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SOLUTION OF TWO-WEIGHT PROBLEMS FOR
INTEGRAL TRANSFORMS WITH POSITIVE KERNELS


I. GENEBASHVILI, A. GOGATISHVILI, AND V. KOKILASHVILI


Abstract. Criteria for weak and strong two-weighted inequalities are
obtained for integral transforms with positive kernels.


Introduction


In this paper we derive solutions of two-weight problems for integral
transforms with a positive kernel. For weak type problems these transforms
are assumed to be defined on general spaces with measure and a given quasi-
metric, while a strong type problem is solved in the case of homogeneous
type spaces. Similar problems have been investigated for some particular
cases in [1]–[17].


Let (X, d, µ) be a topological space with complete measure µ and a given
quasi-metric d, i.e., with a non-negative function d : X×X → R1 satisfying
the following conditions:


(1) d(x, x) = 0 for any x ∈ X;
(2) d(x, y) > 0 for any x and y from X;
(3) there exists a constant a0 such that d(x, y) ≤ a0d(y, x) for any x and


y from X;
(4) there exists a constant a1 such that d(x, y) ≤ a1(d(x, z) + d(z, y)) for


any x, y and z from X;
(5) the class of continuous functions with a compact support is dense


everywhere in L1(X, µ);
(6) it is assumed that each ball B(x, r) is measurable and there exists a


constant b > 0 such that µB(x, 2r) ≤ bµB(x, r) for an arbitrary ball B(x, r),
i.e., the measure µ satisfies the doubling condition.


Spaces with conditions (1)–(6) are called homogeneous type spaces [18],
[19].
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A locally integrable everywhere positive function w : X → R1 is called a
weight function (a weight). For a µ-measurable set E we set


wE =
∫


E


w(x)dµ.


The paper is organized as follows: In §1 the criteria of weak type two-
weighted inequalities are established for integral transforms with a positive
kernel defined on homogeneous type spaces. In §2 a simple procedure is
described for obtaining the corresponding results for the upper space using
the theorems formulated in the preceding section.
§3 is devoted to the solution of strong type two-weight problems for in-


tegral transforms with a positive kernel for homogeneous type spaces. The
main idea underlying the solution of such problems consists in developing
the method and conditions proposed in [1], [5], where similar problems were
solved in Euclidean spaces using the familiar covering lemma of Besicovich
which, as is known (see, for instance, [11]), does not hold in general in homo-
geneous type spaces. Nevertheless for the general case we have succeeded in
finding criteria of two-weighted inequalities which are as simple and elegant
as the ones given in [1], [5] for Euclidean spaces.


Note that results similar to ours were previously obtained in [11], [12]
(see also [16]) only for spaces having a group structure.


1. A Criterion of a Weak Type Two-Weighted Inequality for
integral Transforms with a Positive Kernel


In this section it will no longer be automatically assumed that µ satis-
fies the doubling condition. We derive a necessary and sufficient condition
guaranteeing the validity of a weak type two-weighted inequality for the
operator


T (f)(x) = sup
t≥0


∣


∣


∣


∫


X


k(x, y, t)f(y)dµ
∣


∣


∣,


where k : X ×X × [0,∞) → R1 is a positive measurable kernel.
For the general case we have the folowing sufficient criterion of a weak


type two-weighted inequality.


Theorem 1.1. Let 1 < p < q < ∞, v and µ be arbitrary locally finite
measures on X so that µ{x} = 0 for any x ∈ X.


If the condition


c0 = sup
(


vB(x, 2N0r)
) 1


q ×


×
( ∫


X\B(x,r)


kp′(x, y, t)w1−p′(y)dµ
) 1


p′


< ∞, (1.1)
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where the supremum is taken over all t > 0 and balls B(x, r) with µB(x, r) >
0, N0 = a1(1 + 2a0), the constants a0 and a1 are from the definition of a
quasi-metric, is fulfilled, then there exists a constant c > 0 such that the
inequality


v
{


x ∈ X : T (f)(x) > λ
}


≤ cλ−q
( ∫


X


|f(x)|pw(x)dµ
)


q
p


(1.2)


holds for any µ-measurable nonnegative function f : X → R1 and arbitrary
λ > 0.


Before we proceed to proving this theorem, we will give a the familiar
covering lemma.


Lemma A ([18], Lemma 2). Let F be a family {B(x, r)} of balls with
bounded radii. Then there is a countable subfamily {B(xi, ri)} consisting of
pairwise disjoint balls such that each ball in F is contained within one of
the balls B(xi, ari), where a = 3a2


1 + 2a0a1. The constants a0, a1 are from
the definition of the space (X, d, µ).


This lemma holds for general spaces in the sense discussed at the begin-
ning of the section.


Proof of Theorem 1.1. Let f be an arbitrary nonnegative function from
Lp(X, wdµ) and λ > 0. Without loss of generality we assume that


(vX)−
1
q


( ∫


X


fp(y)w(y)dµ
) 1


p


<
λ


2c0
, (1.3)


since otherwise we will have vX < ∞ and


v
{


x ∈ X : T (f)(x) > λ
}


≤ vX ≤ (2c0)qλ−q
( ∫


X


fp(x)w(x)dµ
)


q
p


and the theorem will be proved.
Let x ∈ Eλ = {x ∈ X : T (f)(x) > λ}. Then there exists r > 0 depending


on x such that


(


vB(x,N0r)
)− 1


q


( ∫


X


fp(y)w(y)dµ
) 1


p


≥ λ
2c0


(1.4)


and


(


vB(x, 2N0r)
)− 1


q


( ∫


X


fp(y)w(y)dµ
) 1


p


<
λ


2c0
. (1.5)
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One can easily verify that there exists r > 0 for which (1.5) is fulfilled.
However (1.5) cannot hold for any r > 0, since in that case we will have


∫


X\B(x,r)


f(y)k(x, y, t)dµ ≤


≤
( ∫


X\B(x,r)


fp(y)w(y)dµ
) 1


p
( ∫


X\B(x,r)


w1−p′(y)kp′(x, y, t)dµ
) 1


p′


≤


≤ c0


( ∫


X


fp(y)w(y)dµ
) 1


p
(


vB(x, 2N0r)
)− 1


q <
λ
2


.


