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ON CONTINUOUS EXTENSIONS


LAWRENCE NARICI AND EDWARD BECKENSTEIN


Abstract. We consider various possibilities concerning the continu-
ous extension of continuous functions taking values in an ultrametric
space. In Section 1 we consider Tietze-type extension theorems con-
cerning continuous extendibility of continuous functions from compact
and closed subsets to the whole space. In Sections 2 and 3 we consider
extending “separated” continuous functions in such a way that cer-
tain continuous extensions remain separated. Functions taking values
in a complete ultravalued field are dealt with in Section 2, and the
real and complex cases in Section 3.


1. A Tietze-Type Extension Theorem


An ultranormal topological space T is a Hausdorff space in which disjoint
closed subsets may be separated by clopen sets. As shown by R. Ellis ([1],
cf. [2], Th. 8.27, p. 258) the following version of the Tietze extension
theorem obtains in the nonarchimedean setting:


(Bounded) continuous functions x mapping a closed subset
K of the ultranormal space T into a complete separable
metric space have (bounded) continuous extensions to all
of T .


We prove a similar result below—we eliminate the separability require-
ment on the domain T but consider an ultrametric space Y as the codomain.
Thus, the result below is not more general, just different. For the sake of
the proof we define a clopen n-partition of a subset M of T with respect to
x : M → Y to be a finite pairwise disjoint collection of clopen subsets Vi of
T such that M ⊂


⋃n
i=1 Vi and for all s, t ∈ Vi∩M, d (x (s) , x (t)) ≤ 1/n. As


in many of the classical constructions of functions with certain properties
(continuous but nowhere differentiable, for example) we create a sequence
of functions each of which almost has the desired property, whose uniform
limit does.
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Theorem 1.1. Let y be a point of the complete ultrametric space (Y, d).
In each part below y could belong to K.


(a) A continuous map x of a compact subset K of the ultraregular space
T into Y may be continuously extended to x̄ defined on all of T with x̄ (T ) =
x (K) ∪ {y}.


(b) A continuous map x of a closed subset K of the ultranormal space
T into Y with relatively compact range may be continuously extended to x̄
defined on all of T with x̄ (T ) ⊂ [cl x (K)]∪{y} where “cl” denotes topological
closure.


Proof. (a) Let C (p, r) denote the closed ball of radius r > 0 about p ∈ Y .
For each t ∈ K, let B(t, 1/n) = {s ∈ K : d (x(s), x(t)) ≤ 1/n} =
x−1 (C (x (t) , 1/n)). Since K is compact, there exist t1, . . . , tn1 ∈ K such
that K =


⋃n1
i=1 B (ti, 1). In the standard way, we may rewrite the relatively


clopen subsets of K, B (ti, 1), 1 ≤ i ≤ n1, to get a pairwise disjoint rela-
tively clopen cover {Ai} of K with the property that, for any 1 ≤ i ≤ n1


and s, t ∈ Ai, d (x (s) , x (t)) < 1. We continue to assume that the Ai are
nonempty and that ti ∈ Ai for 1 ≤ i ≤ n1; otherwise, we would reindex the
sets and choose some new points ti as needed. Since T is ultraregular and
K is compact, we may choose pairwise disjoint clopen subsets Ui of T such
that Ui ∩K = Ai for each i = 1, 2, . . . , n1. Evidently the family {Ui} is a
clopen 1-partition of K with respect to x. We define the continuous “step”
function


x1 (t) =
{


x (ti) , t ∈ Ui, 1 ≤ i ≤ n1,
y, t 6∈


⋃n1
i=1 Ui.


For any t ∈ K, for some 1 ≤ i ≤ n1, t ∈ Ui and x1 (t) = x (ti) ; hence


d (x1 (t) , x (t)) ≤ max [d (x1 (t) , x (ti)) , d (x (ti) , x (t))]
= max [d (x (ti) , x (ti)) , d (x (ti) , x (t))]
= d (x (ti) , x (t))
≤ 1.


It follows that dK (x1, x) = sup{d(x1 (t) , x (t)) : t ∈ K} ≤ 1. For n = 2,
we decompose each Ai into a clopen 2-partition with respect to x. On A1,
for example, we get nonempty disjoint clopen subsets B1, . . . , Br1 of T such
that each is a subset of U1 and (


⋃r1
i=1 Bi) ∩K = A1. Choose si ∈ Bi ∩ A1


for 1 ≤ i ≤ r1 and define


x2 (t) =











x (si) , t ∈ Bi, 1 ≤ i ≤ r1,
x1 (t) = x(t1), t 6∈ U1 −


⋃r1
i=1 Bi,


y, t 6∈
⋃n1


i=1 Ui


and define x2 in a similar way on the rest of the Ai. In so doing, we create
a continuous step function x2 : T → Y such that dK (x2, x) ≤ 1/2 and
dT (x1, x2) ≤ 1. We continue in this fashion to construct a sequence (xn)
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of functions continuous on T such that, for every n, dK (xn, x) ≤ 1/n and
dT (xn, xn−1) ≤ 1/ (n− 1). We denote the pointwise limit of (xn) as x̄. As
xn → x̄ uniformly, it follows that x̄ is continuous; clearly x̄ = x on K.


