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AN OSCILLATION CRITERION FOR NONLINEAR
THIRD-ORDER DIFFERENTIAL EQUATIONS

M. GREGUŠ AND M. GREGUŠ, JR.

Abstract. Sufficient conditions for oscillation of a certain class of
nonlinear third-order differential equations are found.

In this paper we considear a nonlinear third-order differential equation
of the form

y′′′ + q(t)y′ = f(t, y, y′, y′′) (1)

where

(i) q, q′ ∈ C
(

(a,∞)
)

for some a with 0 < a < ∞,
(ii) f ∈ C

(

(a,∞)×R3
)

, t ∈ (a,∞), and y1, y2, y3 ∈ R and
f(t, y1, y2, y3)y1 < 0 for all t ∈ (a,∞) and
all y1, y2, y3 ∈ R with y1 6= 0.

By a solution of (1) (proper solution) we mean a function y defined on
an interval [t0,∞), t0 > a, which has a continuous third derivative with
sup(|y(s)| : s > t) > 0 for any t ∈ [t0,∞), and satisfies equation (1). By
an oscillatory solution we mean a solution y of (1) that has arbitrarily large
zeros. Otherwise the solution is said to be nonoscillatory.

The aim of this paper is to study the oscillatory properties of proper
solutions of equation (1) when the operator on the left-hand side of equation
(1) is oscillatory. I. T. Kiguradze investigated in [1] the equation

u(n) + u(n−2) = f
(

t, u, u′, . . . , u(n−1)) (2)

and our aim is to generalize one of his results concerning equation (1).
Papers [2], [3] investigated similar problems. The equation in [1] is a

special case of (1) and in [3] there is an equation with a more general linear
operator on the left-hand side, but with a special case of nonlinearity.
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In this paper we use some results of the theory of a third-order linear
differential equation [4].

1. First of all we list some results and lemmas and prove one lemma for
the linear differential equation

y′′′ + 2A(t)y′ + [A′(t) + b(t)]y = 0, (3)

where A′ and b are continuous functions on (a,∞) and b(t) ≥ 0 for t ∈ (a,∞)
such that b(t) 6≡ 0 on each subinterval.

Let ν1, ν2 be linearly independent solutions of the differential equation

ν′′ +
1
2

Aν = 0. (4)

It is known [2] that ν2
1 , ν2

2 ,, ν1ν2 form a fundamental set of solutions of the
self-adjoint third-order differential equation

u′′′ + 2Au′ + A′u = 0. (5)

Lemma 1 ([4, Lemma 2.3]). Let y be a solution of (3) defined on
[t0,∞), t0 > a, with y(t0) = y0, y′(t0) = y′0, y′′(t0) = y′′0 . Then it can
be rewritten in the form

y(t) = u(t)−
t

∫

t0

b(τ)y(τ)W (t, τ) dτ (6)

where u is the solution of (5), and has the same initial values at t0 as y,

W (t, τ) =

∣

∣

∣

∣

∣

∣

u1(t), u2(t), u3(t)
u1(τ), u2(τ), u2(τ)
u′1(τ), u′2(τ), u′3(τ)

∣

∣

∣

∣

∣

∣

and u1, u2, u3 form a fundamental set of solutions of equation (5) with the
wronskian equal to 1 on (a,∞).

Lemma 2 ([4, Corollary 2.3]). Let the second-order differential equa-
tion (4) have oscillatory solutions in [t0,∞), t0 > a. Then the differential
equation (3) is oscillatory in [t0,∞), i.e., every solution of (3) having a zero
is oscillatory in [t0,∞).

Lemma 3 ([4, Theorem 3.6]). Let A(t) ≥ 0, A′(t) + b(t) ≥ d > 0,
b(t) − A′(t) ≥ 0 for t ∈ (a,∞). Then every solution of the differential
equation (3) is oscillatory in (a,∞), except a solution y (unique up to linear
dependence), which satisfies y(t) ∈ L2[t0,∞) (i.e.,

∫∞
t0

y2(t)dt < ∞), y → 0,
y′ → 0 as t → 0, a < t0 < ∞.
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Lemma 4 ([4, Theorem 2.17]). Let the differential equation (3) have
at least one oscillatory solution in (a,∞). A necessary and sufficient con-
dition for a non-trivial solution y of (3) to be non-oscollatory in [t0,∞),
t0 > a is that F (y(t)) = y(t)y′′(t)− 1

2y
′2(t) + A(t)y2(t) > 0 for t ≥ t0.

