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SPATIAL PROBLEM OF DARBOUX TYPE FOR ONE
MODEL EQUATION OF THIRD ORDER

O. JOKHADZE

Abstract. For a hyperbolic type model equation of third order a
Darboux type problem is investigated in a dihedral angle. It is shown
that there exists a real number ρ0 such that for α > ρ0 the problem
under consideration is uniquely solvable in the Frechet space. In the
case where the coefficients are constants, Bochner’s method is devel-
oped in multidimensional domains, and used to prove the uniquely
solvability of the problem both in Frechet and in Banach spaces.

§ 1. Statement of the Problem

Let us consider a partial differential equation of hyperbolic type

uxyz = F (1.1)

in R3, where F is a given function and u is an unknown real function.
For equation (1.1) the family of planes x = const, y = const, z = const

is characteristic, while the directions determined by the unit vectors e1, e2,
e3 of the coordinate axes are bicharacteristic.

In the space R3 let S0
i : pi(x, y, z) ≡ α0

i x + β0
i y + γ0

i z = 0, i = 1, 2, be
arbitrarily given planes passing through the origin. Assume that ν0

1 ∦ ν0
2 ,

|ν0
i | 6= 0, where ν0

i ≡ (α0
i , β

0
i , γ0

i ), i = 1, 2. The space R3 is partitioned
by the planes S0

i , i = 1, 2, into four dihedral angles. We consider equation
(1.1) in one of these angles D0 which, without loss of generality, is assumed
to be given in the form

D0 ≡ {(x, y, z) ∈ R3 : α0
i x + β0

i y + γ0
i z > 0, i = 1, 2}.

For the domain D0 we make the following assumptions:
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(a) the edge Γ0 ≡ {(x, y, z) ∈ R3 : α0
i x + β0

i y + γ0
i z = 0, i = 1, 2} of D0

lies in none of the coordinate planes, which is equivalent to
∣
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∣
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∣

∣

∣
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∣

∣

∣

∣
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1
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∣

∣

∣

6= 0; (1.2)

this implies that Γ0 has no bicharacteristic direction, i.e., ν0 ∦ ej , j = 1, 2, 3,
where ν0 ≡ ν0

1 × ν0
2 is the vector product of the vectors ν0

1 and ν0
2 ;

(b) the bicharacteristics passing through the edge Γ0 do not pass into
the domain D0, and this is equivalent to the fulfillment of the inequalities
α0

1α
0
2 < 0, β0

1β0
2 < 0, γ0

1γ0
2 < 0.

Let P0(x0, y0, z0) be an arbitrary point of the domain D0, and let S1 ⊃ Γ0

and S2 ⊃ Γ0 be the plane sides of the angle D0, ∂D0 = S1 ∪ S2. Let the
bicharacteristic beams Li(P0), i = 1, 2, 3, of equation (1.1) radiate from the
point P0, in the direction of decreasing values of the z-coordinate of the
moving points Li(P0) to the intersection with one of the sides S1 or S2 at
the points Pi, i = 1, 2, 3. Assume that these three points do not lie on the
same side. Without loss of generality the points P1 and P2 are assumed to
lie on S1, while the point P3 lies on S2.

In the domain D0 let us consider the following Darboux type problem:
Find in D0 a regular solution u(x, y, z) of equation (1.1) satisfying the
boundary conditions (to shorten the formulas here and below we assume
that S0 ≡ S1)

(Miuxy + Niuxz + Qiuyz)|Si−1 = fi, i = 1, 2, 3. (1.3)

For convenience we transform the domain D0 into the domain D : z1 −
y1 > 0, z1 + y1 > 0 of the space of variables x1, y1, z1. To this end let us
introduce new independent variables defined by the equalities

x1 = x, y1 =
1
2
(

p1(x, y, z)− p2(x, y, z)
)

,

z1 =
1
2
(

p1(x, y, z) + p2(x, y, z)
)

.
(1.4)

Owing to (1.2), the linear transform (1.4) is obviously nondegenerate, it
establishes the one-to-one correspondence between the domains D0 and D.

Retaining, the previous notation for u, F, Mi, Ni, Qi, fi and Sj , i = 1, 2, 3,
j = 1, 2, in the domain D for the variables x1, y1, z1 we rewrite the problem
(1.1), (1.2) as

∂3u
∂µ1∂µ2∂µ3

= F,

(

Mi
∂2u

∂µ1∂µ2
+ Ni

∂2u
∂µ1∂µ3

+ Qi
∂2u

∂µ2∂µ3

)∣

∣

∣

Si−1

= fi, i = 1, 2, 3,
(1.5)
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where ∂
∂µi

, i = 1, 2, 3, are well defined derivatives with respect to various
directions expressed by the values α0

i , β0
i , γ0

i , i = 1, 2, 3,

S1 = {(x, y, z) ∈ R3 : x ∈ R, y = z, z ∈ R+},
S2 = {(x, y, z) ∈ R3 : x ∈ R, y = −z, z ∈ R+}, R+ ≡ [0,∞).