(b) As cl x (K) is compact, there exist y1, y2, . . . , yn1 ∈ cl x (K) such
that the C (yi, 1) cover cl x (K). Consequently K =


⋃n1
i=1 x−1 [C (yi, 1)].


Since T is ultranormal there are pairwise disjoint clopen sets Ui such that
x−1 [C (yi, 1)] ⊂ U (i, 1) for 1 ≤ i ≤ n1. Choose ti ∈ x−1 [C (yi, 1)] for
1 ≤ i ≤ n1 and define x1 as was done in (a) and continue the process to
obtain the sequence (xn) and the limit x̄.


Corollary 1.2. Let T, y and Y be as in the theorem. (a) Let x and w
be continuous functions defined on the disjoint compact subsets K and L
of T taking values in Y . For any disjoint clopen supersets U and V of
K and L, respectively, x and w can be continuously extended to x̄ and w̄,
respectively, defined on T , with x̄ (T ) ⊂ x (K) ∪ {y} , w̄ (T ) ⊂ w (L) ∪ {y}
and x (t) = w (t) = y on C(U ∪ V ).


(b) If x and w are continuous functions with relatively compact range
defined on the disjoint closed subsets K and L of the ultranormal space T
taking values in Y , then x and w can be continuously extended to x̄ and w̄,
respectively, defined on T , with x̄ (T ) ⊂ cl x (K)∪{y} , w̄ (T ) ⊂ clw (L)∪{y}
and x (t) = w (t) = y on C(U ∪ V ).


Proof. (a) By the theorem, x and w may be continuously extended to U
and V , respectively. It only remains to define those extensions to assume
the value y on C(U ∪ V ) to obtain the desired extensions to all of T . The
result of (b) follows directly from part (b) of the theorem.


For any topological space T and any semigroup G we say that two func-
tions x, y : T → G are strongly separated if cl coz x ∩ cl coz y = ∅, and
separated if coz x∩ coz y = ∅, where coz x denotes the cozero set of x. Note
that x and y are separated if and only xy = 0. As has been developed
in a number of papers ([3]–[8]) there is ample reason for interest in addi-
tive maps H : C (T ) → C (S) between spaces of scalar-valued continuous
functions C (T ) and C (S) which are [weakly] separating in the sense that
[strongly] separated functions x and y have separated images Hx and Hy.
For that reason it is of importance to know when continuous functions which
are separated or weakly separated on a subset have continuous extensions
which remain separated, the subject of the corollary below; the point y of
the theorem is taken to be the zero element of the semigroup.


Corollary 1.3. Let T be ultraregular and let Y be a semigroup on which
a complete ultrametric is defined (not necessarily a topological semigroup).


(a) If let x and w are strongly separated continuous functions defined on
a compact subset K of T then there are separated continuous extensions x̄
and w̄ defined on T such that x̄w̄ = 0.
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(b) Two strongly separated continuous functions x and w with relatively
compact range defined on a closed subset K of the ultranormal space T have
continuous extensions x̄ and w̄ defined on T such that x̄w̄ = 0.


2. The Case of Complete Valued Fields


Let T be ultraregular and let C(T, F ) denote the space of continu-
ous functions taking values in the complete, nonarchimedean nontrivially
valued field F . We show in Theorem 2.2 that pairwise strongly sepa-
rated functions x1, x2, . . . , xn ∈ C(K,F ) have pairwise separated extensions
x̄1, x̄2, . . . , x̄n ∈ C(T, F ) for two types of subset K.


Lemma 2.1. Let K be a closed subset of the compact ultraregular space T
and let x1, x2, . . . , xn be elements of C(T, F ) which are pairwise separated on
K. Then there exist pairwise separated elements x̄1, x̄2, . . . , x̄n in C(T, F )
such that x̄i | K = xi | K for i = 1, . . . , n. (If the xi were only defined on
K then they could be continuously extended to T by Corollary 1.3.)


Proof. Assume that x, y ∈ C(T, F ) are separated on K. Let M bound
x and y. Let G(x, i) = x−1 {a ∈ F : |a| ≤ M/i} for each positive integer
i, with G(y, i) defined analogously. Let U(x, i) = G(x, i) − G(x, i + 1)
and let U(y, i) be defined similarly. Let C(x, i) and C(y, i) denote the
intersections of U(x, i) and U(y, i), respectively, with K. Note that the
unions of C(x, i) and C(y, i), i ∈ N , yield coz x and coz y, respectively.
Since x and y are separated on K, C(x, i) and C(y, j) are disjoint for all
positive integers i and j. Let G(i) denote the clopen set G(x, i)∩G(y, i) for
each i. Since x and y are separated on K, C(x,m) and C(y, m) are disjoint
subsets of G(i) for all m ≥ i; C(x,m) and C(y,m) are subsets of CG(i), the
complement of G(i), for all m < i. Thus there exist pairwise disjoint clopen
sets V (x, i) and V (y, i) such that C(x, i) ⊂ V (x, i) ⊂ U(x, i) and C(y, i) ⊂
V (y, i) ⊂ U(y, i). Let k(x, i) and k(y, i) denote the characteristic functions
of V (x, i) and V (y, i), respectively. The functions xm =


