiderivatives $\left(a_{i} \equiv 1\right)$, it is possible to use the following way to prove the existence of proper oscillatory solutions: If
1° there exists no singular solution of the 1st kind;
$2^{\circ} \quad$ there exists no singular solution of the 2 st kind;
3° (1) has Property A;
$4^{\circ} \quad$ the initial conditions of y at zero are choosen such that (4) is not valid,
then y is oscillatory proper.
Sufficient conditions for the validity of relations $1^{\circ}, 2^{\circ}, 4^{\circ}$ can be easily obtained similarly to the case $a_{i} \equiv 1$ (see later). Very profound results concerning 3° are given in [7].

In our paper we generalize the results which could be obtained by this approach. Especially, we shall weaken conditions 1° and 3°.

Sometimes, we will suppose that

$$
\begin{equation*}
a_{n}(t)\left|x_{1}\right|^{\lambda} \leqq\left|f\left(t, x_{1}, \ldots, x_{n}\right)\right| \quad \text { in } \quad \mathbb{D}, \tag{5}
\end{equation*}
$$

where $0<\lambda \leq 1, a_{n} \in L_{\mathrm{loc}}\left(\mathbb{R}_{+}\right), a_{n} \geq 0 ;$

$$
\begin{gather*}
\int_{0}^{\infty} a_{i}(t) d t=\infty, \quad i=1,2, \ldots, n-1 \tag{6}\\
\left|f\left(t, x_{1}, \ldots, x_{n}\right)\right| \leq h(t) \omega\left(\sum_{i=1}^{n}\left|x_{i}\right|\right) \quad \text { in } \quad \mathbb{D} \tag{7}
\end{gather*}
$$

where $h \in L_{\mathrm{loc}}\left(\mathbb{R}_{+}\right), \omega \in C^{\circ}\left(\mathbb{R}_{+}\right), \omega(x)>0$ for $x>0, \int_{0}^{\infty} \frac{d t}{\omega(t)}=\infty$;

$$
\begin{equation*}
\left|f\left(t, x_{1}, \ldots, x_{n}\right)\right| \leq A(t) g\left(\left|x_{1}\right|\right) \quad \text { in } \quad \mathbb{R}_{+} \times[-\varepsilon, \varepsilon]^{n} \tag{8}
\end{equation*}
$$

where $\varepsilon>0, A \in L_{\mathrm{loc}}\left(\mathbb{R}_{+}\right), g \in C^{\circ}[0, \varepsilon], g(0)=0, g(x)>0$ for $x>0$, $\int_{0}^{\varepsilon} \frac{d t}{g(t)}=\infty$;

$$
\left\{\begin{array}{l}
\text { let } \frac{a_{1}}{a_{2}} \in C^{1}\left(\mathbb{R}_{+}\right) \text {for } n=3, \tag{9}\\
a_{1} \in C^{1}\left(\mathbb{R}_{+}\right), a_{2} \in C^{1}\left(\mathbb{R}_{+}\right), \frac{a_{3}}{a_{1}} \in C^{2}\left(\mathbb{R}_{+}\right) \text {for } n=4 \\
\text { and let for } n>4 \text { an index } l \in\{1,2, \ldots, n-4\} \text { exist } \\
\text { such that } a_{l+j}, j=1,2, \text { are absolutely continuous and } \\
a_{l+j}^{\prime}, \quad j=1,2, \text { are locally bounded from below. }
\end{array}\right.
$$

Notation. If $b_{i} \in C^{\circ}(I)$, then

$$
I^{\circ}(t) \equiv 1, I^{k}\left(t, b_{1}, \ldots, b_{k}\right)=\int_{0}^{t} b_{1}(s) I^{k-1}\left(s, b_{2}, \ldots, b_{k}\right) d s, t \in I
$$

Put $a_{n j+i}(t)=a_{i}(t), j \in\{\ldots,-1,0,1, \ldots\}, i \in\{0,1, \ldots, n\}$, $N=\{1,2, \ldots\}$.

2. Main Results

Further, we shall investigate a solution y of (1) that satisfies the initial conditions

$$
\begin{gather*}
l \in\{0,1, \ldots, n-1\}, \tau \in\{-1,1\}, \tau L_{i} y(0)>0, i=0,1, \ldots, l \tag{10}\\
\tau L_{j} y(0)<0, j=l+1, \ldots, n-1
\end{gather*}
$$

and we shall prove that this solution is oscillatory proper under the validity of certain assumptions.