If in the latter inequality we pass to the limit as r → 0, then by virtue of
the condition µ{x} = 0 for arbitrary x ∈ X we will obtain


T (f)(x) ≤ λ
2


< λ,


which contradicts the condition x ∈ Eλ.
The above arguments imply in particular that there exists r > 0 for


which (1.4) holds. If we consider an exact upper bound of such numbers r,
then we will find r > 0 for which both (1.4) and (1.5) are fulfilled.


For such numbers r we obviously have
∫


X\B(x,r)


f(y)k(x, y, t)dµ ≤ c0


(∫


X


fp(y)w(y)dµ
) 1


p
(


vB(x, 2N0r)
)− 1


q <
λ
2


.


Hence for x ∈ Eλ and the corresponding r > 0 we obtain


sup
t≥0


∫


B(x,r)


f(y)k(x, y, t)dµ ≥ λ
2


. (1.6)


Let us now construct a sequence (rk)k≥0 as follows: set r0 = r and choose
rk (k = 1, 2, . . . ) such that


vB(x,N0rk) ≤ 2−kvB(x,N0r0) ≤ vB(x, 2N0rk). (1.7)


Each rk from rk−1 can be obtained by dividing the latter by half as many
times as required. The sequence (rk)k≥0 thus chosen will be decreasing and
tending to zero by virtue of the condition µ{x} = 0.


Using condition (1.1), inequality (1.6), and the chain of inequalities (1.7)
we obtain


λ
2
≤ sup


t≥0


∫


B(x,r)


f(y)k(x, y, t)dµ =
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= sup
t≥0


∞
∑


k=0


∫


B(x,rk)\B(x,rk+1)


f(y)k(x, y, t)dµ ≤


≤ sup
t≥0


∞
∑


k=0


( ∫


B(x,rk)


fp(y)w(y)dµ
) 1


p
( ∫


X\B(x,rk+1)


w1−p′(y)kp′(x, y, t)dµ
) 1


p′


≤


≤ c0


∞
∑


k=0


( ∫


B(x,rk)


fp(y)w(y)dµ
) 1


p
(


vB(x, 2N0rk+1)
)− 1


q ≤


≤ c
∞
∑


k=0


(


vB(x,N0rk)
) 1


p−
1
q


( ∫


B(x,rk)


fp(y)w(y)dµ
) 1


p
(


vB(x,N0rk)
)− 1


p ≤


≤ c
∞
∑


k=0


2−k( 1
p−


1
q )(vB(x,N0r0)


) 1
p−


1
q ×


×
( ∫


B(x,rk)


fp(y)w(y)dµ
) 1


p
(


vB(x,N0rk)
)− 1


p .


Since it is assumed that 1 < p < q < ∞, we have


cpq =
∞
∑


k=0


2−k( 1
p−


1
q ) < ∞.


The latter chain of inequalities implies


c−1
pq


∞
∑


k=0


2−k( 1
p−


1
q ) λ


2
≤ c


∞
∑


k=0


2−k( 1
p−


1
q )(vB(x,N0r0)


) 1
p−


1
q ×


×
( ∫


B(x,rk)


fp(y)w(y)dµ
) 1


p
(


vB(x,N0rk)
)− 1


p .


Hence we conclude that there exist n0 and c > 0 such that


λ ≤ c
(


vB(x,N0r0)
) 1


p−
1
q


( ∫


B(x,rn0 )


fp(y)w(y)dµ
) 1


p
(


vB(x,N0rn0)
)− 1


p .


Taking into account (1.4) in the latter inequality we obtain


λ ≤ cλ−
q
p +1


( ∫


X


fp(y)w(y)dµ
) 1


p ( q
p−1)


×
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×
( ∫


B(x,rn0 )


fp(y)w(y)dµ
) 1


p
(


vB(x,N0rn0)
)− 1


p .


which implies


vB(x,N0rn0) ≤ cλ−q
( ∫


B(x,rn0 )


fp(y)w(y)dµ
)(∫


X


fp(y)w(y)dµ
)


q
p−1


.


To summarize the obtained results, we conclude that for each x ∈ Eλ there
exists a ball Bx centered at the point x such that


v(N0Bx) ≤ cλ−q
∫


Bx


fp(y)w(y)dµ
( ∫


X


fp(y)w(y)dµ
)


q
p−1


(1.8)


Since inequality (1.8) is fulfilled for any x ∈ Eλ, the family Eλ covers the
set {Bx}x∈Eλ . Let B0 be an arbitrary ball in X. Due to Lemma A we can
choose from the family {Bx} a sequence of nonintersecting balls (Bk)k such
that


Eλ ∩B0 ⊂
∞
⋃


k≥1


N0Bk.


Therefore by virtue of (1.8) we obtain


v
(


Eλ ∩B0
)


≤
∑


k


v(N0Bk) ≤


≤ cλ−q
∑


k≥1


( ∫


Bk


fp(x)w(x)dx
)(∫


X


fp(x)w(x)dµ
)


q
p−1


≤


≤ cλ−q
∫


X


fp(x)w(x)dµ
( ∫


X


fp(x)w(x)dµ
)


q
p−1


.