∑m
i=1 k(x, i)x and


ym =
∑m


i=1 k(y, i)y are uniform Cauchy sequences on T . Call their limits x̄
and ȳ in C(T, F ), respectively. Since xm and ym are separated for each m,
x̄ and ȳ are separated as well; the restrictions of x̄ and ȳ to K are just x and
y, as is easy to verify. The method for extending this to a finite number of
functions—rather than just two—is a simple modification of this idea.


In the next result we drop the assumption of compactness and get an
extension theorem.


Theorem 2.2. For compact K and ultraregular T [or closed K and
ultranormal T ] and pairwise strongly separated functions x1, x2, . . . , xn ∈
C(K,F ) [with relatively compact range], there exist pairwise separated ex-
tensions x̄1, x̄2, . . . , x̄n ∈ C(T, F ) of x1, x2, . . . , xn.
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Proof. It suffices to consider two separated functions x and y in C(K, F ).
Let β0T denote the Banaschewski compactification of T , and continuously
extend x and y to βx and βy in C(β0T, F ) by Corollary 1.3; then replace βx
and βy by functions x̄ and ȳ as described in the preceding lemma. Finally,
restrict x̄ and ȳ to T .


3. The Real and Complex Case


Let K be a compact subset of the Tihonov space T , and let C(K, F ) and
C(T, F ) denote the spaces of F -valued functions on K and T , where F = R
or C. Let H be a finite subset of C(K,F ) which is pairwise separated in
the sense that xy = 0 for each x and y in H. We show in Theorem 3.3 that
each x in H has an extension x̄ in C(T, F ) such that the set H̄ of exten-
sions is pairwise separated. We begin with two lemmas about nonnegative
functions.


Lemma 3.1. If the functions in H are nonnegative then each x in H has
an extension x̄ ∈ C(T,R) such that the set H̄ of such extensions is pairwise
separated.


Proof. We proceed by induction. We begin by considering the case in which
H has two elements x and y. Let βv denote the continuous extension of
the difference v = x − y to the Stone-Cech compactification βT of T . Let
βv+ and βv− denote the positive and negative parts of βv, respectively,
so that βv = βv+ − βv−. Since x and y are nonnegative and xy = 0,
βv+ and βv− are continuous extensions of x and y, respectively; clearly
(βv+)(βv−) = 0. It only remains to restrict βv+ and βv− to T to complete
the argument in this case. Now suppose that H has n + 1 ≥ 3 elements
and choose x1, x2, . . . , xn from H. By the induction hypothesis, there exist
continuous, separated extensions w1, w2, . . . , wn of x1, x2, . . . , xn to T . We
now repeatedly pair xn+1 with each of the wi, i = 1, . . . , n, to get separated
continuous extensions (by the first part of the argument) zi of xi and vi of
xn+1 for i = 1, . . . , n. Now let x̄i = inf(wi, zi) for i = 1, . . . , n and let x̄n+1 =
inf {v1, . . . , vn}. These are the desired extensions of x1, x2, . . . , xn.


In the next result we assume that each x is separated from each y but
do not suppose that the x’s are a pairwise separated set, nor are the y’s.


Lemma 3.2. Let x1, x2, . . . , xn and y1, y2, . . . , yn denote families of non-
negative functions in C(K) such that xi is separated from yj for all i and
j. Then there exist continuous extensions x̄i and ȳi, i = 1, . . . , n, of these
functions to T with the same property.
Proof. By Lemma 3.1 there exist separated extensions x(i, j) and y(i, j) of
xi and yj , respectively, for each i each j. The functions x̄i = inf{x(i, j) :
1 ≤ j ≤ n} and ȳj = inf {y(i, j) : 1 ≤ i ≤ n} are separated on all of T for
all i and j.
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Theorem 3.3. With F = R or C, and H as before Lemma 3.1, then
each x in H has an extension x̄ in C(T, F ) such that the set H̄ of extensions
is pairwise separated.


Proof. Let F = R and let x and y be separated members of C(K,R). The
positive and negative parts x+, x−, y+ and y− of x and y, respectively, are
pairwise separated. Since they are nonnegative, they can be extended to
a pairwise separated collection x+, x−, y+ and y− on T as in Lemma 3.1.
The desired extensions are now given by x̄ = x+ − x− and y = y+ − y−. It
is straightforward to extend this to the case of more than two functions. To
handle the case where the field is C, let x and y be separated continuous
functions on K. Each of the functions (Re x)+, (Re x)−, (Im x)+, (Im x)− is
separated from each of the functions (Re y)+, (Re y)−, (Im y)+, (Im y)−on K
and Lemma 3.2 can be applied to these functions. The separated extensions
to T of those functions can be used to construct separated extensions of x
and y.
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