Theorem 1. Let $\lambda \in(0,1)$ and let (5), (7), and (9) be valid. Let

$$
\begin{gather*}
\int_{0}^{\infty} a_{i+1}\left(\tau_{i+1}\right) \int_{0}^{\tau_{i+1}} a_{i+2}\left(\tau_{i+2}\right) \int_{0}^{\tau_{i+2}} \ldots \int_{0}^{\tau_{n-1}} a_{n}\left(\tau_{n}\right)\left[\int_{0}^{\tau_{n}} a_{n+1}\left(\tau_{n+1}\right) \ldots\right. \\
\left.\int_{0}^{\tau_{i+n-1}} a_{i+n}\left(\tau_{i+n}\right) d \tau_{i+n} \ldots d \tau_{n+1}\right]^{\lambda} \times d \tau_{n} \ldots d \tau_{i+1}=\infty \tag{11}\\
i=0,1, \ldots, n-1
\end{gather*}
$$

Then any solution y of (1) that fulfills the Cauchy initial conditions (10) is oscillatory proper.

Theorem 2. Let $\lambda=1$, (5), (6), and (7) hold. Let

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} I^{1}\left(a_{n-1}\right) \int_{t}^{\infty} \frac{I^{n-1}\left(s, a_{1}, \ldots a_{n-1}\right)}{I^{1}\left(s, a_{n-1}\right)} a_{n}(s) d s>1 \tag{12}
\end{equation*}
$$

Further, let either (9) or (8) hold.
Then any solution y of (1), that fulfills the Cauchy initial conditions (10) is oscillatory proper.

Theorem 3. Let (6), (7) be valid and let functions $a_{n} \in L_{\text {loc }}\left(\mathbb{R}_{+}\right), b \in$ $C^{\circ}\left(\mathbb{R}_{+}\right)$exist such that $\int_{0}^{\infty} a_{n}(t) d t=\infty, b(0)=0, b(x)>0$ for $x>0, b$ is nondecreasing, and

$$
a_{n}(t) b\left(\left|x_{1}\right|\right) \leq\left|f\left(t, x_{1}, \ldots, x_{n}\right)\right| \quad \text { in } \quad \mathbb{D}
$$

Further, let either (9) or (8) be valid. Then any solution y of (1) that fulfills (10) is oscillatory proper.

3. Proof of main results

Let us define two special types of solutions of (1) that will be encountered later.

Type $\mathbf{I}(\boldsymbol{\tau}): y:[0, \tau) \rightarrow \mathbb{R}, 0<\tau \leq \infty$ and sequences $\left\{t_{k}^{i}\right\},\left\{\bar{t}_{k}^{n-1}\right\}$, $k \in \mathbb{N}, i \in\{0,1, \ldots, n-1\}$ exist such that $\lim _{k \rightarrow \infty} t_{k}^{\circ}=\tau$,

$$
0 \leq t_{k}^{0}<t_{k}^{n-1} \leq \bar{t}_{k}^{n-1}<t_{k}^{n-2} \cdots<t_{k}^{1}<t_{k+1}^{0}
$$

$$
\begin{aligned}
& L_{i} y\left(t_{k}^{i}\right)=0, i=0,1, \ldots, n-2, L_{n-1} y(t)=0 \text { for } t \in\left[t_{k}^{n-1}, \bar{t}_{k}^{n-1}\right], k \in \mathbb{N} \\
& \qquad \begin{aligned}
L_{i} y(t) L_{0} y(t) & >0 \text { for } t \in\left(t_{k}^{0}, t_{k}^{i}\right) \quad, i=0,1, \ldots, n-1 \\
& <0 \text { for } t \in\left(t_{k}^{i}, t_{k+1}^{0}\right), i=0,1, \ldots, n-2 \\
& <0 \text { for } t \in\left(\bar{t}_{k}^{n-1}, t_{k+1}^{0}\right), i=n-1, k \in \mathbb{N}
\end{aligned}
\end{aligned}
$$

If $\tau<\infty$, then $\lim _{t \rightarrow \tau} L_{i} y(t)=0, i=0,1, \ldots, n-1$.
Type II (s): $y: \mathbb{R}_{+} \rightarrow \mathbb{R}, s \in\{0,1, \ldots, n-1\}, \tau \in \mathbb{R}_{+}$,

$$
\begin{aligned}
L_{j} y(t) L_{s} y(t) & \geq 0 \quad \text { for } \quad j \in\{0,1, \ldots, s\} \\
& \leq 0 \quad \text { for } \quad j \in\{s+1, \ldots, n-1\} \\
L_{m} y(t) & \neq 0, m \in\{0,1, \ldots, n-2\}, \quad t \in[\tau, \infty) .
\end{aligned}
$$

Remark. Any solution y of Type I (∞) (of Type II (s)) is oscillatory proper (nonoscillatory proper). If we define $y \equiv 0$ on $[\tau, \infty)$, then any solution y of Type $\mathrm{I}(\tau), \tau<\infty$ is singular of the first kind.