In the domain D let us consider, instead of the problem (1.5), the fol-
lowing boundary value problem in more general terms. Find in the domain
D a regular solution u(x, y, z) of the equation

∂3u
∂l1∂l2∂l3

= F (1.6)

satisfying the boundary conditions
(

Mi
∂2u

∂l1∂l2
+ Ni

∂2u
∂l1∂l3

+ Qi
∂2u

∂l2∂l3

)∣

∣

∣

Si−1

= fi, i = 1, 2, 3. (1.7)

Here for the variables x1, y1, z1 we use the previous notation: x, y, z;
∂
∂li

≡ αi
∂
∂x

+βi
∂
∂y

+ γi
∂
∂z

, |αi|+ |βi|+ |γi| 6= 0, li ≡ (αi, βi, γi), i = 1, 2, 3,

is the derivative with respect to the direction, Mi, Ni, Qi, fi, F , i = 1, 2, 3,
are the given functions, and u is the unknown real function. Moreover, the
bicharacteristics of equation (1.6) and the domain D will be assumed to
satisfy conditions (a) and (b) formulated above for equation (1.1) in the
domain D0.

A regular solution of equation (1.6) is said to be a function u(x, y, z)

which is continuous in D together with its partial derivatives
∂i+j+ku

∂li1∂lj2∂lk3
,

i, j, k = 0, 1, and satisfying equation (1.6) in D.
It should be noted that the boundary value problem (1.6), (1.7) is a

natural continuation of the known classical statements of the Goursat and
Darboux problems (see, e.g., [1]–[3]) for linear hyperbolic equations of sec-
ond order with two independent variables on a plane. The multidimensional
analogues of the Goursat and Darboux problems for one hyperbolic equa-
tion of second order in a dihedral angle were studied by Beudon and many
other authors (see, e.g., [2], [4]–[7]).

Many works are devoted to the initial boundary value and characteristic
problems for a wide class of hyperbolic equations of third and higher orders
in multidimensional domains with dominating derivatives (see, e.g., [8], [9]).

Remark 1.1. Note that the hyperbolicity of problem (1.6), (1.7) is taken
into account in conditions (1.7) because of the presence of dominating

derivatives of second order with respect to
∂3u

∂l1∂l2∂l3
.
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Remark 1.2. Since the bicharacteristic beams of equation (1.6) radiating
from an arbitrary point of the domain D in the direction of decreasing values
of the z-coordinate of moving points of these beams intersect the side S1

twice, while the side S2 only once, we take in the boundary conditions (1.7)
two conditions on S1 and one condition on S2, respectively.

In the domains D and Π+ ≡ {(x, z) ∈ R2 : x ∈ R, z ∈ R+}, R+ ≡ (0,∞),
let us introduce into consideration the functional spaces

0
Cα(D) ≡

{

v ∈ C(D) : v|Γ = 0, sup
(x,y,z)∈D\Γ

z≤N

ρ−α|v(x, y, z)| < ∞, ∀N ∈ N
}

,

0
Cα,β(D) ≡

{

v ∈
0
Cα(D) : sup

(x,y,z)∈D,z>1
ρ−β |v(x, y, z)| < ∞

}

,

where Γ ≡ {(x, y, z) ∈ R3 : x ∈ R, y = z = 0}, ρ is the distance from the
point (x, y, z) ∈ D to the edge Γ of D, and the parameters α = const ≥ 0,
β = const ≥ 0.

Similarly, we introduce the spaces

0
Cα(Π+) ≡

{

ϕ ∈ C(Π+) : ϕ|Γ1 = 0, sup
(x,z)∈Π+

z≤N

z−α|ϕ(x, z)| < ∞,∀N ∈ N
}

,

0
Cα,β(Π+) ≡

{

ϕ ∈
0
Cα(Π+) : sup

(x,z)∈Π+,z>1
z−β |ϕ(x, z)| < ∞

}

,

Γ1 ≡ {(x, z) ∈ R2 : x ∈ R, z = 0}.
Obviously, for the semi-norms

‖v‖ 0
Cα(DN )

= sup
(x,y,z)∈DN\Γ

ρ−α|v(x, y, z)|,

‖ϕ‖ 0
Cα(Π+,N )

= sup
(x,z)∈Π+,N\Γ1

z−α|ϕ(x, z)|,

where DN ≡ D ∩ {z < N}, Π+,N ≡ Π+ ∩ {z < N}, N ∈ N, the spaces
0
Cα(D) and

0
Cα(Π+) are the countable normed Frechet spaces.

The spaces
0
Cα,β(D) and

0
Cα,β(Π+) are the Banach spaces with the norms

‖v‖ 0
Cα,β(D)

=

= max
{

sup
(x,y,z)∈D\Γ,z≤1

ρ−α|v(x, y, z)|, sup
(x,y,z)∈D,z>1

ρ−β |v(x, y, z)|
}

,
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‖ϕ‖ 0
Cα,β(Π+)

=

= max
{

sup
(x,z)∈Π+,z≤1

z−α|ϕ(x, z)|, sup
(x,z)∈Π+,z>1

z−β |ϕ(x, z)|
}

.

Remark 1.3. Because of the uniform estimate 1 ≤ ρ
z
≤
√

2, (x, y, z) ∈ D,

we can replace the value ρ in the definition of the spaces
0
Cα(D),

0
Cα(DN ),

0
Cα,β(D) by the variable z which will be used below.

Throughout this paper we denote by c a positive constant whose partic-
ular value is not of principal interest for our investigation.

