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COMPUTING GAUSS–MANIN SYSTEMS FOR COMPLETE
INTERSECTION SINGULARITIES Sµ


A. G. ALEKSANDROV AND S. TANABÉ


Abstract. The Gauss–Manin systems with coefficients having log-
arithmic poles along the discriminant sets of the principal deforma-
tions of complete intersection quasihomogeneous singularities Sµ are
calculated. Their solutions in the form of generalized hypergeometric
functions are presented.


Introduction


It is well known that the notion of hypergeometric series appeared in the
work of L. Euler in 1769 (see [1]) where he studied expansion in series of
a special type integral. This series satisfies a certain differential equation
which is called the hypergeometric equation. Its particular case is known
as the classical Legendre equation. In 1813 C. F. Gauss [2] investigated
the properties of the hypergeometric series and its generalization called the
hypergeometric function. After that many investigations were devoted to
the study of various generalizations of the hypergeometric functions (HGF)
as well as of the Legendre equation. The latter may be regarded as a spe-
cial case of more general type equations called Fuchsian equations. In turn,
Fuchsian equations belong to the class of equations with regular singular-
ities. During the last two decades systems with regular singularities have
been systematically and extensively studied by many authors. We shall
mention here only the names of P. Deligne, B. Malgrange, C. Sabbah, M.
Kashiwara and T. Kawai.


The theory of hypergeometric functions developed in a rather compli-
cated and intriguing way. Since the beginning of the 19th century there
has appeared a great many papers containing the description of various ap-
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proaches to this subject. Among them the investigations carried out by L.
Pochhammer have significant meaning in our studies (see Theorem 2.6).


The theory of singularities enables us to give a very fruitful and clear
interpretation of the previously obtained results from a sufficiently general
point of view. Thus, the classical Legendre equation can be considered as a
coordinate representation of the Gauss–Manin connection associated with
the minimal versal deformation of simple hypersurface singularity A2.


E. Brieskorn was probably one of the first who developed these ideas.
In his famous work [3] he proved that the connection associated with 1-
parameter principal deformations of isolated hypersurface singularities could
be represented by systems of ordinary differential equations with regular sin-
gularities. Furthermore, it follows from his results that after matrix trans-
formations with meromorphic entries such equations reduce to the ones hav-
ing poles of the first order. The next step was taken by K. Saito. Having
calculated the connection associated with the total 3-parameter miniversal
deformation of A3-singularity he came to the conclusion [4] that a very con-
venient representation of the corresponding system may be obtained if one
considers the coefficients of this system as logarithmic differential forms. We
will establish a similar result for the Gauss–Manin connections associated
with a series of complete intersection singularities Sµ (see Theorem 3.1).


Another approach was developed by S. Ishiura and M. Noumi [5] who
described the Gauss–Manin systems in the Aµ-case by means of K. Saito’s
Hamiltonian representation. M. Noumi also treated some particular cases
of linear deformations of the Pham singularities [6]. More exactly, he gave
a concrete representation of solutions to the Gauss–Manin system in terms
of the known generalized hypergeometric functions.


It should be remarked that integrals of the type


J(t) =
∫


Fλ0
0 (z)Fλ1


1 (z, t) . . . Fλm
m (z, t)dz


have been studied by K. Aomoto [7], [8], I. M. Gelfand [9], and their followers
in the case where Fj(z, t), 1 ≤ j ≤ m, are linear functions with respect to
the variables z = (z1, . . . , zn) and F0(z, t) is a linear function or a quadric.
In this work, we consider situations where both F0(z, t) and F1(z, t) are
quadrics or higher-order polynomials (m = 1). This point is an essential
difference from the earlier investigations which dealt with various represen-
tations of Gauss–Manin connections for nonisolated singularities given by
special arrangements of hyperplanes treated (see Remark 6).


So far we do not know of any publications concerning concrete calcula-
tions of the connections associated with deformations of isolated complete
intersection singularities. Herein we give some computational results in this
direction. It should be noted that similar calculations were carried out by
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S. Guzev [10] several years ago. We are grateful to V. P. Palamodov who
gave us a chance to become acquainted with this work.


1. Notion of Gauss–Manin Connection for Complete
Intersections


Following B. Malgrange’s approach, E. Brieskorn [3] calculated Gauss–
Manin connections associated with isolated hypersurface singularities. The
main idea was used in the case of isolated complete intersection singularities
by G.-M. Greuel (see [11]).


Let us investigate a smooth mapping with isolated complete intersection
singularities f : X → S. We consider a flat deformation with smooth fi-
bres outside a certain hypersurface D in S called the discriminant set or,
equivalently, the set of critical values of the mapping f . The coherent sheaf
Hp = Hp(f∗Ω•X/S , d) is defined as the pth cohomology group of a relative
de Rham complex. The restriction of this sheaf on S \D is isomorphic to
the pth cohomology group Hp(Xt,C), t ∈ S \D. The transference of coho-
mology classes Hp along the tangent directions on the complement S \ D
induces a connection


∇X/S : Hp(f∗Ω•X/S) −→ Hp(f∗Ω•X/S)⊗ Ω1
S(D) (1)


given by the rule


∇X/S [ω] =
k


∑


i=1


h[αi]⊗ dti/h,


where h is the defining function of the discriminant set D and Ω1
S(D) denotes


the sheaf of meromorphic 1-forms with poles of the first order along D. Here
the symbol [α] means the corresponding relative de Rham cohomology class
of α in f∗Ω


p
X/S/d(f∗Ω


p−1
X/S). Thus we have the decomposition


dω =
k


∑


i=1


dfi ∧ αi, αi ∈ f∗Ω
p
X .