Lemma 1. Let $J=\left[t_{1}, t_{2}\right] \subset \mathbb{R}_{+}, t_{1}<t_{2}$ and $y: J \rightarrow \mathbb{R}$ be a solution of (1).
(a) If $j \in\{1,2, \ldots, n\}, L_{j} y(t) \geq 0(\leq 0)$ in J, then $L_{j-1} y$ is nondecreasing (nonincreasing) in J;
(b) if $j \in\{1,2, \ldots, n\}, L_{j} y(t)>0(<0)$ in J, then $L_{j-1} y$ is increasing (decreasing) in J;
(c) if $L_{0} y(t) \geq 0(\leq 0)$ in J, then $L_{n-1} y$ is nonincreasing (nondecreasing) in J.

Proof.
(a) Let $L_{j} y(t) \geq 0$ in J. Then according to (2) either
$\left(L_{j-1} y(t)\right)^{\prime}=a_{j}(t) L_{j} y(t) \geq 0, j<n$ or $\left(L_{n-1} y(t)\right)^{\prime}=L_{n} y(t) \geq 0$ holds.
(b), (c) The proof is similar, only (3) must be used instead of (2) in (c).

Lemma 2. Let $y: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be a solution of (1) which satisfies (10). Then one of the following possibilities holds:
(a) y is of Type $\mathrm{I}(\infty)$
(b) there exists $\tau \in(0, \infty)$ such that y is of Type $\mathrm{I}(\tau)$ in $[0, \tau)$.
(c) there exists $i \in\{0, \ldots, n-1\}$ such that y is of Type II (i).

Proof. First suppose that y satisfies the Cauchy initial conditions

$$
\begin{equation*}
\sigma L_{i} y(0)>0, \quad i=0,1, \ldots, n-1 \tag{13}
\end{equation*}
$$

According to Lemma $1 \sigma L_{i} y>0, i=0,1, \ldots, n-1$, in some right neighborhood of $t=0$, and $\sigma L_{j} y, j=0,1, \ldots, n-2$, are nondecreasing ($\sigma L_{n-1} y$
is nondecreasing) until $\sigma L_{j+1} y \geq 0\left(\sigma L_{0} y \geq 0\right)$. Thus either y is of Type II $(n-1)$ or numbers t^{n}, \bar{t}^{n} exist such that

$$
\begin{gathered}
0<t^{n} \leq \bar{t}^{n}, \sigma L_{j} y(t)>0 \quad \text { in } \quad\left[0, \bar{t}^{n}\right], j \in\{0,1, \ldots, n-2\} \\
\sigma L_{n-1} y(t)>0 \quad \text { in } \quad\left[0, t^{n}\right), \sigma L_{n-1} y(t) \equiv 0 \quad \text { in } \quad\left[t^{n}, \bar{t}^{n}\right] \\
\sigma L_{j} y(t)>0, \sigma L_{n-1} y<0 \quad \text { in some right neighborhood of } t=\bar{t}^{n} .
\end{gathered}
$$

By the same procedure it can be proved that either y is of Type II (s), $s \in\{0, \ldots, n-2\}$, or numbers $t^{j}, j \in\{0,1, \ldots, n-2\}$, exist such that

$$
\begin{gathered}
\bar{t}^{n-1}<t^{n-2}<\cdots<t^{0}, \quad \sigma L_{i} y\left(t^{i}\right)=0, \sigma L_{i} y>0 \quad \text { in } \quad\left(t^{i+1}, t^{i}\right) \\
\sigma L_{m} y>0, \sigma L_{k} y<0 \quad \text { in }\left(t^{i+1}, t^{i}\right] \\
m \in\{0,1, \ldots i-1\}, k \in\{i+1, \ldots n-1\}
\end{gathered}
$$

and
$\sigma L_{i} y<0, \quad i \in\{0,1, \ldots, n-1\}$ in some right neighborhood of t^{0}.
Thus (13) is valid in this neighborhood and the statement follows by repeating the considerations in the case (13). Note that in the case Type $\mathrm{I}(\tau)$, $\tau<\infty$, the relations $\lim _{t \rightarrow \tau} L_{i} y(t)=0, \quad i=0,1, \ldots, n-1$, must be valid because y is defined in \mathbb{R}_{+}.

Further, let (10) be valid. By the use of (13), (14) we see that the same initial conditions are valid in some $t^{*}, t^{*} \in\left[0, t^{0}\right]$, in the previous part of the proof. Thus the statement of the lemma can be proved similarly.

Remark. Let $y:[0, \tau) \rightarrow \mathbb{R}, \tau<\infty$, be a noncontinuable solution. Then the statement of Lemma 2 is valid, too, if (a) is changed into
$\left(\mathrm{a}^{\prime}\right) y$ is of Type $\mathrm{I}(\tau)$ with the exception of $\lim _{t \rightarrow \tau} L_{i} y(t)=0, i=$ $0,1, \ldots, n-1$, and if Type II (s) is defined only on $[0, \tau)$.

