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ON OSCILLATION OF SOLUTIONS OF SECOND-ORDER
SYSTEMS OF DEVIATED DIFFERENTIAL EQUATIONS

N. PARTSVANIA

Abstract. Sufficient conditions are found for the oscillation of proper
solutions of the system of differential equations

u′1(t) = f1
(

t, u1(τ1(t)), . . . , u1(τm(t)), u2(σ1(t)), . . . , u2(σm(t))
)

,

u′2(t) = f2
(

t, u1(τ1(t)), . . . , u1(τm(t)), u2(σ1(t)), . . . , u2(σm(t))
)

,

where fi : R+ × R2m → R (i = 1, 2) satisfy the local Carathéodory
conditions and σi, τi : R+ → R (i = 1, . . . , m) are continuous func-
tions such that σi(t) ≤ t for t ∈ R+, lim

t→+∞
σi(t) = +∞, lim

t→+∞
τi(t) =

+∞ (i = 1, . . . , m).

Introduction

The problem of oscillation of solutions of second-order ordinary diffe-
rential equations has been studied well enough. A number of papers were
devoted to an analogous problem for deviated differential equations and
systems of ordinary differential equations (see [2]–[6]). As to systems of de-
viated differential equations, for them the problem of oscillation of solutions
has not been studied enough. In the present paper, we give the results for
systems of differential equations, which generalize some well-known state-
ments for second-order differential equations.

Consider the system of differential equations

u′1(t) = f1
(

t, u1(τ1(t)), . . . , u1(τm(t)), u2(σ1(t)), . . . , u2(σm(t))
)

,

u′2(t) = f2
(

t, u1(τ1(t)), . . . , u1(τm(t)), u2(σ1(t)), . . . , u2(σm(t))
)

,
(0.1)

where fi : R+ × R2m → R (i = 1, 2) satisfy the local Carathéodory con-
ditions and σi, τi : R+ → R (i = 1, . . . , m) are continuous functions such
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that

σi(t) ≤ t for t ∈ R+, lim
t→+∞

σi(t) = +∞,

lim
t→+∞

τi(t) = +∞(i = 1, . . . , m).
(0.2)

Definition 0.1. Let t0 ∈ R+. A continuous vector-function (u1, u2)
defined on [a0, +∞[ (where a0 = min [ min { inf

t≥t0
τi(t) : i = 1, . . . , m},

min{ inf
t≥t0

σi(t) : i = 1, . . . , m}]) is said to be a proper solution of system

(0.1) in [t0,+∞[ if it is absolutely continuous on each finite segment con-
tained in [t0, +∞[ , satisfies (0.1) almost everywhere in [t0, +∞[ , and

sup
{

|u1(s)|+ |u2(s)| : s ≥ t
}

> 0 for t ∈ [t0,+∞[ .

Definition 0.2. A proper solution (u1, u2) of system (0.1) is said to be
weakly oscillatory if either u1 or u2 has a sequence of zeros tending to infinity.
This solution is said to be oscillatory if both u1 and u2 have sequences of
zeros tending to infinity. If there exists t0 ∈ R+ such that u1(t)u2(t) 6= 0
for t ∈ [t0, +∞[ , then (u1, u2) is said to be nonoscillatory.

Throughout the paper the following notation will be used:

τ∗(t) = min
{

t, τi(t) : i = 1, . . . , m
}

, σ∗(t) = min
{

σi(t) : i = 1, . . . ,
}

,

σ̃(t) = inf
{

σ∗(s) : s ≥ t
}

, σ∗(t) = max
{

σi(t) : i = 1, . . . , m
}

.

§ 1. Auxiliary Statements

In this section, we consider the system of differential inequalities

u′1(t) sign u2(t) ≥
m

∑

i=1

pi(t)
∣

∣u2(σi(t))
∣

∣,

u′2(t) sign u1(t) ≤ −
m

∑

i=1

qi(t)
∣

∣u1(τi(t))
∣

∣,

(1.1)

where pi, qi ∈ Lloc(R+; R+) (i = 1, . . . , m) and σi, τi : R+ → R (i =
1, . . . , m) are continuous functions satisfying (0.2).