Lemma 5. Let A(t) ≥ m > 0, A′(t) ≤ 0, A′(t) + b(t) ≥ d
t > 0 for

t ∈ (a,∞), a > 0. Then every solution of (3) is oscillatory in (a,∞), except
a solution y (unique up to linear dependence), which satisfies y → 0, y′ → 0,
y′′ → 0 as t →∞.

Proof. From the supposition A(t) ≥ m > 0 for t ∈ (a,∞) and from Lem-
ma 2 it follows that every solution of (3) with one zero is oscillatory in
(a,∞).

Let y be a nonoscillatory solution on (3) and let y(t) > 0 for t ∈ (a,∞).
It fulfills the integral identity

F [y(t)] ≡ yy′ − 1
2

y
′2 + Ay2 = k −

t
∫

t1

by2dτ, (7)

where k = y(t1)y′′(t1)− 1
2y

′2(t1) + A(t1)y2(t1), t1 > a.
We obtain identity (7) by multiplying equation (3) by y and integrating

term by term from t1 to t.
Lemma 4 implies that F [y(t)] > 0 for t ∈ [t1,∞) and therefore k > 0.

From (7) it follows that
∫∞

t1
b(τ)y2(τ)dτ converges and from the suppositions

A′(t) + b(t) ≥ d
t > 0, A′(t) ≤ 0 we have b(t) − A′(t) ≥ d

t and at the same
time b(t) ≥ d

2t for t > a. Then we have

∞ >

∞
∫

t1

b(τ)y2(τ)dτ ≥ d
2

∞
∫

t1

y2(τ)
τ

dτ > 0

and therefore

lim
t→∞

inf y(t) = 0. (8)

From (7) it is clear that

0 < y′′(t) + A(t)y(t) < y′′(t) + 2A(t)y(t) (9)

for all t ∈ [t1,∞).
Integrating equation (3) term by term from t1 to t we obtain the identity

y′′ + 2Ay = k1 −
t

∫

t1

(b−A′)ydτ, (10)
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where k1 = y′′(t1) + 2A(t1)y(t1) > 0 and therefore y′′ + 2Ay is a decreas-
ing function of t ∈ [t1,∞). It follows from (10) and from the fact that
2A(t)y(t) > 0 for t > t1, that y′′ is a function bounded from above on
[t1,∞). Suppose that y does not converge to zero for t → ∞. From (8) it
follows that there exists a sequence {tn}∞n=1, tn →∞, such that y′(tn) = 0,
y′′(tn) ≥ 0 for n = 1, 2, . . . , and hence we obtain from identity (7) for t = tn
and for tn →∞ that k =

∫∞
t1

by2dt so that identity (7) can be rewritten in
the form

yy′′ − 1
2
y
′2 + Ay2 =

∞
∫

t

by2dτ. (11)

Let {tn}∞n=1, t1 > t1 be a sequence tending to infinity such that y′(tn) =
0, y′′(tn) ≤ 0. Let us prove that y(tn) → 0 for n →= ∞. Two cases are
possible:

(a) Let y′′(t) + A(t)y(t) → 0 for t → ∞. In this case y(tn) → 0 for
n → ∞, A′(t) ≤ 0 for t ∈ (a,∞) and therefore y′′(tn) → 0 for n → ∞.
Identity (10) is in this case of the form

y′′ + 2Ay =

∞
∫

t

(b−A′)ydτ (12)

because k1 =
∫∞

t1
(b−A′)ydτ . Then there is

y′′(tn) + A(tn)y(tn).

If we suppose that limn→∞ y(tn) > 0, we obtain for tn →∞ a contradiction
and therefore y(tn) → 0 for tn →∞.

(b) Let y′′+Ay no limit equal to zero at infinity. The function y′′+2Ay is
decreasing and in this case limt→∞[y′′(t)+2A(t)y(t)] = α > 0 and therefore

∞
∫

t1

y′′(τ) + 2A(τ)y(τ)
τ

dτ ≤
∞
∫

t1

α
τ

dτ = ∞. (13)

Identity (7) implies that F [y(t)] > 0 for all t > t1, and then applying identity
(10) we get

0 > −2F [y(t)] = y
′2(t) + 2A(t)y2(t)− 2y(t)[y′′(t) + 2A(t)y(t)] >

> y
′2(t) + 2my2(t)− 2k1y(t)

and therefore we have my2(t) − k1y(t) < 0, y
′2(t) − 2k1y(t) < 0 for t > t1

from which y(t) < k1
m and |y′(t)| <

√
2k1√
m for all t > t1. From identity (10) it

follows that
∫∞

t1
y(τ)