Lemma 3 ([6, Lemma 9.2]). Let $c_{0} \geq 0, t_{0} \in I \subset \mathbb{R}_{+}, h \in L_{l o c}(I)$, $h \geq 0, \omega \in C^{0}\left(\mathbb{R}_{+}\right), \omega(x)>0$ for $x>c_{0}, \int_{c_{0}}^{\infty} \frac{d s}{\omega(s)}<\infty$. Then for every continuous function $x(t): I \rightarrow \mathbb{R}_{+}$which satisfies

$$
x(t) \leq c_{0}+\left[\int_{t_{0}}^{t} h(\tau) \omega(x(\tau)) d \tau\right] \operatorname{sign}\left(t-t_{0}\right), \quad t \in I
$$

we have

$$
x(t) \leq \Omega^{-1}\left(\left|\int_{t_{0}}^{t} h(\tau) d \tau\right|\right), \quad t \in I
$$

where Ω^{-1} is the inverse function of $\Omega(s)=\int_{c_{0}}^{s} \frac{d \tau}{\omega(\tau)}$.

Lemma 4. Let (7) hold. Then there exists no singular solution of (1) of the second kind.

The lemma can be proved analogously to Lemma 4 in [7].
Lemma 5 (see [7], Lemma 1.5 and Consequence 1.2). Let
$\omega:(0, \infty) \rightarrow \mathbb{R}_{+}$be continuous, nondecreasing and $h \in L_{\text {loc }}\left(\mathbb{R}_{+}\right), h \geq 0$, such that

$$
\int_{0}^{\infty} h(t) d t=\infty, \quad \int_{0}^{1} \frac{d x}{\omega(x)}<\infty
$$

Then the differential inequality $u^{\prime}+a(t) \omega(u) \leq 0$ has no proper positive solution in \mathbb{R}_{+}.

Lemma 6. Let (5) be valid and one of the following conditions hold:
(a) $\lambda=1$, (6) and (12) hold
(b) $\lambda \in(0,1)$, (11) holds.

Then there exists no solution of (1) of Type $\mathrm{II}(i), i=0,1, \ldots, n-1$.
Proof. (a) With respect to (6) no solution of (1) of Type $\operatorname{II}(i), i=0,1, \ldots$, $n-2$, exists (see [3]). The fact that there exists no solution of Type II $(n-1)$ is proved by Chanturia [7] in the proof of Theorem 3.5.
(b) We prove indirectly that a solution of Type $\operatorname{II}(s), s \in\{0,1, \ldots, n-1\}$, does not exist. Thus suppose, without loss of generality, that a solution of (1) $y: \mathbb{R}_{+} \rightarrow \mathbb{R}$ exists such that $T \in \mathbb{R}_{+}$,

$$
\begin{gather*}
L_{i} y(t) \geq 0, \quad i=0,1, \ldots, s ; \quad L_{j} y(t) \leq 0, \quad j=s+1, \ldots n-1 \\
L_{m} y(t) \neq 0, \quad m=0,1, \ldots, n-2, t \geq T \tag{15}
\end{gather*}
$$

Then according to Lemma 1 and (3)
$\left|L_{i} y\right| \quad$ is nondecreasing for $\quad i \in\{0,1, \ldots, n-1\}, i \neq s$, $L_{s} y$ is nonincreasing in $[T, \infty)$.

Further, by the use of (2), (5), (15), (16)

$$
\begin{align*}
& \left|L_{i} y(t)\right| \geq \int_{T}^{\infty} a_{i+1}(s)\left|L_{i+1} y(s)\right| d s, \quad i=0,1, \ldots, n-2 \\
& \left|L_{n-1} y(t)\right| \geqq \int_{T}^{\infty}\left|L_{n} y(s)\right| d s \geqq \int_{T}^{\infty} a_{n}(s)\left|L_{0} y(s)\right|^{\lambda} d s \tag{17}\\
& -\left(L_{s} y(t)\right)^{\prime}=a_{s+1}(t)\left|L_{s+1} y(t)\right| \quad \text { for } \quad s \in\{0,1, \ldots, n-2\} \\
& -\left(L_{s} y(t)\right)^{\prime}=-L_{n} y(t) \geq a_{n}(t)\left(L_{0} y(t)\right)^{\lambda} \quad \text { for } \quad s=n-1
\end{align*}
$$