Lemma 1.1. Let (u1, u2) be a nonoscillatory solution of (1.1) and

h(+∞) = +∞, (1.2)

where

h(t) =

t
∫

0

p̃(s)ds, p̃(t) =
m

∑

i=1

pi(t). (1.3)
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Then there exists t∗ ∈ R+ such that

u1(t)u2(t) > 0 for t ∈ [t∗,+∞[ . (1.4)

If, moreover,

+∞
∫

0

q̃(t)h(t)dt = +∞, (1.5)

where H is defined by (1.3) and

q̃(t) =
m

∑

i=1

qi(t), (1.6)

then

lim
t→+∞

|u1(t)| = +∞. (1.7)

Proof. Suppose that (u1, u2) does not satisfy (1.4). Then there exists t0 ∈
R+ such that

u1(t)u2(t) < 0 for t ∈ [t0, +∞[ . (1.8)

By (1.8) we have from (1.1)

|u1(t)|′ ≤ −
m

∑

i=1

pi(t)
∣

∣u2(σi(t))
∣

∣, (1.9)

|u2(t)|′ ≥
m

∑

i=1

qi(t)
∣

∣u1(τi(t))
∣

∣ for t ∈ [t0, +∞[ . (1.10)

Thus by (1.10) from (1.9) we have

|u1(t)| ≤ |u1(t1)| − c

t
∫

t1

p̃(s)ds for t ∈ [t1, +∞[ ,

where t1 ∈ ]t0, +∞[ is a sufficiently large number and

c = min
{

inf
t∈[t1,+∞[

∣

∣u2(σi(t))
∣

∣ : i = 1, . . . , m
}

> 0.

By (1.2) the latter inequality implies |u1(t)| → −∞ as t → +∞. The
contradiction obtained proves (1.4).
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Now prove that (1.5) implies (1.7). Since (1.4) is satisfied, from (1.1) we
find

|u1(t)|′ ≥
m

∑

i=1

pi(t)
∣

∣u2(σi(t))
∣

∣,

|u2(t)|′ ≤ −
m

∑

i=1

qi(t)
∣

∣u1(τi(t))
∣

∣ for t ∈ [t∗, +∞[ .

(1.11)

Since |u1(t)| is a nondecreasing function, by virtue of (0.2) there exist
t2 ∈ [t∗, +∞[ and a ∈ ]0,+∞[ such that

∣

∣u1(τi(t))
∣

∣ ≥ a for t ∈ [t2, +∞[ (i = 1, . . . , m),

whence by (1.11) we get

|u2(t)|′h(t) ≤ −aq̃(t)h(t) for t ∈ [t2, +∞[ .

Integrating from t2 to t, we obtain

|u2(t)|h(t)− |u2(t2)|h(t2) + a

t
∫

t2

q̃(s)h(s)ds ≤

≤
t

∫

t2

p̃(s)|u2(s)|ds.

Taking into account (0.2) and the fact that |u2(t)| is a decreasing function,
from the latter inequality we have

t
∫

t2

m
∑

i=1

pi(s)
∣

∣u2(σi(s))
∣

∣ds ≥
t

∫

t2

p̃(s)|u2(s)|ds ≥

≥ a

t
∫

t2

q̃(s)h(s)ds− |u2(t2)|h(t2). (1.12)

From (1.11) we find

|u1(t)| ≥ |u1(t2)|+
t

∫

t2

m
∑

i=1

pi(s)
∣

∣u2(σi(s))
∣

∣ds for t ∈ [t2, +∞[ ,

which by virtue of (1.5), (1.12) implies that (1.7) is valid.
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Lemma 1.2. If

+∞
∫

t

p̃(s)ds > 0,

+∞
∫

t

q̃(s)ds > 0 for t ∈ R+, (1.13)

where p̃ and q̃ are defined by (1.3) and (1.6), respectively, then every weakly
oscillatory solution of (1.1) is oscillatory.

Proof. Let (u1, u2) be a weakly oscillatory solution of (1.1), and suppose
that this solution is not oscillatory. Without loss of generality it can be
assumed that there exists an increasing sequence of points {tk} tending to
+∞ such that

u1(tk) = 0 (k = 1, 2, . . . ),

u2(σi(t)) > 0 for t ∈ [t1, +∞[ (i = 1, . . . ,m).
(1.14)

On account of (1.13), (1.14), there is k ∈ N such that

tk
∫

t1

m
∑

i=1

pi(s)u2(σi(s))ds > 0.

On the other hand, by (1.14) from (1.1) we have

0 ≥
tk

∫

t1

m
∑

i=1

pi(s)u2(σi(s))ds > 0.

The contradiction obtained proves the validity of the lemma.