It can be easily seen that the belonging of the functions v ∈
0
C(D) and

ϕ ∈
0
C(Π+), respectively, to the spaces

0
Cα(D) and

0
Cα(Π+) is equivalent to

the fulfillment of the inequalities

|v(x, y, z)| ≤ czα, (x, y, z) ∈ D, z ≤ N,

|ϕ(x, z)| ≤ czα, (x, z) ∈ Π+, z ≤ N, N ∈ N.
(1.8)

We investigate problem (1.6), (1.7) in the Frechet space

0
Cl

α(D) ≡
{

u :
∂i+j+ku

∂li1∂lj2∂lk3
∈

0
Cα(D), i, j, k = 0, 1

}

, l ≡ (l1, l2, l3),

with respect to the semi-norms

‖u‖ 0
Cl

α(DN )
=

1
∑

i,j,k=0

∥

∥

∥

∂i+j+ku

∂li1∂lj2∂lk3

∥

∥

∥ 0
Cα(DN )

, N ∈ N,

and in the Banach space

0
Cl

α,β(D) ≡
{

u :
∂i+j+ku

∂li1∂lj2∂lk3
∈

0
Cα,β(D), i, j, k = 0, 1

}

with the norm

‖u‖ 0
Cl

α,β(D)
=

1
∑

i,j,k=0

∥

∥

∥

∂i+j+ku

∂li1∂lj2∂lk3

∥

∥

∥ 0
Cα,β(D)

.

In considering the problem (1.6), (1.7) in the class
0
Cl

α(D) (
0
Cl

α,β(D)),

we require that F ∈
0
Cα(D) (

0
Cα,β(D)), Mi, Ni, Qi ∈ C(Π+) (Mi ≡ const,

Ni ≡ const, Qi ≡ const), fi ∈
0
Cα(Π+) (

0
Cα,β(Π+)), i = 1, 2, 3.
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§ 2. Equivalent Reduction of Problem (1.6), (1.7) to a
Functional Equation

Using the notation
∂2u

∂l1∂l2
≡ v1,

∂2u
∂l1∂l3

≡ v2,
∂2u

∂l2∂l3
≡ v3, problem

(1.6), (1.7), in the domain D, can be rewritten equivalently as a boundary
value problem for a system of partial differential equations of first order
with respect to the unknown functions v1, v2, v3:

∂v1

∂l3
= F,

∂v2

∂l2
= F,

∂v3

∂l1
= F, (2.1)

(Miv1 + Niv2 + Qiv3)
∣

∣

Si−1
= fi, i = 1, 2, 3. (2.2)

The equivalence of the initial problem (1.6), (1.7) and problem (2.1),
(2.2) is an obvious consequence of

Lemma 2.1. In the closed domain D0 there exists a unique function
u ∈ {u : Di

xDj
yDk

zu ∈ C(D0), i, j, k = 0, 1}, satisfying both the redefined
system of partial differential equations of second order

uxy = v1, uxz = v2, uyz = v3 (2.3)

and the conditions

u(P 0) = c0, ux|Γ0 = ω1, uy|Γ0 = ω2, uz|Γ0 = ω3. (2.4)

Here v1, v2, v3 are given functions such that vi, ∂v1
∂z , ∂v2

∂y , ∂v3
∂x ∈ C(D0),

i = 1, 2, 3; ∂v1
∂z (x, y, z) = ∂v2

∂y (x, y, z) = ∂v3
∂x (x, y, z), (x, y, z) ∈ D0; c0 and

ωi ∈ C(Γ0), i = 1, 2, 3, are, respectively, the given constant and functions
on Γ0; P 0 = P 0(x0, y0, z0) is an arbitrarily fixed point of Γ0.

Proof. Let P0(x0, y0, z0) be an arbitrary point of D0. It is obvious that
owing to the requirement (a) on Γ0 in §1, the plane x = x0 has the unique
point of intersection of P ∗0 (x0, y∗(x0), z∗(x0)) with the edge Γ0. Since
(ux(x0, y, z))y = v1(x0, y, z), (ux(x0, y, z))z = v2(x0, y, z) and ux(P ∗0 ) =
ω1(P ∗0 ), the function ux(x0, y, z) is defined uniquely at the point P0(x0, y0, z0)
by the formula

ux(P0) = ω1(P ∗0 ) +

(y0,z0)
∫

(y∗(x0),z∗(x0))

v1(x0, y, z)dy + v2(x0, y, z)dz. (2.5)

Here the curvilinear integral is taken along any simple smooth curve con-
necting the points (y∗(x0), z∗(x0)) and (y0, z0) of the plane x = x0 and
lying wholly in D0. Since the point P0 is chosen arbitrarily, in the closed
domain D0 formula (2.5) gives the representation of the function ux(P ),
P ≡ P (x, y, z), which is written in terms of the given functions v1 and v2.
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Analogously, the representation formulas for the functions uy(P ) and uz(P )
in D0 are given by the known functions v1, v3 and v2, v3, respectively. It
remains only to note that the function u(P ) defined by the formula

u(P ) = c0 +
∫

P 0P

uxdx + uydy + uzdz = c0 +
∫

P 0P

{

ω1(x, y∗(x), z∗(x)) +

+
∫

P∗P 1

v1(x, η, ζ)dη + v2(x, η, ζ)dζ
}

dx +
{

ω2(x∗∗(y), y, z∗∗(y)) +

+
∫

P∗∗P 2

v1(ξ, y, ζ)dξ + v3(ξ, y, ζ)dζ
}

dy +
{

ω3(x∗∗∗(z), y∗∗∗(z), z) +

+
∫

P∗∗∗P 3

v2(ξ, η, z)dξ + v3(ξ, η, z)dη
}

dz (2.6)

defines actually the unique solution of the problem (2.3), (2.4). Here P 1≡
P 1(y, z), P 2 ≡ P 2(x, z), P 3 ≡ P 3(x, y), P ∗ ≡ P ∗(y∗(x), z∗(x)), P ∗∗ ≡
P ∗∗(x∗∗(y), z∗∗(y)), P ∗∗∗≡P ∗∗∗(x∗∗∗(z), y∗∗∗(z)).

