COMBINATORIAL INVARIANCE OF STANLEY-REISNER RINGS

W. BRUNS AND J. GUBELADZE

Abstract

In this short note we show that Stanley-Reisner rings of simplicial complexes, which have had a "dramatic application" in combinatorics [2, p. 41], possess a rigidity property in the sense that they determine their underlying simplicial complexes.

For convenience we recall the notion of a Stanley-Reisner ring (for more information the reader is referred to [1, Ch. 5]). Let V be a finite set to be called below a vertex set. A system Δ of subsets of V is called an abstract simplicial complex (on the vertex set V) if the following conditions hold:
(a) $\{v\} \in \Delta$ for any element $v \in V$,
(b) $\sigma^{\prime} \in \Delta$ whenever $\sigma^{\prime} \subset \sigma$ for some $\sigma \in \Delta$.

Elements of Δ will be called faces.
Now assume we are given a field k and an abstract simplicial complex Δ on a vertex set V. The Stanley-Reisner ring corresponding to these data is defined as the quotient ring of the polynomial ring $k\left[v_{1}, \ldots, v_{n}\right] / I$, where $n=\#(V)$, the v_{i} are the elements of V, and the ideal I is generated by the set of monomials $\left\{v_{i_{1}} \cdots v_{i_{k}} \mid\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\} \notin \Delta\right\}$. This k-algebra will be denoted by $k[\Delta]$ and called the Stanley-Reisner ring of Δ. Further, the image of v_{i} in it will again be denoted by v_{i} (they are all different!) and hence will again be thought of as elements of V.

Theorem. Let k be a field, and Δ and Δ^{\prime} be two abstract simplicial complexes defined on the vertex sets $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $U=\left\{u_{1}, \ldots, u_{m}\right\}$ respectively. Suppose $k[\Delta]$ and $k\left[\Delta^{\prime}\right]$ are isomorphic as k-algebras. Then there exists a bijective mapping $\Psi: V \rightarrow U$ which induces an isomorphism between Δ and Δ^{\prime}.

Proof. Let $f: k[\Delta] \rightarrow k\left[\Delta^{\prime}\right]$ be a k-isomorphism. By scalar extension we may assume k is algebraically closed. Let us first show that without loss of

[^0]generality we may also assume f is an isomorphism of augmented k-algebras, where $k[\Delta]$ is endowed with an augmented k-algebra structure induced by $v_{i} \mapsto 0$, and similarly for $k\left[\Delta^{\prime}\right]$. Indeed, if v_{i} is a zero-divisor in $k[\Delta]$ for some $i \in[1, n]$, then its image in $k\left[\Delta^{\prime}\right]$ cannot have a nonzero constant term (with respect to the uniquely determined canonical expansion). So the deviation from "being augmented" for f can appear only at the elements $v_{i} \in V$ which are not zero-divisors. It is easy to observe that $v_{i} \in V$ is not a zero-divisor in $k[\Delta]$ if and only if it is a variable for $k[\Delta]$, i.e., $k[\Delta]=k\left[\Delta^{i}\right]\left[v_{i}\right]$, where Δ^{i} is a simplicial subcomplex of Δ consisting of those faces which do not contain v_{i}, and this v_{i} on the right-hand side is understood as a variable. Let $\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\}$ be the set of all nonzero-divisor vertices and $\left\{c_{i_{1}}, \ldots, c_{i_{k}}\right\}$ be the set of constant terms in the canonical expansions of $f\left(v_{i_{1}}\right), \ldots, f\left(v_{i_{k}}\right)$ respectively. Consider the elements $w_{i_{1}}=v_{i_{1}}-c_{i_{1}}, \ldots, w_{i_{k}}-c_{i_{k}} \in k[\Delta]$. Clearly, they are all different. Let $W=\left\{w_{1}, \ldots, w_{n}\right\}$ be the set obtained from V by substituting $w_{i_{j}}$ by $v_{i_{j}}$, respectively, and let Δ° be the abstract simplicial complex on the vertex set W induced by the natural bijection between V and W. Since all of the $v_{i_{j}}$ are (independent!) variables for $k[\Delta]$ (as remarked above), we conclude that $k[\Delta]=k\left[\Delta^{\circ}\right]$ and f is an augmented isomorphism between $k\left[\Delta^{\circ}\right]$, considered as an augmented k-algebra with respect to $w_{i} \mapsto 0$, and $k\left[\Delta^{\prime}\right]$. So from the very beginning we can assume f is augmented.