From this and (17) we have for $t \in[T, \infty)$

$$
\begin{gathered}
\left|L_{s+1} y(t)\right| \geqq \\
\geqq \int_{T}^{t} a_{s+2}\left(\tau_{s+2}\right) \int_{T}^{\tau_{s+2}} a_{s+3}\left(\tau_{s+3}\right) \cdots \int_{T}^{\tau_{n-2}} a_{n-1}\left(\tau_{n-1}\right)\left|L_{n-1} y\left(\tau_{n-1}\right)\right| \geqq \\
\geqq \int_{T}^{t} a_{s+2}\left(\tau_{i+2}\right) \cdots \int_{T}^{\tau_{n-2}} a_{n-1}\left(\tau_{n-1}\right) \int_{T}^{\tau_{n-1}} a_{n}\left(\tau_{n}\right) \times \\
\times\left[\int_{T}^{\tau_{n}} a_{1}\left(s_{1}\right) \int_{T}^{\tau_{1}} \cdots \int_{T}^{\tau_{s-1}} a_{s}\left(\tau_{s}\right) L_{s} y\left(\tau_{s}\right)\right]^{\lambda} d \tau_{s} \ldots d \tau_{1} d \tau_{n} \ldots d \tau_{s+2} \leq \\
\leq Z_{s}(t, T)\left(L_{s} y(t)\right)^{\lambda}, \quad s=0,1, \ldots, n-2, \\
\left|L_{0} y(t)\right| \geq Z_{n-1}(t, T) L_{n-1} y(t) \quad(\text { for } \quad s=n-1),
\end{gathered}
$$

where

$$
\begin{gathered}
Z_{s}(t, T)=\int_{T}^{t} a_{s+2}\left(\tau_{i+2}\right) \cdots \int_{T}^{\tau_{n-1}} a_{n}\left(\tau_{n}\right)\left[\int_{T}^{\tau_{n}} a_{1}\left(\tau_{1}\right) \ldots\right. \\
\left.\ldots \int_{T}^{\tau_{s-1}} a_{s}\left(\tau_{s}\right) d \tau_{s} \ldots d \tau_{1}\right]^{\lambda} d \tau_{n} d \tau_{s+2}, \quad s=0,1, \ldots, n-2 \\
Z_{n-1}(t, T)=\int_{T}^{t} a_{1}\left(\tau_{1}\right) \int_{T}^{\tau_{1}} a_{2}\left(\tau_{2}\right) \cdots \int_{T}^{\tau_{n-2}} a_{n-1}\left(\tau_{n-1}\right) d \tau_{n-1} \ldots d \tau_{1} \\
\quad(\text { for } \quad s=n-1)
\end{gathered}
$$

It follows from (17) that

$$
\left(L_{s} y(t)\right)^{\prime}+a_{s+1}(t) Z_{s}^{\beta}(t, T)\left(L_{s} y(t)\right)^{\lambda} \leq 0, \quad t \in[T, \infty)
$$

where $\beta=1$ for $s \in\{0,1, \ldots, n-2\}, \beta=\lambda$ for $s=n-1$. As according to (11)

$$
Z_{s}(\infty, T)=Z_{s}(\infty, 0)=\infty
$$

we get the contradiction to Lemma 5 if $L_{s} y(t)>0$ in $[T, \infty)$. Thus with respect to (17)

$$
s=n-1, \quad L_{n-1} y(t) \equiv 0 \quad \text { on } \quad[\tau, \infty), \quad \tau \in[T, \infty)
$$

is the last case which has to be considered. In that case, according to (17), (16),

$$
\begin{aligned}
& 0=-\left(L_{n-1} y(t)\right)^{\prime} \geqq a_{n}(t)\left(L_{0} y(t)\right)^{\lambda} \\
& a_{n}(t)=0 \quad \text { for almost all } \quad t \in[\tau, \infty) .
\end{aligned}
$$

The contradiction to (11), $i=n-1$, proves the statement of the lemma.
Remark.
(a) The idea of the proof (b) is due to Kiguradze [5] (for the n th-order differential equation); see [7], too.
(b) In [7] sufficient conditions for equation (1) to have Property A are given. For example, (1) has Property A if (5), (6), $\lambda=1$,

$$
\begin{gather*}
\limsup _{t \rightarrow \infty} \frac{I^{n-i}\left(t, a_{n-1}, \ldots, a_{i}\right)}{I^{n-i-1}\left(t, a_{n-1}, \ldots, a_{i+1}\right)} \times \\
\times \int_{t}^{\infty} \frac{\left.I^{n-i-1}\left(s, a_{n-1}, \ldots, a_{i+1}\right) I^{i}\left(s, a_{1}, \ldots, a_{i}\right)\right)}{I^{1}\left(s, a_{i}\right)} a_{n}(s) d s>1 \tag{18}
\end{gather*}
$$

for $i=1,2, \ldots, n-1,2 \mid(i+n)$ and $\int_{0}^{\infty} I^{n-1}\left(t, a_{n-1}, \ldots, a_{1}\right) a_{n}(t) d t=\infty$ holds.

It is evident that if (1) has Property A then solutions of Type II (i), $i=0,1, \ldots, n-1$, do not exist. Condition (12) is the same as (19) for $i=n-1$. Assumptions of Lemma 6 are weaker see the following example. A similar situation exists for $0<\lambda<1$. Moreover, in [7] an extra assumption is made in this case.