Remark 2.1. If instead of system (2.3) we consider the system

∂2u
∂l1∂l2

= v1,
∂2u

∂l1∂l3
= v2,

∂2u
∂l2∂l3

= v3, (2.7)

in the dihedral angle D, then similarly to item (a) for Γ0 one should require
that the edge Γ of D lie in none of the three planes passing through the
origin and spanned to the pairs of vectors (l1, l2), (l1, l3) and (l2, l3).

Note that system (2.7) reduces to system (2.3) by means of the nonde-
generate transform of variables x, y, z,

x = α1ξ + α2η + α3ζ, y = β1ξ + β2η + β3ζ, z = γ1ξ + γ2η + γ3ζ,

under the assumption that the vectors l1, l2 and l3 are linearly independent.
Let the bicharacteristic beams Li(P ), i = 1, 2, 3, of equation (1.6) rediate

from an arbitrary point P (x, y, z) ∈ D in the direction of decreasing values
of the z-coordinate of moving points Li(P ) to the intersection with the sides
S1 and S2 at the points Pi, i = 1, 2, 3.

Denoting for (x, z) ∈ Π+ v1|S2 ≡ ϕ1(x, z), v2|S1 ≡ ϕ2(x, z), v3|S1 ≡
ϕ3(x, z), and integrating the equations of system (2.1) along the correspond-
ing bicharacteristics, for (x, y, z) ∈ D we get











v1(x, y, z) = ϕ1(σ(x, y + z, z; α̃1, α̃2)) + F1(x, y, z),
v2(x, y, z) = ϕ2(σ(x, y − z, z; α̃3, α̃4)) + F2(x, y, z),
v3(x, y, z) = ϕ3(σ(x, y − z, z; α̃5, α̃6)) + F3(x, y, z),

(2.8)
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where Fi, i = 1, 2, 3, are known functions, σ(x, y, z;λ1, λ2) ≡ (x + λ1y, z +
λ2y), σ1(x, y;λ) ≡ x + λy, and the superscript −1 here and below denotes
the inverse value.

Substituting the expressions for v1, v2, and v3 from equalities (2.8) into
the boundary conditions (2.2), for (x, z) ∈ Π+ we obtain











































M1(x, z)ϕ1
(

σ(x, z, 0; 2α̃1, α̃7)) + N1(x, z)ϕ2(x, z) +

+ Q1(x, z)ϕ3(x, z) = f4(x, z),

M2(x, z)ϕ1
(

σ(x, z, 0; 2α̃1, α̃7)) + N2(x, z)ϕ2(x, z) +

+ Q2(x, z)ϕ3(x, z) = f5(x, z),

M3(x, z)ϕ1(x, z) + N3(x, z)ϕ2
(

σ(x, z, 0;−2α̃3, α̃8)) +

+ Q3(x, z)ϕ3
(

σ(x, z, 0;−2α̃5, α̃9)) = f6(x, z).

(2.9)

(2.10)

(2.11)

In equalities (2.8)–(2.11) the constants α̃i, i = 1, . . . , 9, are well defined and
written in terms of αi, βi, γi, i = 1, 2, 3.

Condition I. The functions Mi, Nj , Qj , i = 1, 2, j = 1, 2, 3, are bounded
and uniformly continuous in Π+.

Note that by Condition I the known functions fi, i = 4, 5, 6, belong to

the class
0
Cα(Π+). We rewrite equations (2.9) and (2.10) as follows:



















N1(x, z)ϕ2(x, z) + Q1(x, z)ϕ3(x, z) = f4(x, z)−
−M1(x, z)ϕ1

(

σ(x, z, 0; 2α̃1, α̃7)
)

,
N2(x, z)ϕ2(x, z) + Q2(x, z)ϕ3(x, z) = f5(x, z)−
−M2(x, z)ϕ1

(

σ(x, z, 0; 2α̃1, α̃7)
)

.

(x, z) ∈ Π+, (2.12)

Condition II. The inequality

|∆0(x, z)| ≥ c, (x, z) ∈ Π+, (2.13)

holds for the determinant ∆0(x, z) ≡ (N1Q2 −N2Q1)(x, z).
On account of (2.12) and (2.13) we find that for (x, z) ∈ Π+

ϕi+1(x, z) = ai(x, z)− bi(x, z)ϕ1
(

σ(x, z, 0; 2α̃1, α̃7)
)

, i = 1, 2, (2.14)

where ai, bi, i = 1, 2, are given functions. Bearing in mind Conditions I

and II, we find that ai ∈
0
Cα(Π+), i = 1, 2, while the continuous functions

bi, i = 1, 2, are bounded in Π+.

Condition III. The function M3 satisfies the inequality

|M3(x, z)| ≥ c, (x, z) ∈ Π+, (2.15)
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and the function M−1
3 is uniformly continuous in Π+.

Taking into account (2.15) from (2.11) and (2.14), we obtain the func-
tional equation

ϕ1(x, z)−G2(x, z)ϕ1(J2(x, z))−G3(x, z)ϕ1(J3(x, z)) = g(x, z) (2.16)

with respect to ϕ1 : Π+ → R.
Due to Conditions I–III, the functions G2, G3 are known uniformly con-

tinuous and bounded in Π+, while the function g is expressed by the known

functions and belongs to the class
0
Cα(Π+). The functions Ji : Π+ → Π+,

i = 2, 3, act by the formulas

Ji : (x, z) → (x + δiz, τiz), (x, z) ∈ Π+, i = 2, 3, (2.17)

where δi, τi, i = 2, 3 are well-defined constants written in terms of αi, βi,
γi, i = 1, 2, 3.