From the formula (1) it follows immediately that the Gauss–Manin connec-
tion has poles of the first order in the case where h has no multiple factors.
In fact, Saito’s considerations [4], [12] imply that the connection can also
be rewritten as


∇X/S : Hp(f∗Ω•X/S) → Hp(f∗Ω•X/S)⊗ Ω1
S(log D) (1′)


if we define the connection on a slightly larger module. Here we will pay
attention to the difference between (1) and (1′) that consists in the presence
of the factor Ω1


S(log D) in (1’). As usual, Ω1
S(log D) denotes the OS-module
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of logarithmic differential forms which is a submodule of Ω1
S(D) possessing


various interesting properties (see [13], [14]).


2. Period Integrals Associated with Deformations of
Sµ-Singularities


The isolated complete intersection singularity of type Sµ, µ ≥ 5, from
the list of M. Giusti [15] is determined by the following pair of equations
defined on C3 :


{


f1(x, y, z) = x2 + y2 + zν = 0
f2(x, y, z) = yz = 0,


where ν = µ− 3. Let
{


F1(x, y, z, s) = f1(x, y, z) + sνzν−1 + · · ·+ s2z + s1y − t1 = 0
F2(x, y, z, s) = f2 + sν+1x− t2 = 0


be the minimal versal deformation of the germ X0 given by the system
f1 = 0, f2 = 0. Denote by X(s,t) the fiber of the miniversal deforma-
tion over the point (s, t) in the µ-dimensional base space S. Here s =
(s1, s2, . . . , sν+1), t = (t1, t2).


We will consider integrals of the type


Ij(s, t) =
∫


γ(s,t)
qj(x, y, z)dx ∧ dy ∧ dz/dF1 ∧ dF2,


where the integration is taken along some regularization of a real vanishing
cycle γ(s, t) ∈ H1(X(s,t),C) (see [9]) and qj(x, y, z) are polynomials. It is
well known that there is an isomorphism


H1(X(s,t),C) ∼= Ω3
C3/(f1Ω3


C3 + f2Ω3
C3 + df1 ∧ df2 ∧ Ω1


C3).


This can be realized by multiplying the 2-form df1 ∧ df2 by the elements
of the cohomology group on the left side. It is not difficult to see that in
the case of Sν+3-singularity the above quotient space is generated by the
following monomial forms:


{1, z, z2, . . . , zν , y, x}dx ∧ dy ∧ dz.


Our aim is to compute the Gauss–Manin system (1) associated with the
so-called principal deformation of the singularity X0, that is, the defor-
mation over the (t1, t2)-parameter subspace T in the base space S of the
miniversal deformation:


∇X/T : H1(f∗Ω•X/T ) −→ H1(f∗Ω•X/T )⊗ Ω1
T (D).
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In effect, Leray’s residue theorem yields the identity


d
dti


∫


γ(s,t)
ω =


∫


γ(s,t)


dω
dfi


, i = 1, 2,


which has been proved in [3]. This fact implies that we can calculate the
Gauss–Manin system as the relation between the integrals instead of that
between cohomology classes.


Thus, the corresponding system of differential equations describes non-
trivial relations between the integrals


Ij(s, t) =
∫


γ(s,t)
qj(x, y, z)dx ∧ dy ∧ dz/df1 ∧ df2


and their derivatives. Here the functions qj(x, y, z), j = 1, . . . , µ, are mono-
mials 1, z, z2, . . . , zν , y, x (cf. [11], 2.3), that is,


zjdx ∧ dy ∧ dz
df1 ∧ df2


=
zj−1dz


2x
, 0 ≤ j ≤ ν,


ydx ∧ dy ∧ dz
df1 ∧ df2


=
t2dz
z2x


,


xdx ∧ dy ∧ dz
df1 ∧ df2


=
−dy
2y


.


Evidently, the last form can be easily integrated. So nontrivial integrals for
which the differential equation will be calculated are given by the following
set of differential forms consisting of µ− 1 elements:


{z−2dz/x, z−1dz/x, dz/x, . . . , zν−1dz/x}.


Suppose that sν+1 = 0. Then the integrals Ij(s, t) can be expressed in the
following manner:


Ij(s, t) =
∫


γ(s,t)


zj−1dz
x


=


=
∫


zj−1dz
((t2/z)2 + zν + sνzν−1 + · · ·+ t1 + s1(t2/z))1/2 =


=
∫


zjdz
(zν+2 + sνzν+1 + · · ·+ t1z2 + s1t2z + t22)1/2 ,


where (x, y, z) ∈ γ(s, t), −1 ≤ j ≤ ν. Denote


Jj+2(t) = −2
∂


∂t1
Ij(0, t) =


∫


zj+2dz
(zν+2 + t1z2 + t22)3/2 .


Now the system of equations satisfying the integrals J1(t), . . . , Jν+2(t) will
be investigated. Let us consider the period integrals for the miniversal
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deformation of the singularity Aν+1, given by the equation zν+2 + sνzν +
· · ·+ s1z + s0 = 0 :


Kλ
i (s) =


∫


zi(zν+2 + sνzν + · · ·+ s1z + s0)λdz, i = 0, . . . , ν + 2.