Example. Consider equation (1) with (5) where $n=6, a_{0}=a_{1}=a_{2}=$ $a_{3}=a_{4}=1, a_{5}=\frac{1}{t+1}, a_{6}=\frac{1}{(t+1)^{5}}$. Then condition (11) is true, but (19) is not true for $i=3$. Thus solutions of Type $\mathrm{II}(i), i=0,1, \ldots, 5$, do not exist; at the same time the above results of (5) do not guarantee Property A for (1).

Lemma 7. Let (6) hold and functions $a_{n} \in L_{\text {loc }}\left(\mathbb{R}_{+}\right), g \in C^{0}\left(\mathbb{R}_{+}\right)$exist such that $g(0)=0, g(x)>0$ for $x>0, g$ is nondecreasing, $\int_{0}^{\infty} a_{n}(t) d t=\infty$, and

$$
a_{n}(t) g\left(\left|x_{1}\right|\right) \leq\left|f\left(t, x_{1}, \ldots, x_{n}\right)\right| \quad \text { in } \quad \mathbb{D}
$$

Then there exists no solution of (1) of Type II (i), $i=0,1, \ldots, n-1$.

Proof. According to [3] and (6) no solution of Type II (i), $i=0,1, \ldots, n-2$, exists. Let y be a solution of (1) of Type II $(n-1)$. Then according to Lemma $1\left|L_{n-1} y\right|$ is nonincreasing and

$$
\begin{aligned}
& \infty>\left|L_{n-1} y(\infty)-L_{n-1} y(T)\right|=\int_{T}^{\infty}\left|L_{n} y(s)\right| d s \geqq \\
\geqq & \int_{T}^{\infty} a_{n}(t) g\left(\left|L_{0} y(s)\right|\right) d s \geq g\left(\left|L_{0} y(T)\right|\right) \int_{T}^{\infty} a_{n}(s) d s=\infty .
\end{aligned}
$$

The contradiction proves the lemma.
Lemma 8. Let (8) be valid. Then there exists no singular solution of (1) of the first kind.

Proof. Let on the contrary a solution y of (1) of the first kind exist. Then numbers $\tau, \tau_{1} \in \mathbb{R}_{+}, \tau_{1}<\tau$, exist such that

$$
\begin{gather*}
\varrho\left(\tau_{1}\right)>0, L_{i} y \equiv 0 \quad \text { on } \quad[\tau, \infty), i=0,1, \ldots, n-1 \\
\text { where } \quad \varrho(t)=\sum_{i=0}^{n-1}\left|L_{i} y(t)\right| \tag{19}
\end{gather*}
$$

Then by the use of (2) and (8)

$$
\begin{gathered}
\left|L_{i} y(t)\right| \leq \int_{t}^{\tau} a_{i+1}(s)\left|L_{i+1} y(s)\right| d s, \quad i=0,1, \ldots, n-2, \\
\left|L_{n-1} y(t)\right| \leq \int_{t}^{\tau}\left|L_{n} y(s)\right| d s, \\
\leqq L_{i} y(t) \mid \leqq \\
\leq\left[\prod_{j=i+1}^{\tau} \int_{\tau_{1}}^{\tau} a_{i+1}\left(s_{i+1}\right) \int_{s_{i+1}}^{\tau} a_{i+2} \cdots \int_{s_{n-2}}^{\tau} a_{n-1}\left(s_{n-1}\right) \int_{s_{n-1}}^{\tau}\left|L_{n} y\left(s_{n}\right)\right| d s_{n} \ldots d s_{i+1}^{\tau}\left|L_{n} y(s)\right| d s, \quad i=0,1, \ldots, n-2,\right. \\
\varrho(t) \leq C \int_{t}^{\tau}\left|L_{n} y(s)\right| d s \leq C \int_{t}^{\tau} A(s) g(\varrho(s)) d s, \quad t \in\left[\tau_{1}, \tau\right],
\end{gathered}
$$

where

$$
C=\sum_{i=0}^{n-2} \prod_{j=i+1}^{n-1} \int_{\tau_{1}}^{\tau} a_{j}(s) d s+1
$$

Then it follows from Lemma 3 that

$$
\int_{0}^{\varrho\left(\tau_{1}\right)} \frac{d s}{g(s)} \leq C \int_{\tau_{1}}^{\tau} A(s) d s<\infty
$$

which contradicts (8) and (19).

Lemma 9. Let y be a solution of (1) defined in \mathbb{R}_{+}that satisfies the initial conditions (10). Let (9) be valid. Then y is not of Type $I(\tau)$ for $\tau<\infty$.