Thus


v
(


Eλ ∩B0
)


≤ cλ−q
(∫


X


fp(x)w(x)dµ
)


q
p


,


where the constant c does not depend on B0, λ, and f . If in the latter
inequality we pass to the limit as rad B0 →∞, we will find that ineequality
(1.2) is valid.


Theorem 1.2. Let 1 < p < q < ∞, µ{x} = 0 for arbitrary x ∈ X. If
there exists a constant c1 such that


k(a, y, t) ≤ c1k(x, y, t) (1.9)
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for arbitrary t ≥ 0, a ∈ X, y ∈ X\B(a, r), r > 0 and x ∈ B(a, 2N0r), then
conditions (1.1) and (1.2) are equivalent.


Proof. The implication (1.1) ⇒ (1.2) follows from Theorem 1.1 without
condition (1.9).


Let us prove the implication (1.2) ⇒ (1.1). First it will be shown that
for any x ∈ X, r > 0 and t ≥ 0 we have


∫


X\B(x,r)


kp′(x, y, t)w1−p′(y)dµ < ∞. (1.10)


Assume the contrary. Let for some a ∈ X, r > 0 and t0 ≥ 0
∫


X\B(a,r)


kp′(a, y, t0)w1−p′(y)dµ = ∞.


Then there exists nonnegative g : X → R1 such that
∫


X\B(a,r)


gp(y)w(y)dy ≤ 1 (1.11)


and
∫


X\B(a,r)


g(y)k(a, y, t0)dµ = +∞.


On the other hand, by condition (1.9) we have


T (g)(x) ≥
∫


X\B(a,r)


g(y)k(x, y, t0)dµ ≥ c′
∫


X\B(a,r)


g(y)k(a, y, t0)dµ = +∞.


for arbitrary x ∈ B(a, r). Therefore


B(a, r) ⊂
{


x ∈ X : T (g)(x) > λ
}


for arbitrary λ > 0. Thus by (1.2) we obtain


vB(a, r) ≤ v
{


x ∈ X : T (g)(x) > λ
}


≤ cλ−q.


Recalling that λ is an arbitrary positive number, from the latter inequality
we conclude that vB(a, r) = 0, which is impossible. Therefore (1.10) holds.
Now we can proceed to proving directly the implication (1.2) ⇒ (1.1).


Let B(x, r) be an arbitrary ball and z ∈ B(x, 2N0r). By condition (1.9)
we have


T (f)(z) ≥
∫


X\B(x,r)


f(y)k(z, y, t)dµ ≥ 1
c1


∫


X\B(x,r)


f(y)k(x, y, t)dµ, t ≥ 0,
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for an arbitrary nonnegative function f : X → R1. Therefore from (1.2) we
derive the inequality


vB(x, 2N0r) ≤ v
{


z ∈ X : T (f)(z) >
1


2c1


∫


X\B(x,r)


f(y)k(x, y, t)dµ
}


≤


≤ (2c1)qc
( ∫


X\B(x,r)


f(y)k(x, y, t)dµ
)−q(∫


X


fp(y)w(y)dµ
)


q
p


,


where the constants on the right-hand side do not depend on x ∈ X, r > 0,
and t ≥ 0. If in the latter inequality we write f as


f(y) = χX\B(x,r)(y)w1−p′(y)kp′−1(x, y, t),


this will give us


vB(x, 2N0r) ≤ c
( ∫


X\B(x,r)


w1−p′(y)kp′(x, y, t)dµ
)− q


p′


,


where the constant does not depend on x ∈ X, r > 0, and t ≥ 0. The latter
implies that condition (1.1) is fulfilled.


In the theorems proved above our consideration is limited to spaces for
which µ{x} = 0 for any x ∈ X. Below we will treat a more general case.


Theorem 1.3. Let 1 < p < q < ∞. It is assumed that the condition


sup
t>0
x∈X


µ{x}>0


(


v{x}
) 1


q k(x, y, t)w−
1
p (x)


(


µ{x}
) 1


p′ < ∞ (1.12)


is fulfilled along with (1.2). Then the conclusion of Theorem 1.1 is valid,
i.e., (1.2) holds.


Proof. After analyzing Theorem 1 we find that in the general case in-
equality (1.8) holds for any x ∈ Eλ for which (1.4) and (1.5) are ful-
filled simultaneously. For the case µ{x} > 0 inequality (1.5) may hold
for arbitrary r > 0. Nevertheless it will be shown below that inequality
(1.8) remains valid for the general case too. Let x ∈ Eλ, µ{x} > 0 and
f(x)µ{x} supt≥0 k(x, x, t) < λ


2 . Since then we have


lim
r→0


∫


B(x,r)


f(y)k(x, y, t)dµ = f(x)k(x, x, t)µ{x},
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for each t ≥ 0 there will exist rt such that
∫


B(x,rt)


f(y)k(x, y, t)dµ <
λ
2


. (1.13)


Let us show that in that case inequlity (1.5) cannot be fulfilled for arbi-
trary r > 0. Indeed, if this is so, then by virtue of (1.1), (1.5), and (1.13)
we will have


T (f)(x) ≤ sup
t≥0


∫


B(x,rt)


f(y)k(x, y, t)dµ + sup
t≥0


∫


X\B(x,rt)


f(y)k(x, y, t)dµ ≤


≤ sup
t≥0


∫


B(x,rt)


f(y)k(x, y, t)dµ +


+ sup
t≥0


( ∫


X\B(x,rt)


kp′(x, y, t)w1−p′(y)dµ
) 1


p′
( ∫


X


fp(y)w(y)dµ
) 1


p


≤


≤ sup
t≥0


∫


B(x,rt)


f(y)k(x, y, t)dµ +


+ c0 sup
t≥0


(


vB(x, 2N0rt)
)− 1


q


( ∫


X


fp(y)w(y)dµ
) 1


p


≤


≤ sup
t≥0


∫


B(x,rt)


f(y)k(x, y, t)dµ +
λ
2
≤ λ


which contradicts x ∈ Eλ. The contradiction obtained shows that in the case
under consideration (1.5) cannot be fulfilled for any r > 0 and therefore, in
common with the proof of Theorem 1.1, we can find r > 0 such that (1.4)
and (1.5) will be fulfilled simultaneously, which fact leads to (1.8).