Next we pass to the corresponding graded isomorphism (with respect to the augmentation ideals)

$$
\operatorname{gr}(f): \operatorname{gr}(k[\Delta]) \rightarrow \operatorname{gr}\left(k\left[\Delta^{\prime}\right]\right)
$$

But $\operatorname{gr}(k[\Delta])=k[\Delta]$ and $\operatorname{gr}\left(k\left[\Delta^{\prime}\right]\right)=k\left[\Delta^{\prime}\right]$. This means that we may also assume f is a graded k-isomorphism of graded k-algebras $k[\Delta]$ and $k\left[\Delta^{\prime}\right]$ where $\operatorname{deg}\left(v_{1}\right)=\ldots=\operatorname{deg}\left(v_{n}\right)=\operatorname{deg}\left(u_{1}\right)=\ldots=\operatorname{deg}\left(u_{m}\right)=1$. Now passing to the geometrical picture (i.e., to the closed points of the corresponding affine schemes) we obtain the following situation: we are given two k-linear spaces

$$
k^{n}=\max \operatorname{Spec}\left(k\left[v_{1}, \ldots, v_{n}\right]\right)
$$

and

$$
k^{m}=\max \operatorname{Spec}\left(k\left[u_{1}, \ldots, u_{m}\right]\right)
$$

(the v_{i} and u_{j} are considered as variables) and two arrangments of k-linear coordinate subspaces (of appropriate dimensions)

$$
\begin{aligned}
\Delta^{*} & =\operatorname{maxSpec}(k[\Delta]) \subset k^{n} \\
\left(\Delta^{\prime}\right)^{*} & =\operatorname{maxSpec}\left(k\left[\Delta^{\prime}\right]\right) \subset k^{m}
\end{aligned}
$$

More precisely, Δ^{*} consists of those coordinate subspaces of k^{n} which are spanned by the coordinate directions of $v_{i_{1}}, \ldots, v_{i_{k}}$ whenever $\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\} \in$ Δ, and similarly for $\left(\Delta^{\prime}\right)^{*}$. This claim follows directly from the equality

$$
\Delta^{*}=\bigcap_{\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\} \notin \Delta}\left(v_{i_{1}}^{\circ} \cup \cdots \cup v_{i_{k}}^{\circ}\right),
$$

where $v_{i_{j}}^{\circ}$ denotes the coordinate hyperplane of dimension $n-1$ avoiding $v_{i_{j}}$, and the similar one for $\left(\Delta^{\prime}\right)^{*}$.

So for each maximal face (with respect to the inclusion) $\sigma \in \Delta$ we have the corresponding coordinate linear subspace $L_{\sigma} \subset k^{n}$ and

$$
\Delta^{*}=\bigcup_{\sigma \text { a maximal face of } \Delta} L_{\sigma} .
$$

Similarly, for each maximal face $\sigma^{\prime} \in \Delta^{\prime}$ we have the corresponding coordinate linear subspace $M_{\sigma^{\prime}} \subset k^{m}$ and

$$
\left(\Delta^{\prime}\right)^{*}=\bigcup_{\sigma^{\prime} \text { a maximal face of } \Delta^{\prime}} M_{\sigma^{\prime}} .
$$

The corresponding algebraic map

$$
f^{*}:\left(\Delta^{\prime}\right)^{*} \rightarrow \Delta^{*}
$$

will be the restriction of the k-linear isomorphism

$$
F^{*}: k^{m} \rightarrow k^{n}
$$

contravariantly corresponding to the (uniquely determined) graded k-isomorphism F from the commutative square

This gives rise to the well defined bijective map

$$
\Phi:\left(\text { maximal faces of } \Delta^{\prime}\right) \rightarrow(\text { maximal faces of } \Delta) .
$$