Proof. For $n=3,4$ the statement follows from [8] and [9]. Let $n>4$. Let on the contrary a solution y of Type $\mathrm{I}(\tau), \tau<\infty$ exist. It follows from the assumptions of the lemma that an interval $\Lambda=\left[\tau_{1}, \tau\right], \tau_{1}<\tau$, exists, for which we have

$$
\begin{align*}
& \frac{\max _{t \in \Lambda} a_{e} \cdot \max _{t \in \Lambda} a_{e+1}}{\min _{t \in \Lambda} a_{e} \cdot \min _{t \in \Lambda} a_{e+1}} \leq \frac{5}{4}, a_{e+1}(t) a_{e+2}(t)+\left[a_{e+1}^{\prime}(t)\right]_{-} \int_{\Lambda} a_{e+2}(s) d s>0, \\
& a_{e+2}(t) a_{e+3}(t)+\left[a_{e+2}^{\prime}(t)\right]_{-} \int_{\Lambda} a_{e+3}(s) d s>0, \tag{20}
\end{align*}
$$

where $[g(t)]_{-}=\min (0, g(t))$.
Use the same notation as in the definition of Type $\mathrm{I}(\tau)$. According to $\lim _{t \rightarrow \tau} L_{e} y(t)=0$ there exists $k_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|L_{e} y\left(t_{k_{0}}^{e+1}\right)\right|>\left|L_{e} y\left(t_{k_{0}+1}^{e+1}\right)\right|>0, t_{k_{0}}^{e+1}>\tau_{1} \tag{21}
\end{equation*}
$$

Denote $t_{k_{0}}^{e+1}=t_{1}, t_{k_{0}}^{e}=t_{2}, t_{k_{0}}^{e-1}=t_{3}, \Lambda_{1}=t_{2}-t_{1}, \Lambda_{2}=t_{3}-t_{2}$. Then it follows from (21) and from the definition of Type $\mathrm{I}(\tau)$ that (we choose
$L_{e-1}\left(t_{2}\right)>0$ for simplicity)

$$
\begin{align*}
& L_{e-1} y>0 \text { in }\left[t_{1}, t_{3}\right), L_{e-1} y\left(t_{3}\right)=0, \\
& L_{e-1} \text { is increasing (decreasing) in }\left[t_{1}, t_{2}\right]\left(\text { in }\left[t_{2}, t_{3}\right]\right), \\
& L_{e} y>0 \text { in }\left[t_{1}, t_{2}\right), L_{e} y\left(t_{2}\right)=0, L_{e} y<0 \text { in }\left(t_{2}, t_{3}\right], \\
& L_{e} \text { is decreasing in }\left[t_{0}, t_{3}\right] \tag{22}\\
& L_{e+1} y\left(t_{1}\right)=0, L_{e+1} y<0 \text { in }\left(t_{1}, t_{3}\right], \\
& L_{e+1} y \text { is decreasing in }\left[t_{0}, t_{3}\right] \\
& L_{e+j} y<0 \text { and } L_{e+j} y \text { is decreasing in }\left[t_{0}, t_{3}\right], j=2,3 .
\end{align*}
$$

From this and (21), (22)

$$
\begin{gather*}
L_{e} y\left(t_{1}\right)>\left|L_{e} y\left(t_{3}\right)\right| \tag{23}\\
L_{e+1} y(t)=\int_{t_{1}}^{t} a_{e+2}(s) L_{e+2} y(s) d s \geq L_{e+2} y(t) \int_{\Lambda} a_{e+2}(s) d s, t \in\left[t_{1}, t_{3}\right] \\
{\left[L_{e} y(t)\right]^{\prime \prime}=\left[a_{e+1} L_{e+1} y(t)\right]^{\prime}=a_{e+1}(t) a_{e+2}(t) L_{e+2} y(t)+} \\
+a_{e+1}^{\prime}(t) L_{e+1} y(t) \leq a_{e+1}(t) a_{e+2}(t) L_{e+2} y(t)+ \\
+\left[a_{e+2}^{\prime}(t)\right]_{-} L_{e+1} y(t) \leq L_{e+2} y(t)\left[a_{e+1}(t) a_{e+2}(t)+\left[a_{e+2}^{\prime}(t)\right]_{-}\right. \\
\left.-\int_{\Lambda} a_{e+2}(s) d s\right]<0, t \in\left[t_{1}, t_{3}\right] \tag{24}
\end{gather*}
$$

Thus

$$
\begin{equation*}
L_{e} y \text { is concave in }\left[t_{1}, t_{3}\right] \tag{25}
\end{equation*}
$$

We can prove similarly that

$$
\begin{equation*}
L_{e+1} y \text { is concave in }\left[t_{1}, t_{3}\right] . \tag{26}
\end{equation*}
$$

Further, by the use of (23), (25)

$$
\begin{gathered}
L_{e-1} y\left(t_{2}\right)=\int_{t_{2}}^{t_{3}} a_{e}(s)\left|L_{e} y(s)\right| d s \leq \max _{s \in \Lambda} a_{e}(s)\left|L_{e} y\left(t_{3}\right)\right| \frac{\Lambda_{2}}{2} \\
L_{e-1} y\left(t_{2}\right) \geqq L_{e-1} y\left(t_{2}\right)-L_{e-1} y\left(t_{1}\right)=\int_{t_{1}}^{t_{2}} a_{e}(s) L_{e} y(s) d s \geq \\
\geq \min _{s \in \Lambda} a_{e}(s) L_{e} y\left(t_{1}\right) \frac{\Lambda_{1}}{2}
\end{gathered}
$$