Assuming now that x ∈ Eλ, µ{x} > 0 and f(x)µ{x} supt≥0 k(x, y, t) ≥ λ
2 ,


we obtain


λ ≤ 2f(x)µ{x} sup
t≥0


k(x, x, t) = 2f(x)
(


v{x}
)− 1


q
(


w(x)
) 1


p
(


µ{x}
) 1


p
(


v{x}
) 1


q ×


× sup
t≥0


k(x, x, t)
(


w(x)
)− 1


p
(


µ{x}
) 1


p′ .


By virtue of condition (1.12) the latter inequality gives rise to


(


v{x}
) 1


q ≤ cλ−1f(x)
(


w(x)
) 1


p
(


µ{x}
) 1


p . (1.14)
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Since µ{x} > 0, the point x is isolated. Therefore there exists r > 0 such
that B(x,N0r) = {x}. Now (1.14) can be rewritten as


(


v(N0Bx)
) 1


q ≤ cλ−1
( ∫


Bx


f(y)w(y)dµ
) 1


p


≤


≤ cλ−1
( ∫


Bx


fp(y)w(y)dµ
) 1


q
( ∫


X


fp(y)w(y)dµ
) 1


q ( q
p−1)


which implies that (1.8) is valid. Thus for almost all x ∈ Eλ, µ{x} > 0
there exists a ball Bx centered at the point x such that (1.8) is fulfilled. In
common with the proof of Theorem 1.1 we conclude that (1.2) is valid.


Theorem 1.4. Let 1 < p < q < ∞. By condition (1.9) the two-weighted
inequality (1.2) is equivalent to the set of conditions (1.1) and (1.12).


Proof. As shown while proving the preceding theorem, conditions (1.1) and
(1.12) imply inequality (1.2) without condition (1.9).


By virtue of the proof of Theorem 1.2 it remains to show that the impli-
cation (1.2) ⇒ (1.12) holds.


Let µ{x} > 0. It is easy to verify that


T (f)(x) >
1
2
f(x)k(x, x, t)µ{x}, t ≥ 0.


Therefore


{x} ⊂
{


y ∈ X : T (f)(y) >
1
2
f(x)k(x, x, t)µ{x}


}


.


By the latter inclusion and condition (1.2) we obtain


v{x} ≤ v
{


y ∈ X : T (f)(y) >
1
2
f(x)k(x, x, t)µ{x}


}


≤


≤ 2c
(


f(x)k(x, x, t)µ{x}
)−q


(∫


X


fp(x)w(x)dµ
)


q
p


. (1.15)


After substituting ft(y) = χ{x}(y)w1−p′(y)kp′−1(x, y, t) in (1.15), the latter
takes the form


v{x} ≤ 2c
(


w1−p′(x)kp′(x, x, t)µ{x}
)−q(


w1−p′(x)k(p′−1)p(x, x, t)µ{x}
)


q
p =


= 2c
(


w
1
p (x)k−1(x, x, t)(µ{x})−


1
p′


)q
.


which implies that
(


v{x}
) 1


q w−
1
p (x)k(x, x, t)


(


µ{x}
) 1


p′ ≤ 2c.
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Since the constant x does not depend on x and t, from the latter inequality
we conclude that condition (1.12) is fulfilled.


Analysis of the above theorems gives rise to the following two remarks:


Remark 1.1. When X = Rn and d is a Euclidean distance, we can take
the constant N0 in the above theorems equal to unity. This can be done
because the Besicovitch covering lemma (see [20]) can be applied instead of
Lemma A to Euclidean spaces.


Remark 1.2. When X = Rn and measure v is such that vB(x, r) is con-
tinuous with respect to r, we can replace vB(x, 2N0r) in condition (1.1) by
vB(x, r) and, accordingly, weaken condition (1.9) in Theorem 1.2 as follows:
there exists a constant c1 > 0 such that


k(a, y, t) ≤ c1k(x, y, t)


for arbitrary t ≥ 0, a, x, and y from X satisfying the condition d(a, x) ≤
d(a, y).


Next we will consider the case where k(x, y, t) ≡ k(x, y). It will again be
assumed that the measure µ is locally finite. Let


K(f)(x) =
∫


X


k(x, y)f(y)dµ,


K∗(f)(x) =
∫


X


k(y, x)f(y)dµ.


Definition 1.1. A positive measurable kernel k : X ×X → R1 will be
said to satisfy the condition (V ) (k ∈ V ) if there exists a constant c > 0
such that k(x, y) < ck(x′, y) for arbitrary x, y, and x′ from X satisfying the
condition d(x, x′) < Nd(x, y), where N = 2N0.