It is evident that the following relations between Ji(t) and Ki(t) hold:


−1/2K−3/2
i (t22, 0, t1, 0, . . . , 0) = Ji(t), i = 1, . . . , ν + 2. (2)


Proposition 2.1 ([16]). The period integrals Kλ
0 (s), . . . , Kλ


ν+2(s) satis-
fy the following overdetermined system of differential equations:


ν
∑


`=0


s`
∂


∂s0
Kλ


`+i +
∂


∂s0
Kλ


ν+2+i = λKλ
i , 0 ≤ i ≤ ν, (3)i


ν
∑


`=1


`s`
∂


∂s0
Kλ


`+j + (ν + 2)
∂


∂s0
Kλ


ν+2+j = −(j + 1)Kλ
j , −1 ≤ j ≤ ν. (4)j


As remarked above for Sν+3-singularities, we have ν + 2 nontriv-
ial period integrals J1(t), . . . , Jν+2(t) which correspond to the integrals
K1(s0, s2, 0, . . . , 0), . . . , Kν+2(s0, s2, 0, . . . , 0) in view of the relation (2). In
order to simplify the system that appeared in Proposition 2.1, we consider
a set of µ period integrals


K0(s′, 0, . . . , 0), K1(s′, 0, . . . , 0), . . . , Kν+2(s′, 0, . . . , 0)


(the notation s′ = (s0, s2) will be used in the sequel). The superscript λ
can be omitted when no specification in needed. As a matter of fact, these
µ period integrals are not independent elements of a certain D-module over
C[s][ ∂


∂s0
], that is, there are relations between the integrals. The first one is


as follows (see (4)0):


s0
∂


∂s0
K2(s′, 0) + (ν + 2)


∂
∂s0


Kν+2(s′, 0) = −K0(s′, 0).


This means that Kν+2 is uniquely determined by K0 and K2 if we take
into account the homogeneity of Kν+2. The latter follows easily from the
definition of the integral


(


s0
∂


∂s0
+


ν
ν + 2


s2
∂


∂s2


)


Kλ
ν+2(s


′, 0) =
(


λ +
ν + 3
ν + 2


)


Kλ
ν+2(s


′, 0).


Notice that Kν+1 has no relation with Kj ’s except that with K1. It gives
us the second relation:


(2s2, ν + 2)
∂


∂s0
(K1,Kν+1)t = 0.
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Using the homogeneity of the relation one can rewrite it as


Kν+1(s′, 0) =
−2s2


(ν + 2)
K1(s′, 0).


Hence it is enough to calculate the system of equations for ν + 1 integrals
K0, . . . , Kν in order to get the corresponding system for K1, . . . , Kν+2.


Proposition 2.2. The integrals K0(s′, 0), . . . , Kν(s′, 0) satisfy the fol-
lowing system of differential equations:


(s0 idν+1 +C(s2))
∂


∂s0
K = (L + V (s2))K,


where K denotes the vector column (K0, . . . , Kν),


C(s2) =












































0 0 0 0 0 · · · ν
ν+2s2


0 0 0 ν
ν+2s2 0 · · · 0


0 0 0 0 ν
ν+2s2 · · ·


...
...


...
...


... · · ·
. . .


...


0 0 0 0
. . .


. . . ν
ν+2s2


0 −2ν
(ν+2)2 s2


2 0 0 · · · · · · 0
0 0 −2ν


(ν+2)2 s2
2 0 · · · · · · 0












































,


L = diag(λ +
1


ν + 2
, . . . , λ +


ν + 1
ν + 2


),


V (s2) =

















0 0 · · · 0
...


... · · ·
...


0 0 · · · 0
−2ν


(ν+2)2 s2 0 · · · 0

















.


Corollary 2.3. The period integrals J0(t), . . . , Jν+2(t) for the complete
intersection singularity Sν+3 satisfy the following system of differential equa-
tions:


(t22 idν+1 +C(t1))
∂


∂t2
J(t) = 2t2(L + V (t1))J(t),


Jν+1(t) =
−2t1


(ν + 2)
J1(t),


∂
∂t2


Jν+2(t) =
−2


(ν + 2)
(t1


∂
∂t2


J2(t) + t2J0(t)),


where
J(t) = (J0(t), . . . , Jν(t))t.
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The matrix L is the same as in Proposition 2.2 and the matrices C(t1) and
V (t1) can be obtained from the corresponding matrices by substituting the
variable t1 for s2.


Taking into consideration the system obtained in Proposition 2.2, let us
try to solve the system of equations to get an explicit form of the integrals
K0(s, 0), . . . , Kν+2(s, 0) :


s0
∂


∂s0
Kλ


j + s2
∂


∂s0
Kλ


j+2 +
∂


∂s0
Kν+2+j = λKλ


j , 0 ≤ j ≤ ν, (5)j


2s2
∂


∂s0
Kλ


j+2 + (ν + 2)
∂


∂s0
Kλ


ν+2+j = −(j + 1)Kλ
j , −1 ≤ j ≤ ν. (6)j


Subtract relation (6)j multiplied by 1/(ν+2) from (5)j . We obtain recursive
relations between the period integrals K0(s, 0), . . . ,Kν+2(s, 0) :
(


s0
∂


∂s0
− (λ + (j + 1)/(ν + 2))


)


Kλ
j = − νs2


(ν + 2)
∂


∂s0
Kλ


j+2, 0 ≤ j ≤ ν − 2,


(


s0
∂


∂s0
− (λ + ν/(ν + 2))


)


Kλ
ν−1 =


−νs2


(ν + 2)
∂


∂s0
Kλ


ν+1 =
νs2


2


(ν + 2)2
∂


∂s0
Kλ


1 ,


(


s0
∂


∂s0
− (λ + (ν + 1)/(ν + 2))


)


Kλ
ν =


−νs2


(ν + 2)
∂


∂s0
Kλ


ν+2.