Remark 2.2. Note that under the assumptions with respect to the coef-
ficients αi, βi, γi, i = 1, 2, 3, we can easily see that 0 < τi < 1, i = 2, 3.

Remark 2.3. It is obvious that when Conditions I–III are fulfilled, prob-

lem (1.6), (1.7) in the class
0
Cl

α(D) is equivalently reduced to (2.16) with

respect to the unknown function ϕ1 of the class
0
Cα(Π+). Furthermore, if

u ∈
0
Cl

α(D), then ϕ1 ∈
0
Cα(Π+), and vice versa: if ϕ1 ∈

0
Cα(Π+), then tak-

ing into account the inequalities (1.8), we find from equalities (2.14), (2.8),

(2.6) that u ∈
0
Cl

α(D).

§ 3. Investigation of the Functional Equation (2.16)

Let us introduce the notation

(Tϕ1)(x, z) ≡ ϕ1(x, z)−
3

∑

i=2

Gi(x, z)ϕ1
(

Ji(x, z)
)

, (x, z) ∈ Π+, (3.1)

h(ρ) ≡
3

∑

i=2

ηiτ
ρ
i , η1 ≡ max

2≤i≤3
sup

(x,z)∈Π+

|Gi(x, z)|,

ηi ≡ sup
x∈R

|Gi(x, 0)|, i = 2, 3, ρ ∈ R.
(3.2)

Let for some value of the index i the number ηi be different from zero.
In that case, owing to (2.2), the function h : R → R+ is continuous and
strictly monotonically decreasing on R; moreover, limρ→−∞ h(ρ) = +∞ and
limρ→+∞ h(ρ) = 0. Therefore there exists a unique real number ρ0 such that
h(ρ0) = 1. For η2

2 + η2
3 = 0 we assume ρ0 = −∞.
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Lemma 3.1. If α > ρ0, then (2.16) is uniquely solvable in
0
Cα(Π+,A),

Π+,A ≡ R× (0, A), ∀A > 0, and for the solution ϕ1 = T−1g the estimate

|(T−1g)(x, z)| ≤ Czα‖g‖ 0
Cα(Π+,z)

, x ∈ R, 0 ≤ z ≤ A, (3.3)

holds, where C is a positive constant not depending on the function g.

Proof. By the condition α > ρ0 and the definition of the function h it follows
from (3.2) that

h(α) =
3

∑

i=2

ηiτα
i < 1. (3.4)

Because of (3.4) and the uniform continuity of the functions G2, G3 there
are positive numbers ε (ε < A) and δ such that the inequalities

|Gi(x, z)| ≤ ηi + δ, i = 2, 3, x ∈ R, (3.5)
3

∑

i=2

(ηi + δ)τα
i ≡ β < 1 (3.6)

are valid for 0 ≤ z ≤ ε.
According to Remark 2.2, there exists a natural number q0(A) such that

for q ≥ q0

τiqτiq−1 · · · τi1z ≤ ε, 0 ≤ z ≤ A, (3.7)

where 2 ≤ is ≤ 3, s = 1, . . . , q.
Let us introduce into consideration the operators Λ and T−1 defined by

(Λϕ1)(x, z) =
3

∑

i=2

Gi(x, z)ϕ1(Ji(x, z)), T−1 = I +
∞
∑

q=1

Λq,

where (x, z) ∈ Π+,A and I is an identical operator. The operator T−1 is still
formally inverse to the operator T defined by equality (3.1). To prove that
the operator T−1 is really inverse to the operator T , it suffices to establish

its continuity in the space
0
Cα(Π+,A).

Indeed, it is easily seen that the expression Λqg represents the sum of
summands of the type

Ii1···iq (x, z) = Gi1(x, z)Gi2(Ji1(x, z))Gi3(Ji2(Ji1(x, z))) · · ·
· · ·Giq (Jiq−1(Jiq−2(· · · (Ji1(x, z)) · · · )))g(Jiq (Jiq−1(· · · (Ji1(x, z)) · · · ))),

where 2 ≤ is ≤ 3, s = 1, . . . , q.
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By virtue of (3.2), (3.5), (3.7) and Remark 2.2, for q > q0, g ∈
0
Cα(Π+,A)

we have

|Ii1···iq (x, z)| ≤ |Gi1(x, z)| · · · |Giq0
(Jiq0−1(Jiq0−2(· · · (Ji1(x, z)) · · · )))| ×

×|Giq0+1(Jiq0
(Jiq0−1(· · · (Ji1(x, z)) · · · )))| · · ·

· · · |Giq (Jiq−1(Jiq−2(· · · (Ji1(x, z)) · · · )))| ×
×|g(Jiq (Jiq−1(· · · (Ji1(x, z)) · · · )))| ≤ ηq0

1 (ηiq0+1 + δ) · · · (ηiq + δ)×

×(τiqτiq−1 · · · τi1z)α‖g‖ 0
Cα(Π+,z)

≤ ηq0
1

(
q

∏

s=q0+1

(ηis + δ)
)(

q
∏

s=q0+1

τα
is

)

×

×zα‖g‖ 0
Cα(Π+,z)

= ηq0
1

(
q

∏

s=q0+1

(ηis + δ)τα
is

)

zα‖g‖ 0
Cα(Π+,z)