Theorem 1.5. Let 1 < p < q < ∞, µ be an arbitrary locally finite
measure, w be a weight, and k ∈ V . Then the following conditions are
equivalent:


(i) there exists a constant c1 > 0 such that the inequality


w1−p′{x ∈ X : K(f)(x) > λ
}


≤


≤ c1λ−p′
( ∫


X


|f(y)|q
′
v


1
1−q (y)dµ


)
p′
q′


(1.16)


holds for arbitrary λ > 0 and nonnegative f ∈ Lp(X, wdµ);







330 I. GENEBASHVILI, A. GOGATISHVILI, AND V. KOKILASHVILI


(ii) there exists a constant c2 > 0 such that
( ∫


X


(


K∗(χBw1−p′)(x)
)q


v(x)dµ
) 1


q


≤ c2


( ∫


B


w1−p′(y)dµ
) 1


p


, (1.17)


for an arbitrary ball B ⊂ X;
(iii)


sup
x∈X
r>0


(


w1−p′(NB)
) 1


p′


( ∫


X\B(x,r)


kq(x, y)v(y)dµ
) 1


q


< ∞. (1.18)


Proof. The implication (i)⇔(iii) follows from Theorem 1.2. We will prove
(ii)⇒(iii). Applying the condition for the kernel for any y ∈ X\B(x, r), we
obtain


K∗
(


χNBw1−p′)(y) =
∫


NB(x,r)


k(z, y)w1−p′(z)dµ ≥


≥ c−1k(x, y)
∫


NB(x,r)


w1−p′(y)dµ.


By the latter inequality and (1.17) we conclude that (1.18) holds.
Finally, it will be shown that the implication (i)⇒(ii) is valid. We have


( ∫


X


(


K∗(χBw1−p′)(x)
)q


v(x)dµ
) 1


q


=


= sup
∫


X


K∗
(


w1−p′χB )(x)g(x)dµ, (1.19)


where the exact upper bound is taken with respect to all g for which
∫


X


|g(x)|q
′
v


1
1−q (x)dµ ≤ 1.


By Fubini’s theorem
∫


X


K∗
(


χBw1−p′)(x)g(x)dµ =
∫


B


w1−p′(y)K(g)(y)dµ.


Next, assuming σ = w1−p′ and applying inequality (1.16) we obtain


∫


B


w1−p′(y)K(g)(y)dµ =


∞
∫


0


w1−p′{x ∈ B : K(g)(x) > λ
}


dλ ≤
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≤
(σB)


− 1
p′


∫


0


(σB)dλ + c1


∞
∫


(σB)
− 1


p′


λ−p′ = c2
(


w1−p′B
) 1


p


and thereby prove the implication (i)⇒(ii) and, accordingly, the theorem.


Summarizing the proofs of the above theorems, we have the right to claim
that the following result is valid.


Theorem 1.6. Let 1 < p < q < ∞, µ and v be locally finite measures,
µ{x} = 0. It is assumed that the kernel k ∈ V . Then the following condi-
tions are equivalent:


(i) there exists a constant c1 > 0 such that


v
{


x ∈ X : K(f)(x) > λ
}


≤ cλ−q
(∫


X


|f(x)|pdµ
)


q
p


for arbitrary λ > 0 and a nonnegative measurable weight f ;
(ii) there exists a constant c2 > 0 such that


(∫


X


(


K∗(χBdv)(x)
)p′


dµ
) 1


p′


≤ c2(vB)
1
q′


for any ball B from X;
(iii)


sup
x∈X
r>0


(


vB(x, 2N0r)
) 1


q


( ∫


X\B(x,r)


kp′(x, y)dµ(y)
) 1


p′


< ∞.


In [5] (see also [7], Theorem 6.1.1) the two-weight problem was solved for
integral transforms with a positive kernel in Euclidean spaces, in particular
for Riesz potentials. By virtue of the above theorems and Remark 1.2 we
obtain, for instance, a solution of the problem for one-sided potentials.


Consider the Riemann–Liouville transform


Rα(f)(x) =


x
∫


0


(x− t)α−1f(t)dt


and the Weyl transform


Wα(f) =


∞
∫


x


(t− x)α−1f(t)dt,


where 0 < α < 1, x > 0.
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As a consequence of Theorems 1.1 and 1.2 we conclude that the following
statements are valid.


Theorem 1.7. Let 1 < p < q < ∞, 0 < α < 1. For the validity of the
inequality


v
{


x ∈ (0,∞) : |Rα(f)(x)| > λ
}


≤ cλ−q
(


∞
∫


0


|f(x)|pw(x)dx
)


q
p


with the constant not depending on f it is necessary and sufficient that the
condition


sup
a,h


0<h<a


(
a+h
∫


a−h


v(y)dy
) 1


q
(


a−h
∫


0


w1−p′(y)
(a− y)(1−α)p′ dy


) 1
p′


< ∞


be fulfilled.


Theorem 1.8. Let 1 < p < q < ∞, 0 < α < 1. Then the following two
conditions are equivalent:


(i) there exists a constant c1 > 0 such that the inequality


v
{


x ∈ (0,∞) : |Wα(f)(x)| > λ
}


≤ c1λ−q
(


∞
∫


0


|f(x)|pw(x)dx
)


q
p


holds for any λ > 0 and f ∈ Lp(X, wdµ);
(ii)


sup
a,h


0<h<a


(
a+h
∫


a−h


v(y)dy
) 1


q
(


∞
∫


a+h


w1−p′(y)
(y − a)(1−α)p′ dy


) 1
p′


< ∞.


By Theorem 1.2 we obtain as a particular case a solution of a weak-type
two-weight problem for more general operators, for instance, for


N+
α,β(f)(x) = sup


c>x


1
(c− x)β


c
∫


x


|f(s)|
(s− x)1−α ds,


M+
α,β(f)(x) = sup


c>x


1
(c− x)β


c
∫


x


|f(s)|
(c− s)1−α ds,


N−
α,β(f)(x) = sup


c<x


1
(c− x)β


∞
∫


c


|f(s)|
(x− s)1−α ds,
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M−
α,β(f)(x) = sup


c<x


1
(x− c)β


∞
∫


c


|f(s)|
(s− c)1−α ds.


These operators were investigated in [17]. As an example we will give
one of the corollaries of Theorem 1.2.