By virtue of the commutation relation
[


s0
∂


∂s0
,


∂
∂s0


]


= − ∂
∂s0


,


that is to say,
(


s0
∂


∂s0
− α


) ∂
∂s0


=
∂


∂s0


(


s0
∂


∂s0
− α− 1


)


,


we can deduce differential equations satisfied by Kj(s, 0) from the above
recursive relations. Thus we obtain


Proposition 2.4. (1) Assume ν = 2m. Then the following differential
equations of order (m + 1) are satisfied by the integrals Kλ


2j , 0 ≤ j ≤ m :


S0,j−1(ϑ + m− j, λ)Sj,m(ϑ− j, λ)K2j =


=
(


− 2s2/(ν + 2)
)(


ϑ− (λ + 1/2) + m− j + 1
)


ψmK2j . (7)2j,e


For K2j+1, 0 ≤ j ≤ m we have similar equations of order m:


T0,j−1(ϑ + m− j, λ)Tj,m−1(ϑ− j, λ)K2j+1 =


=
(


− 2s2/(ν + 2)
)


ψmK2j+1. (7)2j+1,e
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(2) Assume ν = 2m+1. The differential operators annihilating the period
integrals Kλ


j , 0 ≤ j ≤ ν, are of order (ν + 1) for both even and odd cases:


S0,j−1(ϑ + ν − j, λ)T0,m−1(ϑ + m− j + 1, λ) ×
×Sj,m(ϑ− j, λ)


(


ϑ−
(


λ + (ν + 1)/(ν + 2)
)


+ ν − j
)


K2j(s) =


=
(


2s2/(ν + 2)
)2


ψ2m+1(ϑ− (λ + 1/2 + j)
)


K2j(s), (7)2j,o


T0,j−1(ϑ + ν − j, λ)S0,m−1(ϑ + m− j + 1, λ) ×
×Tj,m(ϑ−m,λ)


(


ϑ−
(


λ + ν/(ν + 2)
)


+ ν − j − 1
)


K2j+1 =


= (2s2/(ν + 2))ψ2m+1(ϑ− (λ + j + m))K2j+1. (7)2j+1,o


Herein the following notation have been used both for ν = 2m and for ν =
2m + 1:


Sα,β(X, λ) =
β


∏


`=α


(


X −
(


λ + (−ν` + 1)/(ν + 2)
))


,


Tα,β(X, λ) =
β


∏


`=α


(


X −
(


λ + (−ν` + 2)/(ν + 2)
))


,


ψ =
(


− νs2/(ν + 2)
) ∂
∂s0


, ϑ = s0
∂


∂s0
.


Remark 1. The differential operators annihilating integrals Kλ
j , 0 ≤ j ≤


ν, contain only the derivatives with respect to the variable s0. Therefore the
variable s2 can be regarded as a parameter in their expressions. In other
words, the differential operators calculated above are essentially ordinary
differential operators.


Corollary 2.5. (1) Assume ν = 2m. Then we get the following differ-
ential equations of order (m + 1) satisfied by the period integrals J2j(t1, t2),
J2j+1(t1, t2), 0 ≤ j ≤ m, depending on parameters of the principal defor-
mation for Sν+3 :


S0,j−1(θ + m− j,−3/2)Sj,m(θ − j,−3/2)J2j(t) =


=
(


− 2t1/(ν + 2)
)


(θ + m− j + 2)φmJ2j(t), (8)2j,e


T0,j−1(θ + m− j,−3/2)Tj,m−1(θ − j,−3/2)J2j+1 =


= −2t1/(ν + 2)φmJ2j+1. (8)2j+1,e


(2) Assume ν = 2m+1. Then we get the following differential equations
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of order (2m + 2) for the period integrals:


S0,j−1(θ + ν − j,−3/2)T0,m−1(θ + m− j + 1,−3/2) ×
×Sj,m(θ − j,−3/2)


(


θ − (ν + 3)/2(ν + 2) + ν − j
)


J2j(t) =


=
(


2t1/(ν + 2)
)2


φ2m+1(θ − (λ + 1/2 + j)
)


J2j(t), (8)2j,o


T0,j−1(θ + ν − j,−3/2)S0,m−1(θ + m− j + 1,−3/2) ×
×Sj,m(θ −m, −3/2)


(


θ − (ν + 6)/2(ν + 2)
)


+ ν − j − 1)J2j(t) =


=
(


2t1/(ν + 2)
)


φ2m−1(θ − j −m)J2j+1(t), , (8)2j+1,o


where the differential operators Sα,β, Tα,β are those defined in Proposi-
tion 2.4, while the other notations are as follows:


φ =
−νt1


2(ν + 2)t2


∂
∂t2


, θ =
t2
2


∂
∂t2


.


Remark 2. All of the equations (8)2j,e have the singular locus D={t2(t2m
2


−2νm(−t1/(ν +2))m+1) = 0} included in the discriminant set of the princi-
pal deformation. The equations (8)2j+1,e, however, have the singular locus
D0 = {(t2m


2 − 2νm(−t1/(ν + 2))m+1) = 0} = D \ {t2 = 0}. Here we observe
a phenomenon which can be interpreted as the splitting of a system of dif-
ferential equations into two subsystems corresponding to different singular
loci.