, (3.8)

while for 1 ≤ q ≤ q0

|Ii1···iq (x, z)| ≤ ηq
1(τiqτiq−1 · · · τi1z)α‖g‖ 0

Cα(Π+,z)
≤

≤ ηq
1z

α‖g‖ 0
Cα(Π+,z)

. (3.9)

Taking into account (3.8), (3.9), and (3.6) for q > q0, we get

∣

∣(Λqg)(x, z)
∣

∣ =
∣

∣

∣

∑

i1,...,iq

Ii1···iq (x, z)
∣

∣ ≤
(

∑

i1,...,iq0

1
)q0

ηq0
1 ×

×
[

3
∑

i=2

(ηi + δ)τα
i

]q−q0

zα‖g‖ 0
Cα(Π+,z)

≤ c1βqzα‖g‖ 0
Cα(Π+,z)

, (3.10)

while for 1 ≤ q ≤ q0
∣

∣(Λqg)(x, z)
∣

∣ ≤ c2zα‖g‖ 0
Cα(Π+,z)

, (3.11)

where c1 = ηq0
1 β−q0

(

∑

i1,...,iq0
1
)q0

, c2 = ηq
1

(

∑

i1,...,iq
1
)

.

From (3.10) and (3.11) we finally find

∣

∣(T−1g)(x, z)
∣

∣ ≤
∣

∣g(x, z)
∣

∣ +
q0

∑

q=1

∣

∣(Λqg)(x, z)
∣

∣+
∞
∑

q=q0+1

∣

∣(Λqg)(x, z)
∣

∣≤

≤
(

1 + c2q0 + c1βq0+1(1− β)−1)zα‖g‖ 0
Cα(Π+,z)

= Czα‖g‖ 0
Cα(Π+,z)

,

where C ≡ 1+ c2q0 + c1βq0+1(1−β)−1. This implies that the operator T−1

is continuous in the space
0
Cα(Π+,A) and estimate (3.3) is valid. Thus the

unique solvability of equation (2.16) on Π+,A is proved for any A > 0.
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The unique solvability of this equation on the whole Π+ in the class
0
Cα(Π+) follows from

Lemma 3.2. If the equation

(Tϕ1)(x, z) = g(x, z), (x, z) ∈ Π+, (3.12)

is uniquely solvable on Π+,A for any A > 0, then equation (3.12) is uniquely
solvable on the whole Π+.

Proof. Indeed, let ϕ1,n(x, z) be that unique solution of equation (3.12)
on Π+,n whose existence has been proved above. Owing to the above-
established uniqueness of the solution, we have ϕ1,n(x, z) = ϕ1,m(x, z) if
(x, z) ∈ Π+,n and m > n. Then it is obvious that ϕ1(x, z) = ϕ1,n(x, z) is
the unique solution of equation (3.12) for (x, z) ∈ Π+,n.

Finally, by Lemmas 3.1 and 3.2, the lemma below is valid.

Lemma 3.3. If α > ρ0, then equation (2.16) is uniquely solvable in the

space
0
Cα(Π+) for any g ∈

0
Cα(Π+).

Since problem (1.6), (1.7) in Conditions I–III in the class
0
Cl

α(D) has been

equivalently reduced to (2.16) in
0
Cα(Π+), from Lemmas 3.1–3.3 we have

Theorem 3.1. If α > ρ0, then the boundary value problem (1.6), (1.7)

is uniquely solvable in the class
0
Cl

α(D).

Consider now the case where coefficients of the problem (1.6), (1.7) are
constant, i.e., Mi ≡ const, Ni ≡ const, Qi ≡ const, i = 1, 2, 3. It is evident
that in this case Condition I is fulfilled automatically. As for Conditions II
and III, they can respectively be replaced by relatively weaker conditions:

Condition II′. ∆0 6= 0.
Condition III′. M3 6= 0.
By developing Bochner’s method (see, e.g., [11]) in multidimensional do-

mains, we investigate the functional equation (2.16) in the classes
0
Cα(Π+)

and
0
Cα,β(Π+).

Let Z ≡ {σ0, σ1, . . . , σi, . . . } be a set of all numbers representable in the
form

∑3
k=2 nk log τk, where nk are arbitrary integers, and σ0 = 0, σi 6= σj ,
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for i 6= j. Denote by C a set of all complex numbers. Let us consider the
entire function ∆(s), s ∈ C, corresponding to the operator T3 from (3.1):

∆(s) =
3

∑

p=1

˜Gpes log τp , ˜G1 ≡ 1,

˜Gp ≡ −Gp, p = 2, 3, τ1 = 1, s ∈ C.

(3.13)

Obviously, ∆(s) 6≡ 0, s ∈ C, since ˜G1 ≡ 1. Denote by H a set of real parts
of all zeros of the entire function ∆(s), s ∈ C. The set H is either finite or
closed countably-bounded [10].

Since the set H is finite or countably-bounded, the complement H on the
real axis consists of a finite or a countable set of intervals two of which are
half-lines. Let H0 = (−∞, b0) and H1 = (a,∞) be respectively the left and
the right half-line, and let Hi, i = 2, 3, . . . , be the rest of the intervals.