Thus, according to (24)

$$
\begin{equation*}
1 \leq \frac{\left|L_{e} y\left(t_{3}\right)\right|}{L_{e} y\left(t_{1}\right)} \frac{\max _{s \in \Lambda} a_{e}(s)}{\min _{s \in \Lambda} a_{e}(s)} \frac{\Lambda_{2}}{\Lambda_{1}}<\frac{\max _{s \in \Lambda} a_{e}(s)}{\min _{s \in \Lambda} a_{e}(s)} \frac{\Lambda_{2}}{\Lambda_{1}} \tag{27}
\end{equation*}
$$

According to (23), (26)

$$
\begin{aligned}
& L_{e}\left(t_{1}\right)=\int_{t_{1}}^{t_{2}} a_{e+1}(s)\left|L_{e+1} y(s)\right| d s \leqq\left|L_{e+1} y\left(t_{2}\right)\right| \frac{\Lambda_{1}}{2} \max _{s \in \Lambda} a_{e+1}(s), \\
& \left|L_{e}\left(t_{3}\right)\right|=\int_{t_{2}}^{t_{3}} a_{e+1}(s)\left|l_{e+1} y(s)\right| d s \geqq\left|L_{e+1} y\left(t_{2}\right)\right| \Lambda_{2} \min _{s \in \Lambda} a_{e+1}(s) .
\end{aligned}
$$

Thus, according to (24), (27) and (23)

$$
1<\frac{\Lambda_{1}}{2 \Lambda_{2}} \frac{\max _{s \in \Lambda} a_{e+1}(s)}{\min _{s \in \Lambda} a_{e+1}(s)} \leq \frac{1}{2} \frac{\max _{s \in \Lambda} a_{e+1}(s) \max _{s \in \Lambda} a_{e}(s)}{\min _{s \in \Lambda} a_{e+1}(s) \min _{s \in \Lambda} a_{e}(s)} \leq \frac{5}{8}
$$

The contradiction proves the statement of the lemma.
Proof of Theorem 1. According to Lemmas 2, 6, and $9 y$ is of Type $\mathrm{I}(\infty)$ and by the use of Lemma 4 it is proper.

Proof of Theorem 2. The statement is a consequence of Lemmas 2, 4, 6, 8, and 9.

Proof of Theorem 3. It follows from Lemmas 4, 8, and 9 that y is proper and according to Lemma 7 it is of Type $\mathrm{I}(\infty)$.

Acknowledgements

M. Bartušek was partially supported by grant 201/93/0452 of the Czech Grant Agency.

References

1. M. Bartušek and Z. Došla, Oscillatory criteria for nonlinear thirdorder differential equations with quasiderivatives. Diff. Eq. and Dynam. Systems (to appear).
2. T. Kusano and W. F. Trench, Global existence of nonoscillatory solutions of perturbed general disconjugate equations. Hiroshima Math. J. 17(1987), 415-431.
3. M. Švec, Behaviour of nonoscillatory solutions of some nonlinear differential equations. Acta Math. Univ. Comenian. XXXIX(1980), 115-129.
4. M. Bartušek, Asymptotic properties of oscillatory solutions of differential equations of the nth order. Folia Fak. Sci. Natur. Univ. Masarykiana Brun. Math. 3(1992).
5. I. T. Kiguradze, Some singular boundary-value problems for ordinary differential equations. (Russian) Tbilisi University Press, Tbilisi, 1975.
6. I. T. Kiguradze and T. A. Chanturia, Asymptotic properties of solutions of nonautonomous ordinary differential equations. (Russian) Nauka, Moscow, 1990; English translation: Kluwer Academic Publishers, Dordrecht, 1993.
7. T. A. Chanturia, On oscillatory properties of a system of nonlinear ordinary differential equations. (Russian) Proc. I. Vekua Inst. Appl. Math. (Tbiliss. Gos. Univ. Inst. Prikl. Math. Trudy) 14(1983), 163-204.
8. M. Bartušek, On the structure of solutions of a system of three differential inequalities. Arch. Math. 30(1994), No. 2, 117-130.
9. M. Bartušek, On the structure of solutions of a system of four differential inequalities. Georgian Math. J. 2(1995), No. 3, 225-236.
(Received 20.11.1994)
Author's address:
Faculty of Sciences
Masaryk University
Janačkovo nám. 2a, 66295 Brno
Czech Republic

[^0]: 1991 Mathematics Subject Classification. 34C10.
 Key words and phrases. Oscillatory solutions, existence criteria, differential equation of nth order.