In the case of S5-singularity (i.e. ν = 2) one can check that the set
D defined above coincides with the discriminant set. It is obtained by
computing the determinant of the matrix defined by the coefficients of vector
fields tangent to the discriminant set. Explicit expressions of such vector
fields for S5 and S6 are presented in [14].


Let us try to write solutions of the differential equations obtained in
Corollary 2.5. As they have quite similar forms, we restrict ourselves to
writing solutions for equations (8)0,e and (8)0,o only.


Theorem 2.6. (1) The case ν = 2m. Equation (8)0,e has (m + 1) solu-
tions Uk(t), 0 ≤ k ≤ m, that can be expressed by the series


Uk(t) = t−(3ν+4)/2ν
1 τρkUk(τm,−3/2),


where


Uk(x, λ) =
∑


`≥0


am`+k(λ)x`,


am`+k(λ) =
m−1
∏


j=0


((k − λ− 1)/m− j/(m + 1); `)
((j + k)/m− 1; `)


(−λ + 1/(ν + 2); `)
(m− (λ + 1/2); `)


,


τ = (1/ν)1/m(


− νt1/(ν + 2)
)
−m−1


m t22,
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(α; `) = Γ(α + `)/Γ(α), and 0 ≤ k ≤ m. For k = 0, . . . , m − 1 the charac-
teristic exponents ρk = k, while ρm = λ + 1/2 = −1.


(2) The case ν = 2m+1. Equation (8)0,o has (2m+2) solutions Vk(t), 0 ≤
k ≤ 2m + 1, that can be expressed by the series


Vk(t) = t−(3ν+4)/2ν
1 σρkVk(σ2m+1,−3/2),


where


Vk(x, λ) =
∑


`≥0


a(2m+1)`+k(λ)x`,


a(2m+1)`+k(λ) =


=


m+1
∏


j=1
( (k−λ−1+(νj+1)/(ν+2))


ν − 1; `)(j/(ν + 2) + (k + m− λ)/ν − 1; `)


2m+1
∏


j=1
((k + j)/ν − 1; `)((k − λ− 1/2)/ν; `)


,


σ =
(


− 4
( t1


ν + 2


)ν+2)−1/ν
t22, 0 ≤ k ≤ 2m + 1.


For k = 0, . . . , 2m the characteristic exponent ρk = k, while ρ2m+1 = λ +
1/2 = −1.


Proof. In view of the substitution t1 = s2, t22 = s0, we solve equation (7)0,e
(respectively (7)0,o ) to get a solution of equation (8)0,e (respectively (8)0,o).
To obtain the recursive relation between am`+k and am(`+1)+k (respectively,
between a(2m+1)`+k and a(2m+1)(`+1)+k) it is enough to take into account
the following trivial equality:


(


τ
∂
∂τ


− α
)


τ r = (r − α)τ r.


Further calculations are performed in an elementary manner.


Remark 3. The functions Uk(x, λ) (Vk(x, λ)) introduced in the above the-
orem can be regarded as generalized hypergeometric functions


m+1Fm(α(k)
1 , . . . , α(k)


m+1;β
(k)
1 , . . . , β(k)


m |x)
(


2m+2F2m+1(γ
(k)
1 , . . . , γ(k)


2m+2; δ
(k)
1 , . . . , δ(k)


2m+1|x)
)


in Pochhammer’s notation (see [16]). This can be checked easily, as we find
the factor (0; `) = `! in every denominator of the expansion coefficients. The
indices α(k)


1 , β(k)
1 , . . . . are obtained from the expansion coefficients.
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Remark 4. The expressions obtained in Theorem 2.6 permit one to de-
scribe the monodromy of the period integral J0(t) around the origin. It
is enough to see what happens by translation along a loop γ : (t1, t2) →
(e2πit1, e2πit2). One observes that


γ∗Uk(t, λ) = exp
(


2πi(
m + 1


m


(


λ− ρk) +
1


2m


))


Uk(t, λ), ν = 2m,


γ∗Vk(t, λ) = exp
(


2πi
(


λ− 2 + (ν + 2)ρk


ν


))


Vk(t, λ), ν = 2m + 1.


Namely, monodromy is described by the matrix


M =


{


diag
[


e−2πi( 3m+1
2m ), e−2πi( 3m+1+m+1


2m ), . . . , e−2πi( 3m+1+m(m+1)
2m )


]


, ν =2m,


diag
[


e−2πi( 3ν+2
2ν ), e−2πi( 3ν+2+ν+2


2ν ), . . . , e−2πi( 3ν+2+ν(ν+2)
2ν )


]


, ν =2m+1.


This result is compatible with the well-known fact (see [17], Prop. 3.4.1)
that the Coxeter number for S2m+3 (resp. S2m+4) singularity is equal to
2m (resp. to 2(2m + 1)). We also remark here that the monodromy for
quasihomogeneous hypersurface singularity has been calculated by means
of the Gauss–Manin system in [3].