§ 2. Oscillatory Solutions

Theorem 2.1. Let

f1(t, x1, . . . , xm, y1, . . . , ym) sign y1 ≥
m

∑

i=1

pi(t)|yi|,

f2(t, x1, . . . , xm, y1, . . . , ym) sign x1 ≤ −
m

∑

i=1

qi(t)|xi|

for t ∈ R+, x1xi > 0, y1yi > 0 (i = 1, . . . , m),

(2.1)

where pi, qi ∈ Lloc(R+; R+) (i = 1, . . . ,m), and conditions (1.2), (1.5), and

+∞
∫

0

m
∑

i=1

qi(t)h(τi(t))dt = +∞ (2.2)
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be fulfilled. Let, moreover, there exist ε0 > 0 and a nondecreasing function
δ : R+ → R such that δ(t) ≥ σ∗(t), and for any λ ∈ [0, 1[

τ∗(σ̃(t))
∫

0

hε0(δ(s))
m

∑

i=1

pi(s)

+∞
∫

σi(s)

m
∑

i=1

qi(ξ)hλ(τi(ξ))dξds >

> hλ(τ∗(σ̃(t)))hε0(δ(t)) for t ∈ [t0,+∞[ , (2.3)

where t0 ∈ R+ and h is defined by (1.3). Then every proper solution of (0.1)
is oscillatory.

Proof. Let (u1, u2) be a proper solution of (0.1). By virtue of (2.1) it will
be a solution of (1.1) as well. Suppose that this solution is not oscillatory.
By (1.2) and (2.2) it is obvious that all the conditions of Lemma 1.2 are
fulfilled. Thus (u1, u2) is nonoscillatory. Therefore by virtue of condition
(1.5) and Lemma 1.1 one can find t0 ∈ R+ such that

u1(t)u2(t) > 0 for t ∈ [t0, +∞[ , (2.4)

and

lim
t→+∞

|u1(t)| = +∞. (2.5)

By (2.4) we have from (1.1)

|u1(t)|′ ≥
m

∑

i=1

pi(t)
∣

∣u2(σi(t))
∣

∣,

|u2(t)|′ ≤ −
m

∑

i=1

qi(t)
∣

∣u1(τi(t))
∣

∣ for t ∈ [t0, +∞[ .

(2.6)

From these inequalities we get

|u1(t)| ≥
t

∫

t1

m
∑

i=1

pi(s)

+∞
∫

σi(s)

m
∑

i=1

qi(ξ)
∣

∣u1(τi(ξ))
∣

∣dξds (2.7)

for t ∈ [t1, +∞[ ,

where t1 ∈ [t0,+∞[ is a sufficiently large number.
Denote by S the set of all λ ∈ R+ satisfying

|u1(t)|
hλ(t)

→ +∞ as t → +∞. (2.8)
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By (2.5), it is obvious that 0 ∈ S. Let λ0 = sup S. Suppose that λ0 > 1.
By virtue of (2.8) there exists ˜t ∈ [t0, +∞[ such that

∣

∣u1(τi(t))
∣

∣ ≥ h(τi(t)) for t ∈ [˜t, +∞[ (i = 1, . . . , m).

Thus on account of (2.2) we find from (2.6)

|u2(t)| ≤ |u2(˜t)| −
t

∫

t̃

m
∑

i=1

qi(s)h(τi(s))ds → −∞ as t → +∞.

The contradiction obtained proves that λ0 ∈ [0, 1]. Then by (2.3) there
exist λ∗ ∈ [0, λ0] ∩ [0, 1[ and t0 ∈ R+ such that

τ∗(σ̃(t))
∫

0

hε0(δ(s))
m

∑

i=1

pi(s)

+∞
∫

σi(s)

m
∑

i=1

qi(ξ)hλ∗(τi(ξ))dξds >

> hλ∗(τ∗(σ̃(t)))hε0(δ(t)) for t ∈ [t0, +∞[ , (2.9)

and

lim
t→+∞

|u1(t)|
hλ∗(t)

= +∞, lim
t→+∞

|u1(t)|
hλ∗+ε0(t)

= 0. (2.10)

Introduce the notation

ϕ(t) = inf
{

h−λ∗(τ∗(s))|u1(τ∗(s))| : s ≥ t
}

. (2.11)

By (0.2) and (2.10) it is clear that

ϕ(t) ↑ +∞ as t ↑ +∞, (2.12)

lim
t→+∞

ϕ(σ̃(t))h−ε0(δ(t)) = 0. (2.13)

Define the sets Si (i = 1, 2) in the following manner:

t ∈ S1 ⇐⇒ ϕ(σ̃(t))h−ε0(δ(t)) ≤ ϕ(σ̃(s))h−ε0(δ(s))

for s ∈ [t0, t],

t ∈ S2 ⇐⇒ ϕ(σ̃(t)) =
|u1(τ∗(σ̃(t)))|
hλ∗(τ∗(σ̃(t)))

.