Theorem (J. Martin-Reyes [17]). Let 0 ≤ β ≤ α ≤ 1, α > 0,
1 ≤ p < q < ∞. Then the following conditions are equivalent:


(i) there exists a constant c1 > 0 such that


v
{


x : M+
α,β(f)(x) > λ


}


≤ c1λ−q
( ∫


R1


|f(x)|pw(x)
)


q
p


for any λ > 0 and measurable f ;
(ii) there exists a constant c2 > 0 such that


(
b


∫


a


v(x)dx
) 1


q
(


c
∫


b


w1−p′(s)
(c− s)(1−α)p′ ds


) 1
p′


≤ c2(c− a)β


for arbitrary a, b, and c satisfying the condition a < b < c.


2. A Two-Weight Problem In Upper Half-Space


For a space (X, d, µ) with a given quasi-metric and complete measure µ
(not necessarily satisfying the doubling condition) we will consider an upper
half-space of the product space X × R. We set ̂X = X × [0,∞) and give,
in the space ̂X, a quasi-metric


̂d
(


(x, t), y, s)
)


= max
{


d(x, y), |s− t|
}


and a measure dµ̂ = dµ ⊕ δ0, where δ0 is the Dirac measure concentrated
at zero.


Let k : X × X × [0,∞) be a positive measurable kernel satisfying the
condition: there exists a constant c > 0 such that


k(x, y, t) ≤ ck(x′, y, t′) (2.1)


for x, x′, y from X, t ≥ 0, t′ ≥ 0, satisfying the condition d(x, x′) + t′ ≤
5N0(d(x, y) + t).


Consider the integral operators


T (f)(x, t) =
∫


X


k(x, y, t)f(y)dµ
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and


T ∗(gdv)(y) =
∫


X̂


k(x, y, t)g(x, t)dv(x, t), y ∈ X,


where v is some locally finite measure in ̂X.
Consider the kernel ̂k defined on ̂X × ̂X as follows:


̂k
(


(x, t), (y, s)
)


= k
(


x, y, |t− s|
)


.


We readily obtain


T (f)(x, t) =
∫


X̂


̂k
(


(x, t), (y, s)
)


f(y)dµ̂(y) = ̂K(f)(x, t)


and


T ∗(gdv)(y) =
∫


X̂


̂k
(


(x, t), (y, s)
)


g(x, t)dv(x, y).


It is easy to verify that if the kernel satisfies condition (2.1), then ̂k ∈ V .
Therefore Theorem 1.6 may give rise to


Theorem 2.1. Let 1 < p < q < ∞, µ and v be locally finite measures on
X and ̂X, respectively. Further assume that the kernel k satisfies condition
(2.1). Then the following conditions are equivalent:


(i) there exists c1 > 0 such that


v
{


(x, t) ∈ ̂X :
∣


∣T (f)(x, t)| > λ
}


≤ c1λ−q
( ∫


X


|f(x)|pdµ
)


q
p


for any λ > 0 and f ;
(ii) there exists a constant c2 > 0 such that


( ∫


X


(


∫


B̂


k(x, y, t)dv(x, t)
)p′


dµ(y)
) 1


p′


≤ c2(v ̂B)
1
q′


for any ball ̂B from ̂X;
(iii)


sup
(


v ̂B(a, t)
) 1


q


( ∫


X\B(a,t)


kp′(a, y, t)dµ(y)
) 1


p′


< ∞,


where ̂B(a, t) = B(a, t)× [0, 2t).


An idea similar to the one discussed in this section but in a slightly
different interpretation was used in [12].
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3. Solution of a Strong Type Two-Weight Problem for
Integral Transforms Defined on Homogeneous Type Spaces


In this section X is assumed to be a homogeneous type space, which
means that (X, d, µ) satisfies conditions (1)–(6) given in the introduction.


Let further k : X × X → R1 be a positive measurable kernel. Our
purpose is to give a complete description of kernels k and pairs of weights
(v, w) which provide the validity of a strong type two-weighted inequality
for the transform


K(f)(x) =
∫


X


k(x, y)f(y)dµ


under certain assumptions for k.
In what follows it will be assumed that k∗(x, y) = k(y, x).


Definition 3.1. A kernel k satisfies condition (V ′) (k ∈ V ′) if there
exists positive constant c1 > 1 and c2 > 1 such that


k(x, y) ≤ c1k(x′, y) (3.1)


for arbitrary x, x′, and y from X satisfying the condition d(x′, y) ≤ c2d(x, y).


In what follows X will be assumed to be a space such that B(x, R)\B(x, r)
6= ∅ for arbitrary r and R satisfying the condition 0 < r < R < ∞.


Proposition 3.1. Conditions (V ) and (V ′) are equivalent.


Proof. In the first place we note that condition (V ′) implies that for any
c′2 > 1 there is c′1 > 1 such that


k(x, y) ≤ c′1k(x′, y) (3.2)


for any x, x′, and y from X satisfying the condition d(x′, y) ≤ c′2d(x, y).
Let now k ∈ V ′. Let x, x′, y be arbitrary points from X which satisfy


the condition d(x, x′) < Nd(x, y). Obviously,


d(x′, y) ≤ a1d(x′, x) + d(x, y) ≤
≤ a1


(


Na0d(x, y) + d(x, y)
)


= a1(Na0 + 1)d(x, y).


For the number c′2 = a1(Na0 + 1) there exists c′1 > 0 such that condition
(3.2) will be fulfilled and therefore k ∈ V .