3. Connection with the Logarithmic Differential Forms


As for the relationship with the logarithmic differential forms studied by
K. Saito, we obtain


Theorem 3.1. Let D = {t ∈ C2; t2ϕ(t1, t2) = 0} be the discriminant
set of the principal deformation for Sν+3-singularity. Then the Gauss–
Manin system for the period integrals J = (J0, . . . , Jν)t associated with
Sν+3-singularity permits a representation as a Picard–Fuchs system (total
differential system) with coefficients from Ω1


S(log D) as follows:


dJ = L
(


A
d(t2ϕ)
t2ϕ


+
(


H1(t1) + H2(t1, t2)
) ιη(ω)


t2ϕ


)


J, (9)


where L is the diagonal matrix corresponding to the weights of the basis of
the cohomology group which appeared in Proposition 2.2,


A = 2 diag(1/(2m + 1), . . . , 1/(2m + 1)), ν = 2m,


A = 4 diag((2m + 1)/(4m + 3), . . . , (2m + 1)/(4m + 3)), ν = 2m + 1,
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H1(t1)=−mm−1 tm1
(2m + 1)(−m− 1)m+1
































2m 0 0 0 · · · 0
0 1 0 0 · · · 0
...


. . .
... · · ·


. . .
...


0 0 0
. . . . . . 0


0 0 0 · · · 1 0
0 0 0 · · · 0 1
































(ν = 2m),


H1(t1)=
8(2m + 1)2m+1t2m+2


1


(4m + 3)(2m + 3)2m+3
































2(2m + 1) 0 0 0 · · · 0
0 −1 0 0 · · · 0
...


. . .
... · · ·


. . .
...


0 0 0
. . .


. . . 0
0 0 0 · · · −1 0
0 0 0 · · · 0 −1
































(ν = 2m + 1),


H2(t) is a matrix with polynomial entries with the zero diagonal part. All
the matrices given above have the size (ν + 1)× (ν + 1). The functions that
appear in the definition of the divisor D have the forms


ϕ(t1, t2) = t2m
2 − 2(2m)m(


− t1/(2m + 2)
)(m+1)


, ν = 2m,


ϕ(t1, t2) = t4m+2
2 + 4(2m + 1)2m+1(t1/(2m + 3)


)(2m+3)
, ν = 2m + 1.


The holomorphic 1-form ιη(ω) is defined by the interior product between


the Euler vector field η = νt1
∂


∂t1
+


(ν + 2)t2
2


∂
∂t2


and the volume form


ω = dt1 ∧ dt2.


Remark 5. As we have mentioned in the introduction, the logarithmic
differential forms Ω1


S(log D) constitute a strictly narrower class than the
differential forms Ω1


S(D) with poles along D. In fact, the two meromorphic
forms d(t2ϕ)/t2ϕ, ιη(ω)/t2ϕ form a free basis of Ω1


S(log D) in this situation
where the divisor D is a generalized cusp.


Remark 6. Let us consider


J(t) =
∫


Fλ0
0 (z)Fλ1


1 (z, t) . . . Fλm
m (z, t)dz,


where Fj(z, t) (1 ≤ j ≤ m) are the linear functions with respect to the
variables z = (z1, . . . , zn), and F0(z) is a quadric (or a linear function).
As in [8], the Gauss–Manin systems defined for integrals J(t) admit as
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their coefficients logarithmic differential forms of type dψ(t)/ψ(t) only. Our
Theorem 3.1 states, however, that if deg F1(z, t) ≥ 2 there may appear
coefficients corresponding to the torsion element of Ω1


D with D = {t ∈ Cn :
ψ(t) = 0}, which cannot be expressed in terms of logarithmic differential
forms of type dψ(t)/ψ(t). Thus one can see an essential difference between
the hyperplane arrangement case and cases associated with configurations
of hypersurfaces.


Proof of Theorem 3.1. Before going into an analysis of period integrals J0(t),
. . . , Jν(t), let us consider the integrals K0(s), . . . , Kν(s). The quasihomo-
geneity of these integrals implies


(


w0s0
∂


∂s0
+ w2s2


∂
∂s2


)


K = LK,


where w0 = 1, w2 = ν/(ν + 2). The equation obtained in Proposition 2.2
and the quasihomogeneity yield


∂
∂s0


K =
1
s0


(


idν+1 +C(s2)/s0
)−1


(L + V )K,


∂
∂s2


K =
w0


w2s2


(


idν+1 +C(s2)/s0
)−1


(C(s2)L/s0 − V )K.


In summary,


dK =
∂


∂s0
Kds0 +


∂
∂s2


Kds2 =


=
(


s0 idν+1 +C(s2)
)−1


(


(


L + V (s2)
)


ds0 +
w0


w2


(


C(s2)L− s0V (s2)
)ds2


s2


)


K.


Consequently, for J we have a Picard–Fuchs system of the form


dJ =
∂


∂t1
Jdt1 +


∂
∂t2


Jdt2 =


=
(


t22 idν+1 +C(t1)
)−1


(


(


2t2(L + V (t1)
)


dt2 +


+
w0


w2


(


C(t1)L− t22V (t1)
)dt1


t1


)


J. (10)


Thus to show the statement, it is enough to calculate the expressions
(


t22 idν+1 +C(t1)
)−1


,
(


t22 idν+1 +C(t1)
)−1


C(t1). (11)


As for the remaining part of (10), it is easy to see that the expression


(


t22 idν+1 +C(t1)
)−1


(


2t2V (t1)dt2 −
w0


w2
t22V (t1)


dt1
t1


)
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belongs to End(Cν+1)⊗C[t1, t2] · ιη(ω). This is evident from the equality


2w2t1dt2 − w0t2dt1 = 2ιη(ω)/(ν + 2)


and the explicit form of the matrix V obtained in Proposition 2.2.
Let us show how to calculate the two expressions in (11). In view of


the substitution s0 = t22, s2 = t1 the calculation is reduced to that of the
differential form-valued matrix


(


s0 idν+1 +C(s2)
)−1


ds0 +
w0


w2


(


s0 idν+1 +C(s2)
)−1


C(s2)
ds2


s2
. (12)


We divide the expression into two parts to be calculated below:


(


s0 idν+1 +C(s2)
)−1


, (13)
(


s0 idν+1 +C(s2)
)−1


C(s2). (14)


First of all we remark that


(s0 idν+1 +C(s2))−1 =


=
1


s0ψ(s)
×

















ψ(s) ∗ ∗ · · · ∗
0
... s0(s0 idν +C̃(s2))−1


0

















,


where ˜C(s2) is the (ν × ν)-matrix defined as follows:


˜C(s2) =






































0 0 ν
ν+2s2 0 · · · 0


0 0 0 ν
ν+2s2 · · ·


...
...