It is clear that by (2.12) and (2.13), sup Si = +∞ (i = 1, 2). Show that

sup S1 ∩ S2 = +∞1. (2.14)

1Analogous discussions for nth order equations are given in [4], [5].
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Indeed, if we assume that t2 ∈ S1 and t2 6∈ S2, by (2.11) and (2.12) there
exists t3 > t2 such that

ϕ(σ̃(t3)) =
|u1(τ∗(σ̃(t3)))|
hλ∗(τ∗(σ̃(t3)))

,

ϕ(σ̃(t)) = ϕ(σ̃(t2)) for t ∈ [t2, t3].
(2.15)

On the other hand, since t2 ∈ S1 and δ is nondecreasing, we have

ϕ(σ̃(t3))h−ε0(δ(t3)) ≤ ϕ(σ̃(s))h−ε0(δ(s)) for s ∈ [t0, t3]. (2.16)

Therefore from (2.15), (2.16) it follows that t3 ∈ S1 ∩ S2. By the above
reasoning we easily ascertain that (2.14) is fulfilled. Thus there exists an
increasing sequence of points {tk} such that

lim
k→+∞

tk = +∞,

ϕ(σ̃(tk))h−ε0(δ(tk)) ≤ ϕ(σ̃(s))h−ε0(δ(s)) for s ∈ [t0, tk],

ϕ(σ̃(tk)) =
|u1(τ∗(σ̃(tk)))|
hλ∗(τ∗(σ̃(tk)))

(k = 1, 2, . . . ).

(2.17)

On the other hand, it is obvious that

ϕ(t) ≤ |u1(τi(t))|
hλ∗(τi(t))

for t ∈ [t0, +∞[ (i = 1, . . . , m).

Thus on account of (0.2), (2.12), (2.17), for sufficiently large k we have from
(2.7)

∣

∣u1(τ∗(σ̃(tk)))
∣

∣ ≥

≥
τ∗(σ̃(tk))

∫

t1

m
∑

i=1

pi(s)

+∞
∫

σi(s)

m
∑

i=1

qi(ξ)
|u1(τi(ξ))|
hλ∗(τi(ξ))

hλ∗(τi(ξ))dξds ≥

≥
τ∗(σ̃(tk))

∫

t1

m
∑

i=1

pi(s)ϕ(σ̃(s))

+∞
∫

σi(s)

m
∑

i=1

qi(ξ)hλ∗(τi(ξ))dξds ≥

≥ ϕ(σ̃(tk))h−ε0(δ(tk))×

×
τ∗(σ̃(tk))

∫

t1

hε0(δ(s))
m

∑

i=1

pi(s)

+∞
∫

σi(s)

m
∑

i=1

qi(ξ)hλ∗(τi(ξ))dξds,
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whence we obtain

τ∗(σ̃(tk))
∫

t1

hε0(δ(s))
m

∑

i=1

pi(s)

+∞
∫

σi(s)

m
∑

i=1

qi(ξ)hλ∗(τi(ξ))dξds ≤

≤ hλ∗(τ∗(σ̃(tk)))hε0(δ(tk)) for k ≥ k0,

where k0 is a sufficiently large number. But the latter inequality contradicts
(2.9). The contradiction obtained proves the validity of the theorem.

Theorem 2.2. Let conditions (1.2), (1.5), (2.1), and (2.2) be fulfilled.
Let, moreover,

lim
t→+∞

h(τ∗(σ̃(t)))
h(t)

> 0 (2.18)

and there exist ε ∈]0, 1[ such that for any λ ∈ [0, 1[ ,

h1−λ(t)

+∞
∫

σ∗(t)

m
∑

i=1

qi(ξ)hλ(τi(ξ))dξ ≥ λ + ε (2.19)

for t ∈ [t0,+∞[ ,

where t0 ∈ R+ and h is defined by (1.3). Then every proper solution of (0.1)
is oscillatory.

Proof. By virtue of Theorem 2.1, to prove the theorem it is sufficient to
show that (2.19) implies (2.3) with δ(t) ≡ t.

Indeed, choose ε0 > 0 such that

λ + ε
λ + ε0

γε0 > 1 for λ ∈ [0, 1[ , (2.20)

where γ = lim
t→+∞

h(τ∗(σ̃(t)))
h(t) .