It is shown in [11] and [12] that the analytic almost-periodic function
1

∆(s) decomposes in the strip Πi ≡ {s : Re s ∈ Hi}, i ≥ 0, and takes the
form of an absolutely convergent series

1
∆(s)

=
∞
∑

j=0

γijeσjs, σj ∈ Z, s ∈ Πi, (3.14)

with uniquely determined coefficients γij , j = 0, 1, . . . .
On acount of (3.13) and (3.14) it can be easily seen that for Re s ∈ Hi0 ,

i0 ≥ 0, we have the equality

∞
∑

q=0

3
∑

p=1

˜Gpγi0qe(log τp+σq)s =
∞
∑

ν=0

(
∑

(q,p)∈Iν

˜Gpγi0q

)

eσνs = 1, (3.15)

where Iν is the set of all elements (q, p) for which log τp + σq = σν .
From (3.15), because of the absolute convergence of the series (3.14) in

Πi0 and the uniqueness theorem for analytic almost-periodic functions, we
get

∑

(q,p)∈Iν

˜Gpγi0q =

{

1, for ν = 0,
0, for ν ≥ 1.

(3.16)

When investigating the functional equation (2.16) by Bochner’s method,
we assume that the displacement operators defined by equality (2.17) are
permutational, i.e., J2(J3)(x, z) = J3(J2)(x, z), (x, z) ∈ Π+, which is equiv-
alent to the fulfillment of the equality

δ3

1− τ3
− δ2

1− τ2
= 0. (3.17)
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Below equality (3.17) is assumed to be fulfilled.

Lemma 3.4. The operator T defined by formula (3.1) is invertible in the

space
0
Cα(Π+) if α > sup H.

Proof. Consider the operator ˜Ti0 acting in the space
0
Cα(Π+) by the formula

(

˜Ti0ϕ
)

(x, z) =
∞
∑

q=0

γi0q
(

Tnq
2 Tmq

3 ϕ
)

(x, z), i0 = 1, (3.18)

where (Tpϕ)(x, z) ≡ ϕ(x + δpz, τpz), (x, z) ∈ Π+, ϕ ∈
0
Cα(Π+), δ1 = 0,

σq = nq log τ2 + mq log τ3, p = 1, 2, 3.
The operator ˜Ti0 acting by formula (3.18) is defined correctly according

to

Lemma 3.5. The operator Tnq
2 Tmq

3 appearing in formula (3.18) and cor-
responding to the decomposition σq = nq log τ2 + mq log τ3 is correctly de-
fined, i.e., if for σq another decomposition σq = n′q log τ2 + m′

q log τ3 takes

place, then the equality Tnq
2 Tmq

3 = T
n′q
2 T

m′
q

3 is valid.

Proof. Simple calculations show that

(

Tnq
2 Tmq

3 ϕ
)

(x, z) = ϕ
[

x +
(

δ2
1− τnq

2

1− τ2
τmq
3 + δ3

1− τmq
3

1− τ3

)

z, τnq
2 τmq

3 z
]

,

which, because of (3.17), takes the form

(

Tnq
2 Tmq

3 ϕ
)

(x, z) = ϕ
[

x +
δ2

1− τ2
(1− eσq )z, eσqz

]

, (x, z) ∈ Π+. (3.19)

Equality (3.19) implies that Lemma 3.5 is valid.

By the assumption

c3 ≡
∞
∑

q=0

|γ1q|eσqα < ∞, where α > sup H. (3.20)

Let Pz(ϕ) ≡ ‖ϕ‖ 0
Cα(Π+,z)

, ϕ̃(x, z) ≡ ϕ
[

x + δ2
1−τ2

(1− eσq )z, eσqz
]

, (x, z) ∈

Π+. Then

Pz(ϕ̃) = ‖ϕ̃‖ 0
Cα(Π+,z)

≤ sup
x∈R,

0<τ1≤z0z

|τ−α
1 eσqαϕ(x, τ1)| ≤ eσqαPz0z(ϕ), (3.21)

where z0 ≡ e
max

q
σq

= 1 because max
q

σq = −max{0, log τ2, log τ3} = 0.
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Let us now prove that the operator ˜T1 is continuous. By virtue of (3.18)
and (3.21) we have Pz( ˜T1ϕ) ≤

∑∞
q=0 |γ1q|Pz(ϕ̃) ≤

∑∞
q=0 |γ1q|eσqαPz(ϕ),

whence, taking into account (3.20), we find Pz( ˜T1ϕ) ≤ c3Pz(ϕ), which
proves that the operator ˜T1 is continuous.

Let us prove now that T ˜T1 = I. According to the definition of the
operator T , formulas (3.1), (3.18), and (3.16), we have

(

(T ˜T1)ϕ
)

(x, z) =
3

∑

p=1

˜Gp
(

Tp( ˜T1ϕ)
)

(x, z) =
∞
∑

q=0

3
∑

p=1

˜Gpγ1q ×

×ϕ
{

x +
[ δ2

1− τ2
(1− eσq ) + δpeσq

]

z, τpeσqz
}

=
∞
∑

ν=0

(
∑

(q,p)∈Iν

˜Gpγ1q

)

×

×ϕ
{

x +
[ δ2

1− τ2
(τp − eσν ) + δpeσq

]

τ−1
p z, eσν z

}

=

= ϕ
{

x +
[ δ2

1− τ2
(τp − 1) + δp

]

τ−1
p z, z

}

= ϕ(x, z),

since

δ2

1− τ2
(τp − 1) + δp = 0 (3.22)

for condition (3.17) for any p = 1, 2, 3.
Similarly, taking into account (3.1), (3.16), (3.18), and (3.22), we can

prove that

(

( ˜T1T )ϕ
)

(x, z) =
∞
∑

q=0

γ1q
(

Tnq
2 Tmq

3 (Tϕ)
)

(x, z) =

=
∞
∑

q=0

γ1q

3
∑

p=1

˜Gp
(

Tnq
2 Tmq

3 (Tpϕ)
)

(x, z) =

=
3

∑

p=1

∞
∑

q=0

γ1q ˜Gpϕ
{

x +
[ δ2

1− τ2
(1− eσq )τp + δp

]

z, τpeσqz
}

=

=
∞
∑

ν=0

(
∑

(q,p)∈Iν

γ1q ˜Gp

)

ϕ
{

x +
[ δ2

1− τ2
(τp − eσν ) + δp

]

z, τpeσν z
}

=

= ϕ
{

x +
[ δ2

1− τ2
(τp − 1) + δp

]

z, z
}

= ϕ(x, z).