...
... · · ·


. . .
...


0 0 0
. . .


. . . ν
ν+2s2


−2ν
(ν+2)2 s2


2 0 0 · · · · · · 0
0 −2ν


(ν+2)2 s2
2 0 · · · · · · 0






































The function ψ(s0, s2) denotes a polynomial defined by


ψ = det
(


s0 idν + ˜C(s2)
)


and the first row of matrix (12) is uniquely determined by (s0 idν +C̃(s2))−1.
For the sake of simplicity, further we will use the notation


u1 = −2νs2
2/(ν + 2)2, u2 = νs2/(ν + 2).
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By induction with respect to the size of matrix, one can show


ψ(s0, s2) = s2m+1
0 + u2


1u
2m−1
2 , when ν = 2m + 1;


ψ(s0, s2) =
(


sm
0 + u1(−u2)m−1)2


, when ν = 2m.


Below we will make use of the notation of function φ(s0, s2) defined as
follows:


φ = ψ, when ν = 2m + 1;


φ = sm
0 + u1(−u2)m−1, when ν = 2m.


We divide the calculation procedure into several steps that are formulated
in the form of lemmas.


Lemma 3.2. Let us define a (ν × ν)-matrix R as follows:


R = ψ(s0 idν +C̃(s2))−1.


The entries of R are given by the relations shown below.
The case ν = 2m :


Ri,i = sm−1
0 , 1 ≤ i ≤ 2m,


R2i,2j+1 = R2i+1,2j = 0, 1 ≤ i, j ≤ m,
Ri+1,j+1 = Ri,j , 1 ≤ i, j ≤ 2m,


R1,2j+1 = (−s0)j−1u1u
m−j−1
2 , 1 ≤ j ≤ m,


R2j+1,1 = sm−j−1
0 (−u2)j , 1 ≤ j ≤ 2m,


Ri,j ·Rj,i = −sm−2
0 u1um−1


2 , 1 ≤ i, j ≤ 2m.


The case ν = 2m + 1 :


Ri,i = s2m
0 , 1 ≤ i ≤ 2m + 1,


Ri+1,j+1 = Ri,j , 1 ≤ i, j ≤ 2m,


R1,2j = (−s0)m+j−1u1u
m−j
2 , 1 ≤ j ≤ m,


R1,2j+1 = (−s0)j−1u2
1u


2m−j−1
2 , 1 ≤ j ≤ m,


Ri,j ·Rj,i = (−s0)2m−1u2
1u


2m−1
2 , 1 ≤ i, j ≤ 2m + 1.


Using the matrix R defined above we get a concrete expression of matrix
(13).


Lemma 3.3. If we set


S = s0φ
(


s0 idν+1 +C(s2)
)−1


,
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then the (ν + 1)× (ν + 1)-matrix S admits the following expression:


S =

















φ s0R2,1 s0R3,1 · · · s0Rν,1 Sν,1


0
... s0R
0

















,


where
Si+1,j+1 = s0Ri,j , 1 ≤ i, j ≤ ν − 1,


Sj,1 = s0Rj,1, 2 ≤ j ≤ ν,
S2m,1 = (−u2)m, ν = 2m,


S2m+1,1 = −u1u2m
2 , ν = 2m + 1.


Calculating matrix (14), one gets the following


Lemma 3.4. Let us set


T = s0φ
(


s0 idν+1 +C(s2)
)−1


C(s2).


Then the following equality holds for the off-diagonal entries of the matrices
S and T :


Ti,j = −s0Si,j , when i 6= j.


Proof. It is easy to see that the (i +2)th column of the matrix product RC
coincides with the ith column of the matrix R multiplied by u2. The latter
in turn is equal to the (i+2)th column of the matrix R multiplied by (−s0).
These equalities immediately follow from Lemma 3.2.


On rewriting (12) in terms of the matrices S and T defined above, we
have


(


s0 idν+1 +C(s2)
)−1


ds0 +
w0


w2


(


s0 idν+1 +C(s2)
)−1


C(s2)
ds2


s2
=


=
1


s0φ


(


Sds0 +
w0


w2
T


ds2


s2


)


.


Lemma 3.4 implies that the (i, j)-element, i 6= j, of this matrix admits the
expression


Si,j


w2s2
(w2s2ds0 − w0s0ds2) =


Si,j


w2s2
ιξ(θ),


where


ξ = w0s0
∂


∂s0
+ w2s2


∂
∂s2


, θ = ds0 ∧ ds2.


Note that Si,j , i 6= j, are always divisible by s2 from the concrete form of
the matrix given in Lemma 3.3. By the same lemma the diagonal elements
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of this matrix, except the (1, 1)-element equal to 1/s0, can be written as
follows:


dφ
mφ


, ν = 2m;
dφ
νφ


, ν = 2m + 1.