On account of (1.2) and (2.18)–(2.20) we obtain

h−λ(τ∗(σ̃(t)))h−ε0(t)×

×
τ∗(σ̃(t))

∫

0

hε0(s)
m

∑

i=1

pi(s)

+∞
∫

σi(s)

m
∑

i=1

qi(ξ)hλ(τi(ξ))dξds ≥

≥ (λ + ε)h−λ(τ∗(σ̃(t)))h−ε0(t)

τ∗(σ̃(t))
∫

0

p̃(s)hε0+λ−1(s)ds =



580 N. PARTSVANIA

=
λ + ε
λ + ε0

h−λ(τ∗(σ̃(t)))h−ε0(t)hλ+ε(τ∗(σ̃(t))) ≥

≥ λ + ε
λ + ε0

γε0 > 1 for t ∈ [t∗, +∞[ ,

where t∗ ∈ ]t0, +∞[ is a sufficiently large number. Therefore (2.3) is ful-
filled.

Remark. In a certain sense, condition (2.19) is optimal. If we assume
ε = 0, then, in general, Theorem 2.2 is not valid.

Theorem 2.3. Let conditions (1.2), (1.5), (2.1), (2.2), and (2.18) be
fulfilled. Let, moreover,

lim
t→+∞

h(t)
h(σ∗(t))

= α > 0 (2.21)

and there exist ε ∈]0, 1[ such that for any λ ∈ [0, 1[ ,

h(t)

+∞
∫

t

m
∑

i=1

qi(ξ)
[h(τi(ξ))

h(ξ)

]λ
dξ ≥ αλ−1(λ(1− λ) + ε) (2.22)

for t ∈ [t0,+∞[ ,

where t0 ∈ R+ and h is defined by (1.3). Then every proper solution of (0.1)
is oscillatory.

Proof. By virtue of Theorem 2.2, to prove the theorem it is sufficient to
show that (2.21) and (2.22) imply (2.19).

Indeed, on account of (1.2), (2.21), and (2.22) we have

h1−λ(t)

+∞
∫

σ∗(t)

m
∑

i=1

qi(s)hλ(τi(s))ds =

= −h1−λ(t)

+∞
∫

σ∗(t)

hλ(s)d

+∞
∫

s

m
∑

i=1

qi(ξ)
[h(τi(ξ))

h(ξ)

]λ
dξ =

= h1−λ(t)hλ(σ∗(t))

+∞
∫

σ∗(t)

m
∑

i=1

qi(ξ)
[h(τi(ξ))

h(ξ)

]λ
dξ +

+λh1−λ(t)

+∞
∫

σ∗(t)

p̃(s)hλ−1(s)

+∞
∫

s

m
∑

i=1

qi(ξ)
[h(τi(ξ))

h(ξ)

]λ
dξds ≥
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≥ αλ−1(λ(1− λ)+ε)
(

[ h(t)
h(σ∗(t))

]1−λ
+ λh1−λ(t)

+∞
∫

σ∗(t)

p̃(s)hλ−2(s)ds
)

≥

≥ αλ−1(λ(1− λ) + ε)
(

α1−λ +
λ

1− λ

[ h(t)
h(σ∗(t))

]1−λ)

≥

≥ (λ(1− λ) + ε)
(

1 +
λ

1− λ
)

= λ +
1

1− λ
ε ≥ λ + ε

for t ∈ [t∗,+∞[ ,

where t∗ ∈ ]t0,+∞[ is a sufficiently large number, and p̃ is defined by (1.3).
Therefore (2.19) is fulfilled.

Corollary 2.1. Let conditions (1.2), (2.1), (2.2), (2.18), and (2.21) be
fulfilled. Let, moreover,

lim
t→+∞

h(τi(t))
h(t)

= βi > 0, (2.23)

and

lim
t→+∞

h(t)

+∞
∫

t

q̃(s)ds > α−1 max
λ∈[0,1]

{(α
β

)λ
λ(1− λ)

}

,

where h, q̃, and α are defined by (1.3), (1.6), and (2.21), respectively, and

β = min{βi : i = 1, . . . , m}. (2.24)

Then every proper solution of (0.1) is oscillatory.

Corollary 2.2. Let conditions (1.2), (2.1), (2.2), (2.18), (2.21), and
(2.23) be fulfilled. Let, moreover, α = β and

lim
t→+∞

h(t)

+∞
∫

t

q̃(s)ds >
1
4α

,

where h, q̃, α, and β are defined by (1.3), (1.6), (2.21), and (2.23), (2.24),
respectively. Then every proper solution of (0.1) is oscillatory.

Corollary 2.3. Let p, q ∈ Lloc(R+; R+),

h(+∞) = +∞,

and

lim
t→+∞

h(t)

+∞
∫

t

q(s)ds >
1
4

,
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where

h(t) =

t
∫

0

p(s)ds.

Then every proper solution of the system

u′1(t) = p(t)u2(t),

u′2(t) = −q(t)u1(t)

is oscillatory.

Corollary 2.3 immediately implies Hille’s well-known theorem for second-
order ordinary linear differential equations (see [1]).
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