Let further k ∈ V . Choose a constant c2 = 1+4a0
a0


, where N = 2a1(1 +
2a0). Obviously, c2 > 1. Let x, y, and x′ from X be such that d(x′, y) ≤
c2d(x, y). Then we will have


d(x, x′) ≤ a1
(


d(x, y) + d(y, x′)
)


≤
≤ a1


(


d(x, y) + a0d(x′, y)
)


≤ a1(1 + c2a0)d(x, y).
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Therefore
d(x, x′) ≤ Nd(x, y)


and condition (3.2) will be fulfilled by virtue of condition (V ). We thus
conclude that k ∈ V ′.


Theorem 3.1. Let 1 < p < q < ∞, k and k∗ satisfy condition (V ).
Then for the inequality


( ∫


X


|Kf(x)|qv(x)dµ
) 1


q


≤ c3


( ∫


X


|f(x)|pw(x)dµ
) 1


p


(3.3)


to hold, where the constant c3 does not depend on f , it is necessary and
sufficient that the following two conditions be fulfilled simultaneously:


sup
x∈X
r>0


(


vB(x, 2N0r)
) 1


q


( ∫


X\B(x,r)


kp′(x, y)w1−p′(y)dµ
) 1


p′


< ∞, (3.4)


sup
x∈X
r>0


(


w1−p′B(x, 2N0r)
) 1


p′


( ∫


X\B(x,r)


kq(y, x)v(y)dµ
) 1


q


< ∞. (3.5)


The proof of Theorem 3.1 will be based on Theorem 1.2 and the following
result of Sawyer and Wheeden.


Theorem A ([11]). Let 1 < p < q < ∞, k and k∗ satisfy condition
(V ). Then (3.3) holds if and only if the conditions


∫


X


(


K(χBw1−p′)(x)
)q


v(x)dµ ≤ c
( ∫


B


w1−p′(x)dµ
)


q
p


< ∞, (3.6)


∫


X


(


K∗(χBv)
)p′


w1−p′(x)dµ ≤ c
( ∫


B


v(x)dµ
)


p′
q′


(3.7)


are fulfilled sumultaneously, where the constant c does not depend on B.


Proof of Theorem 3.1. By virtue of Theorem 1.1 conditions (3.4) and (3.5)
imply the following weak type inequalities:


v
{


x ∈ X :
∣


∣K(f)(x)
∣


∣ > λ
}


≤ c4λ−q
( ∫


X


|f(x)|pw(x)dµ
)


q
p


(3.8)


and


w1−p′{x ∈ X :
∣


∣K∗(f)(x)
∣


∣ > λ
}


≤
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≤ c5λ−p′
( ∫


X


|f(x)|q
′
v


1
1−q (x)dµ


)
p′
q′


. (3.9)


By Theorem 1.5 we obtain the implications (3.9) ⇒ (3.6) and (3.8) ⇒
(3.7). Therefore due to Theorem A we conclude that (3.3) holds.


Let now (3.3) be fulfilled. Then (3.8) will obviously be fulfilled too and
so will (3.4) on account of Theorem 1.2. On the other hand, the validity of
(3.3) implies


( ∫


X


∣


∣K∗(f)(x)
∣


∣


p′
w1−p′(x)dµ


) 1
p′


≤ c6


( ∫


X


|f(x)|q
′
v


1
1−q (x)dµ


) 1
q′


. (3.10)


Indeed,


( ∫


X


∣


∣K∗(f)(x)
∣


∣


p′
w1−p′(x)dµ


) 1
p′


≤ sup
∫


X


K∗(|f |)(x)|g(x)|dµ,


where the supremum is taken with respect to g for which
∫


X


|g(x)|pw(x)dx ≤ 1.


Next, applying the Hölder inequality and (3.3) we obtain


∫


X


K∗(|f |)(x)|g(x)|dµ ≤ c3


( ∫


X


|f(x)|q
′
v


1
1−q (x)dµ


) 1
q


.


Thus we have obtained the implication (3.3) ⇒ (3.10). Inequality (3.10)
further implies (3.9) and therefore we conclude by virtue of Theorem 1.2
that condition (3.5) is fulfilled.


In some particular cases the criteria for strong type two-weighted inequal-
ities take a simpler form.


By definition, the measure ν satisfies the reverse doubling condition if
there exist constants β1 > 1 and β2 < 1 such that


νB(x, r) ≤ β2νB(x, β1r) (3.11)


for arbitrary x ∈ X and r > 0.
We set h(B) = sup{k(x, y) : x, y ∈ B, d(x, y) ≥ cr(B)}, where r(B)


is the radius of the ball B and c is a sufficiently small positive constant
depending on a1.
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Theorem 3.2. Let 1 < p < q < ∞ and the measures v and w1−p′


satisfy the reverse doubling condition. Then for inequality (2.3) to hold it is
necessary and sufficient that the condition


sup
B


h(B)
( ∫


B


v(x)dµ
) 1


q
( ∫


B


w1−p′(x)dµ
) 1


p′


< ∞ (3.12)


be fulfilled.


Proof. By the reverse doubling condition we have


vB(x,Nr) ≤ β2vB(x, β1Nr),


where N = 2N0. Assuming that β1 > N , we obtain


(


vB(x,Nr
) 1


q


( ∫


X\B(x,r)


w1−p′(y)kp′(x, y)dµ
) 1


p′


≤


≤
∞
∑


k=0


(


vB(x,Nr)
) 1


q


( ∫


βk
1 NB(x,r)\βk−1


1 NB(x,r)


w1−p′(y)kp′(x, y)dµ
) 1


p′


≤


≤
∞
∑


k=0


β
k
q
2


(


vB(x, βk
1Nr)


) 1
q
(


w1−p′B(x, βk
1Nr)


) 1
p′ hB(x, βk


1Nr) ≤


≤ c
∞
∑


k=0


β
k
q
2 < ∞.