Namely, $\Phi\left(\sigma^{\prime}\right)=\left(\right.$ the maximal face σ of Δ for which $L_{\sigma}=f^{*}\left(M_{\sigma^{\prime}}\right)$).
After this "linear" interpretation it becomes obvious that $m=n$ and $\# \sigma^{\prime}=\# \Phi\left(\sigma^{\prime}\right)$ for each maximal $\sigma^{\prime} \in \Delta^{\prime}$. Moreover,

$$
\begin{equation*}
\#\left(\sigma_{1}^{\prime} \cap \ldots \cap \sigma_{t}^{\prime}\right)=\#\left(\Phi\left(\sigma_{1}^{\prime}\right) \cap \cdots \cap \Phi\left(\sigma_{t}^{\prime}\right)\right) . \tag{*}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
\#\left(\sigma_{1}^{\prime} \cap \cdots \cap \sigma_{t}^{\prime}\right) & =\operatorname{dim}_{k}\left(M_{\sigma_{1}^{\prime}} \cap \cdots \cap M_{\sigma_{t}^{\prime}}\right) \\
& =\operatorname{dim}_{k}\left(f^{*}\left(M_{\sigma_{1}^{\prime}}\right) \cap \cdots \cap f^{*}\left(M_{\sigma_{t}^{\prime}}\right)\right) \\
& =\operatorname{dim}_{k}\left(L_{\Phi\left(\sigma_{1}^{\prime}\right)} \cap \cdots \cap L_{\Phi\left(\sigma_{t}^{\prime}\right)}\right) \\
& =\#\left(\Phi\left(\sigma_{1}^{\prime}\right) \cap \cdots \cap \Phi\left(\sigma_{t}^{\prime}\right)\right) .
\end{aligned}
$$

Now we introduce the following equivalence relations on the vertex sets V and U : for $v_{i_{1}}, v_{i_{2}} \in V\left(u_{j_{1}}, u_{j_{2}} \in U\right)$ we put $v_{i_{1}} \sim v_{i_{2}}$ if and only if the two sets of maximal faces of Δ containing $v_{i_{1}}$ and $v_{i_{2}}$ respectively coincide (and similarly for $u_{j_{1}}$ and $u_{j_{2}}$). The equivalence classes in V will be the minimal (with respect to inclusion) nonempty intersections of maximal faces of Δ (and similarly for the vertex set U). Accordingly, these equivalence classes will be in one-to-one correspondence (via Φ) with the minimal nonzero intersections (w.r.t. inclusion) of the linear subspaces $L_{\sigma} \subset k^{n}$ (similarly for the equvalence classes in U and the linear subspaces $\left.M_{\sigma^{\prime}} \subset k^{m}\right)$. Since we are given a global linear isomorphism F^{*}, using Φ we immediately see that the two systems of equivalence classes are in natural bijective correspondence. By $(*)$ the corresponding equivalence classes have the same quantities of elements. This gives rise in a natural way to the bijective mapping $\psi: U \rightarrow V$ which satisfies the condition that $u \in \sigma^{\prime}$ if and only if $\psi(u) \in \Phi\left(\sigma^{\prime}\right)$, where $u \in U$ and $\sigma^{\prime} \in \Delta^{\prime}$ is a maximal face. Since any face in an abstract simplicial complex is contained in some maximal face, we finally arrive at the conclusion that $\Psi=(\psi)^{-1}: V \rightarrow U$ satisfies the desired condition.

Acknowledgment
J. Gubeladze was supported in part by DFG and ISF.

References

1. W. Bruns and J. Herzog, Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge, 1993.
2. T. Hibi, Algebraic Combinatorics on Convex Polytopes. Carslaw Publications, 1992.
(Received 26.06.1995)
Authors' addresses:

Winfried Bruns
Universität Osnabrück
Fachbereich
Mathematik/Informatik
49069 Osnabrück, Germany

Joseph Gubeladze
A. Razmadze Mathematical Institute

Georgian Academy of Sciences
1, M. Aleksidze St., Tbibisi 380093
Republic of Georgia

[^0]: 1991 Mathematics Subject Classification. 13F20.
 Key words and phrases. Simplicial complexes, Stanley-Reisner rings.