τ dτ < ∞. It is ease to prove that the integrals
∫∞

t1
y′(τ)

τ dτ



NONLINEAR THIRD-ORDER DIFFERENTIAL EQUATIONS 23

and
∫∞

t1
y′′(τ)

τ dτ converge, too. Applying this result to the function y′′+2Ay
t

we get

∞
∫

t1

y′′(τ) + 2A(τ)y(τ)
τ

dτ =

∞
∫

t1

y′′(τ)
τ

dτ +

∞
∫

t1

2A(τ)y(τ)
τ

dτ

and this is in contradiction with (13) and therefore we have y(t) → 0 for
t → ∞. Now it is necessary to prove that y′(t) → 0 for t → ∞. It follows
from the above identity, i.e., y

′2(t)− 2k1y(t) < 0. It remains to prove that
y′′(t) → 0 for t →∞.

From the inequality y′′(tn) + 2A(tn)y(tn) > 0 for n = 1, 2, . . . , and
from (10) for t = tn it follows that y′′(tn) → 0 for n → ∞ and, since
k1 =

∫∞
t1

(b − A′)ydτ , identity (10) is in this case of the form (12). From
(12), for t →∞, we obtain y′′(t) → 0.

The uniqueness of solutions without zeros can be proved by the same
arguments as in Theorem 3.6 [4] and therefore the proof of the uniqueness
is omitted.

Remark 1. If in Lemma 3 we suppose A(t) ≥ m > 0 and A′(t) ≤ 0 for
every t > a, then we can prove by the same arguments as in Lemma 5 that
y′′(t) → 0 for t →∞.

3. The aim of this section is to generalize the following results of Kigu-
radze [1] for n = 3.

Theorem A [1, Corollary 1.5]. Let f have the property (ii) and let
f(t, y1, y2, y3) sgn y1 ≤ − ε

t |y1|, where ε > 0, t > 0. Then the differential
equation

y′′′ + y′ = f(t, y, y′, y′′)

has the property A, i.e., each of its solutions is either oscillatory or satisfies
the conditions y(t) → 0, y′ → 0 and y′′ → 0 for t →∞.

The following simple result proves that equation (1) can have oscillatory
solutions if the operator on the left-hand side of (1) is oscillatory.

Theorem 1. Let q and q′ have the property (i) and let q(t) ≥ 0, q′(t) ≤ 0
for t ∈ (a,∞). Let further the equation

ν′′ +
1
4
q(t)ν = 0 (14)

be oscillatory on (a,∞) and let the function f have the property (ii). Then
every solution y of equation (1) defined on [t0,∞), t0 > a, with one zero is
oscillatory on [t0,∞).
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Proof. From the supposition that equation (14) is oscillatory and from
Lemma 2 it follows that the self-adjoint equation

u′′′ + q(t)u′ +
1
2
q′(t)u = 0 (15)

is oscillatory on (a,∞), i.e., each solution of (15) with one zero at t0 > a is
oscillatory on [t0,∞). On the other hand, if ν1, ν2 form a fundamental set
of solutions of (14), then ν2

1 , ν2
2 , ν1ν2 form a fundamental set of solutions

of (15). Equation (1) can be rewritten in the form

y′′′ + q(t)y′ +
1
2
q′(t)y = f(t, y, y′, y′′) +

1
2
q′(t)y. (16)

Applying Lemma 1 to equation (16) we obtain the relation

y(t) = u(t) +

t
∫

t0

[f(τ, y(τ), y′(τ), y′′(τ)) +
1
2
q′(τ)y(τ)]W (t, τ)dτ, (17)

where the solution y of (1) and the solution u of (15) satisfy the same
initial condition at t0 > a and W (t, τ) is of the form of Lemma 1. Clearly,
W (t, τ) ≥ 0 for t ≥ τ ≥ t0.

Let y(t0) = 0, y′(t0) = y′0, y′′(t0) = y′′0 and let at least one of the numbers
y′0, y′′0 be different from zero. Clearly, u(t0) = 0 and u is oscillatory. Let
t1 > t0 be the first zero of u to the right of t0. Then from (15) we obtain a
contradiction. If y(t0) = y′(t0) = y′′0 (t0) = 0, then u(t) ≡ 0 and then either
y(t) ≡ 0 for t > t0, or it must have at least one zero to the right of t0. This
follows from (17). Identity (7) for equation (1) and for the above solution
y has the form

yy′′ − 1
2
y
′2 +

1
2
qy2 =

t
∫

t0

[f(τ, y(τ), y′(τ), y′′(τ))y(τ) +
1
2
q′y2(τ)]dτ.