Thus Lemma 3.4 is proved completely.
Let now Iα,β ≡ [min(α, β), max(α, β)]. It is obvious that if H ∩Iα,β = ∅,

then the segment Iα,β is wholly contained in the strip Πi0 , i0 ≥ 0.
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Lemma 3.6. The operator T given by formula (3.1) is invertible in the

space
0
Cα,β(Π+) if H ∩ Iα,β = ∅ and T−1 = ˜Ti0 [12].

Proof. Since the function 1
∆(s) in the strip Πi0 , i0 ≥ 0, decomposes into the

absolutely convergent series (3.14), we have

c4 ≡
∞
∑

q=0

|γi0q|eσqα < ∞, c5 ≡
∞
∑

q=0

|γi0q|eσqβ < ∞. (3.23)

By virtue of ϕ ∈
0
Cα,β(Π+) we have the inequalities

sup
x∈R,

0<τ≤1

|τ−αϕ(x, τ)| < ∞, sup
x∈R,
τ>1

|τ−βϕ(x, τ)| < ∞.

Consider the case α < β and assume that

ϕ∗(x, z) ≡ ϕ
[

x +
δ2

1− τ2
(1− eσ)z, eσz,

]

, (x, z) ∈ Π+.

I. Let σ ≥ 0. Obviously, ϕ∗ ∈
0
Cα,β(Π+), and we have the estimates

sup
x∈R,

0<τ≤1

|τ−αϕ∗(x, τ)| ≤ sup
x∈R,

0<τ1≤eσ

|τ−α
1 eσαϕ(x, τ1)| ≤

≤ eσα max
{

sup
x∈R,

0<τ1≤1

|τ−α
1 ϕ(x, τ1)|, sup

x∈R,
1<τ1≤eσ

|τ−β
1 ϕ(x, τ1)τ

β−α
1 |

}

≤

≤ max
{

eσα sup
x∈R,

0<τ1≤1

|τ−α
1 ϕ(x, τ1)|, eσβ sup

x∈R,
1<τ1≤eσ

|τ−β
1 ϕ(x, τ1)|

}

≤

≤ eσβ‖ϕ‖ 0
Cα,β(Π+)

,

sup
x∈R,
τ>1

|τ−βϕ∗(x, τ)| ≤ sup
x∈R,

τ1>eσ

|τ−β
1 eσβϕ(x, τ1)| ≤ eσβ‖ϕ‖ 0

Cα,β(Π+)
.

II. In the case σ < 0 we have

sup
x∈R,

0<τ≤1

|τ−αϕ∗(x, τ)| ≤ sup
x∈R,

0<τ1≤eσ

|τ−α
1 eσαϕ(x, τ1)| ≤ eσα‖ϕ‖ 0

Cα,β(Π+)
,

sup
x∈R,
τ>1

|τ−βϕ∗(x, τ)| ≤ sup
x∈R,

τ1>eσ

|τ−β
1 eσβϕ(x, τ1)| ≤

≤ max
{

sup
x∈R,

eσ<τ1≤1

|τ−α
1 τα−β

1 eσβϕ(x, τ1)|, sup
x∈R,
τ1>1

|τ−β
1 eσβϕ(x, τ1)|

}

≤
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≤ max
{

eσα sup
x∈R,

eσ<τ1≤1

|τ−α
1 ϕ(x, τ1)|, eσβ sup

x∈R,
τ1>1

|τ−β
1 ϕ(x, τ1)|

}

≤

≤ eσα‖ϕ‖ 0
Cα,β(Π+)

.

Hence we obtain ‖ϕ∗‖ 0
Cα,β(Π+)

≤ max{eσα, eσβ}‖ϕ‖ 0
Cα,β(Π+)

, whence it

follows that the operator ˜Ti0 is continuous. Indeed, by virtue of (3.18),
(3.23) we have

‖Ti0ϕ‖ 0
Cα,β(Π+)

≤
∞
∑

q=0

|γi0q| ‖ϕ∗‖ 0
Cα,β(Π+)

≤

≤
(

∑

σq<0

|γi0q|eσqα +
∑

σq≥0

|γi0q|eσqβ
)

‖ϕ‖ 0
Cα,β(Π+)

≤ c6‖ϕ‖ 0
Cα,β(Π+)

,

where c6 ≡ c4 + c5.
As in Lemma 3.4 we prove that T ˜Ti0 = ˜Ti0T = I, and thus T−1 = ˜Ti0 .
Analogously, we consider the case α ≥ β, which proves Lemma 3.6 com-

pletely.

Since problem (1.6), (1.7) in Conditions I, II in the class
0
Cl

α(D) (
0
Cl

α,β(D))
has been reduced by equivalent transforms to equation (2.16) in the class
0
Cα(Π+) (

0
Cα,β(Π+)), from Lemmas 3.4 and 3.6 we have

Theorem 3.2. The boundary value problem (1.6), (1.7) is uniquely solv-

able in
0
Cl

α(D) for α > sup H and in
0
Cl

α,β(D) for Iα,β ∩H = ∅.
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