To summarize, we have shown for the integrals K = (K0, . . . , Kν) that


dK = L(A′ds0/s0 + B′dφ/φ + H ′ιξ(θ)/s0φ)K,


where


A′ = diag(1, 0, . . . , 0),


B′ = diag(0, 1/m, . . . , 1/m) when ν = 2m,


B′ = diag(0, 1/ν, . . . , 1/ν) when ν = 2m + 1,


and H ′ is a matrix with the polynomial entries with the zero diagonal part.
On making the transition in the variables from (s0, s2) to (t1, t2), we get a
total differential system for the integrals J0(t), . . . , Jν(t) :


dJ = L
(


2A′
dt2
t2


+ B′ dϕ
ϕ


+ Hιη
ω


t2ϕ


)


J. (15)


In order to see that it is possible to write (15) as a system with a single de-
nominator t2ϕ(t), we solve the equations below with respect to the matrices
A,H1 ∈ End(Cν+1)⊗C[t] :


2A′
dt2
t2


+ B′ dϕ
ϕ


+ H
ιη(ω)
t2ϕ


= A
d(t2ϕ)
t2ϕ


+ H1
ιη(ω)
t2ϕ


.


Calculation of the matrices A and H1 gives the desired formula (9).


4. Further Remarks and Problems


Consider the divisor


D =
{


t ∈ Cn : h(t) = h1(t) . . . hm(t) = 0
}


where h1(t), . . . , hm(t) ∈ C[t] are irreducible factors, i.e.,


D =
m
⋃


i=1


Di, Di =
{


t ∈ Cn : hi(t) = 0
}


.


In the case where Di, 1 ≤ i ≤ m, form a set of normal crossing divisors so
that


(1) Di intersects transversally Dj , i 6= j ;
(2) dim Di ∩Dj ∩Dk ≤ n− 3 for i 6= j 6= k 6= i,


it is known (see [13], (2.9)) that Ω1
Cn(log D) is generated by


dh1/h1, . . . , dhm/hm (16)
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as an OCn -module. In such a case, “a Pfaff system of the Fuchsian type”
is defined in quite a natural manner for a set of unknown functions I =
(I1, . . . , Iµ) :


d I =
(


m
∑


j=1


Aj
dhj


hj


)


I, (17)


where Aj ∈ End(Cµ)⊗OCn . Pfaff systems of this type were studied in [18].
Theorem 3.1, however, implies that when the components of the divisor
do not intersect transversally, there arise logarithmic differential forms like
ιη(ω) in (9), in addition to those of type (16). That is to say, it is natural
to think of a class of systems


d I =
(


A
dh
h


+
n−1
∑


j=1


Bj
ωj


h


)


I (18)


with ωj ∈ Tors Ω1
D and A,Bj ∈ End(Cµ)⊗OCn satisfying the integrability


condition


dA
dh
h


+
n−1
∑


j=1


dBj
ωj


h
+ Bjd


(ωj


h


)


=
n−1
∑


j=1


(BjA−ABj)
ωjdh
h2 .


The above expression (18) is appropriate in describing a Pfaff system with
Ω1


Cn(log D) coefficients in view of the following exact sequence proved in
[14]:


0 −→ dh
h
OCn + Ω1


Cn −→ Ω1
Cn(log D) h−→ Tors Ω1


D −→ 0.


Here rank(Tors Ω1
D) = n−1. Furthermore, when Ω1


Cn(log D) is a free OCn -
module, the integral variety defined by the dual free module DerCn(log D)
coincides with D = {t ∈ Cn : h(t) = 0} (see [13] (1.9)).


Note that in the case where the divisor D consists of normally crossing
divisors Di that satisfy conditions (1) and (2) mentioned above, the OD-
module of torsion differentials Tors Ω1


D is generated by (m− 1) differential
1-forms


hdh1/h1, . . . ̂hdhi/hi . . . , hdhm/hm, 1 ≤ i ≤ m,


where the ith form hdhi/hi is omitted. Therefore, in this situation system
(17) can be considered as a special case of (18). Thus one may regard a
system of type (18) as a natural generalization of “a Pfaff system of the
Fuchsian type” to the case of a divisor consisting of components that do
not cross normally.


The following two questions concerning systems of type (18) were pro-
posed by K. Aomoto.
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Question 1. Let us consider an arbitrary representation ρ ∈ π1(Cn\D).
Is it possible to find a system of form (18) such that its solutions induce
ρ as their monodromy representation? In other words, is class (18) wide
enough for the existence of solutions to the Riemann–Hilbert problem?


K. Aomoto gave positive answer (see [19]) to this problem in the case
where ρ is contained in a unipotent subgroup of GL(µ,C).


Question 2. Describe the cases where there exists an appropriate finite
covering space X over Cn,


π : X → Cn


∪ ∪
˜D → D


such that the preimage of a system of type (18) under π has the form


d Ĩ =
(


m
∑


j=1


Aj
dhj


hj


)


Ĩ,


where Aj ∈ End(Cµ) ⊗ OX , hj ∈ OX , j = 1, . . . ,m, and ˜D = ∪m
j=1{z ∈


X : hj(z) = 0}. As K. Aomoto pointed out, that system (9) turns out to be
the case in question because its solutions are described by Pochhammer’s
hypergeometric functions that are interpreted as solutions to the following
system [20]:


d
dz


J =
(A1


z
+


A2


z − 1


)


J,


where A1, A2 ∈ End(Cµ).
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