From this identit it follows that y cannot have a double zero to the right of
t0. If tk is the last zero of y to the right of t0, then applying Lemma 1 we
obtain the assertion of Theorem 1 in this case, too.

Let ϕ ∈ C2((a,∞)) and let ϕ(t) 6= 0 for t ∈ (a,∞). Construct the linear
differential equation

y′′′ + q(t)y′ +
[1
2
q′(t)−

−
(f(t, ϕ(t), ϕ′(t), ϕ′′(t))

ϕ(t)
+

1
2
q′(t)

)

+
1
2
q′(t))

]

y = 0. (18)

Applying Lemma 3 we prove
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Theorem 2. Let (i), (ii) hold. Let further q(t)≥0, − f(t,ϕ(t),ϕ′(t),ϕ′′(t))
ϕ(t) ≥

d > 0, and f(t,ϕ(t),ϕ′(t),ϕ′′(t))
ϕ(t) + q′(t) ≤ 0 for t ∈ (a,∞) and for every

ϕ ∈ C2((a,∞)), ϕ 6= 0.
Then every solution y of (1) is either oscillatory or y(t) 6= 0 on [t0,∞),

t0 > a and then it has the following properties:
∫∞

t0
y2(t)dt < ∞, y → 0,

y′ → 0 for t →∞.

Proof. Let y1 be a solution of (1) and let y1(t) 6= 0 for t ∈ [t0,∞), t0 > a.
Put ϕ(t) = y1(t) for t ∈ [t0,∞) into equation (18). Then equation (18) has
only one solution without zeros (up to linear dependence). y1 is a solution
of (17) without zeros on [t0,∞) and at the same time it is a solution of (1)
and therefore

∫∞
t0

y2
1(t)dt < ∞, y1 → 0, y′1 → 0 for t →∞.

Corollary 1. Let the suppositions of Theorem 2 be fulfilled and let, more-
over, q′(t) ≤ 0 and q(t) ≥ m > 0 for t ∈ (a,∞). Then every solution of
(1) with one zero on (a,∞) is oscillatory to the right of this zero and every
solution y without zeros on [t0,∞) has the properties y → 0, y′ → 0, y′′ → 0
for t →∞ and

∫∞
t0

y2(t)dt < ∞.

Proof. Theorem 1 implies that every solution of (1) with one zero is oscilla-
tory to the right of this zero and the properties of solutions y without zeros
follow from Theorem 2 and Remark 1.

Remark 2. Corollary 1 defines a set of differential equations of the form
(1) that have the property A (Theorem A). It is a certain generalization of
the result of Kiguradze [1].

A complete generalization of Theorem A of Kiguradze [1] gives the fol-
lowing theorem proved by Lemma 5.

Theorem 3. Let (i), (ii) hold. Let q′(t) ≤ 0, q(t) ≥ m > 0 for
t ∈ (a,∞), a > 0. Let further − f(t,ϕ(t),ϕ′(t),ϕ′′(t))

ϕ(t) ≥ d
t > 0 for t ∈ (a,∞)

and for every ϕ ∈ C2((a,∞)), ϕ(t) 6= 0 for t ∈ (a,∞). Then every solution
of (1) with one zero is oscillatory to the right of this zero and every solution
y of (1) defined on [t0,∞), t0 > a, without zeros on this interval has the
property y → 0, y′ → 0, y′′ → 0 for t → ∞ (i.e., equation (1) has the
property A).

Proof. From Theorem 1 it follows that every solution of (1) with one zero
is oscillatory to the right of this zero.

Let y1 be a solution of (1) defined on [t0,∞), t0 > a and let y1(t) 6= 0 on
this interval. If we put ϕ(t) = y1(t) into equation (18), then we see that the
coefficients of this equation fulfill the suppositions of Lemma 5 and therefore
equation (18) has only one solution without zeros on [t0,∞) (up to a linear
dependence). y1 is a solution of (18) without zeros on [t0,∞) and at the
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same time it is a solution of (1). By Lemma 5 y1 has the property y → 0,
y′ → 0, y′′ → 0 for t →∞.

Remark 3. Theorem A is a special case of Theorem 3.
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4. M. Greguš, Third-order linear differential equations. Reidel Publishing
Company, Dordrecht, 1982.

(Received 13.04.1995)

Author’s address:
Department of Mathematical Analysis
Faculty of Mathematics and Physics
Komensky University
Mlynska dolina
842 15 Bratislava
Slovakia