Hence in that case (3.12) implies (3.4). If the function w1−p′ satisfies the
reverse doubling condition, in a similar manner (3.12) implies (3.5). It
remains to apply Theorem 3.1.


Theorem 3.3. Let 1 < p < q < ∞ and there exists r > 1 such that


sup h(B)(µB)
1
q + 1


p′


(


1
µB


vrB
) 1


rq
(


1
µB


w(1−p′)rB
) 1


rp′


< ∞. (3.13)


Then (2.3) holds.


Proof. Using the Hölder inequality and (3.13) we obtain


sup h(B)(µB)
1
q


(


1
µB


∫


B


vr(y)dµ
) 1


rq
( ∫


B


w1−p′(y)dµ
) 1


p′


< ∞ (3.14)
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and


suph(B)(µB)
1
p′


( ∫


B


v(y)dµ
) 1


q
(


1
µB


∫


B


w(1−p′)r(y)dµ
) 1


p′r


< ∞. (3.15)


Now we will show that (3.14) implies (3.4). Setting X\B(x, r) =
∪k(Bk\Bk−1), B0 = B, B1 ⊃ NB, Bk ⊂ Bk−1, and µBk ≤ 1


2µBk+1,
we have


( ∫


NB(x,r)


v(y)dµ
) 1


q
( ∫


X\B(x,r)


w1−p′(y)kp′(x, y)dµ
) 1


p′


≤


≤
∞
∑


k=1


( ∫


B1


v(y)dµ
) 1


q


h(Bk)
( ∫


Bk


w1−p′(y)dµ
) 1


p′


≤


≤
∞
∑


k=1


(µB1)
1


r′q


(∫


B1


vr(y)dµ
) 1


rq


h(Bk)
( ∫


Bk


w1−p′(y)dµ
) 1


p′


≤


≤
∞
∑


k=1


(


µB1


µBk


) 1
r′q


h(Bk)(µ(Bk)
1
q


(


1
µBk


∫


Bk


vr(y)dµ
) 1


rq
( ∫


Bk


w1−p′(y)dµ
) 1


p′


≤


≤ c
∞
∑


k=1


(


1
2k


) 1
r′q


.


In a similar manner (3.15) implies (3.5). The remaining proof follows
from Theorem 3.1.


Before obtaining by Theorem 3.1 a solution of strong type two-weight
problems for a number of specific integral operators, we would like to make
some remarks about conditions to be imposed on the kernel k which will be
used in the theorems of this sections.


Definition 3.2. The kernel k will be said to satisfy condition (V1) (k ∈
V1) if there exists a constant c > 0 such that condition (3.1) is fulfilled for
any x, y, and x′ from X satisfying the condition d(x, x′) < d(x, y).


Definition 3.3. The kernel k satisfies condition (V ′
1) (k ∈ V ′


1) if there
exists a positive constant c1 suuch that (3.1) holds for any x, y, and x′ from
X satisfying the condition d(x′, y) < d(x, y).
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In contrast to conditions V and V ′, conditions V1 and V ′
1 are the uncom-


parable ones. For instance, the kernel


k(x, y) =


{


(x− y)γ−1 for x > y,
0 for x < y


satisfies condition V ′
1 but does not satisfy condition V1.


For the kernel k(x, y) = e−|x−y| we have k ∈ V1 but k 6∈ V ′
1 .


For R1 these two conditions can be combined into one condition: k ∈ ˜V
if there exists a constant c > 1 such that (3.1) holds for any x, y, and x′


satisfying |2x′ − x− y| ≤ 3|x− y|.
Note that by taking into consideration a simple geometrical character of


the straight line and following the proof of Theorem A we can ascertain
that it remains valid in R1 also for kernels k satisfying the condition k ∈ ˜V ,
k∗ ∈ ˜V .


Using further Remark 2 from §1 and the fact that the kernels to be con-
sidered below satisfy the above requirement we obtain the following state-
ments.


Theorem 3.4. Let 1 > p < q < ∞, 0 < α < 1. For the inequality


(
∞
∫


0


∣


∣Rα(f)(x)
∣


∣


q
v(x)dx


) 1
q


≤ c1


(
∞
∫


0


|f(x)|w(x)dx
) 1


p


with the constant c1 not depending on f to hold it is necessary and sufficient
that two conditions


sup
a,h


0<h<a


(
a+h
∫


a−h


v(y)dy
) 1


q
(


a−h
∫


0


w1−p′(y)
(a− y)(1−α)p′ dy


) 1
p′


< ∞,


sup
a,h


0<h<a


(
a+h
∫


a−h


w1−p′(y)dy
) 1


p′
(


∞
∫


a+h


v(y)
(a− y)(1−α)q dy


) 1
q


< ∞


be fulfilled simultaneously.


Theorem 3.5. Let 1 < p < q < ∞, 0 < α < 1. For the inequality


(
∞
∫


0


∣


∣Wα(f)(x)
∣


∣


q
v(x)dx


) 1
q


≤ c
(


∞
∫


0


|f(x)|w(x)dx
) 1


p
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with the constant c not depending on f to hold it is necessary and sufficient
that two conditions


sup
a,h


0<h<a


(
a+h
∫


a−h


v(y)dy
) 1


q
(


∞
∫


a+h


w1−p′(y)
(y − a)(1−α)p′ dy


) 1
p′


< ∞,


sup
a,h


0<h<a


(
a+h
∫


a−h


w1−p′(y)dy
) 1


p′
(


a+h
∫


0


v(y)
(y − a)(1−α)q dy


) 1
q


< ∞


be fulfilled simultaneously.


For the case α > 1 the two-weight problem for Rα and Wα was previously
solved by many authors while for 0 < α < 1 it remained open (see, for
instance, [21], [22]) until this paper.
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