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OBSTRUCTIONS TO THE SECTION PROBLEM IN A
FIBRATION WITH A WEAK FORMAL BASE

S. SANEBLIDZE

Abstract. For a class of Serre fibrations F −→ E
ξ−→ X with a weak

formal base X (or with a degenerated A∞-algebra structure on the
integral cohomology H∗(X)), obstructions are defined by means of
spherical twisting cochains of ξ. In particular, for a given section
sn : Xn −→E on n-skeleton of X, the problem of avoiding the (n+1)th
obstruction o(sn) ∈ Hn+1(X; πn(F )) to the existence of a section on
Xn+1 reduces to solving a system of linear equations with respect to
cohomology elements of the groups Hi(X; πi(F )), i < n. Homotopy
classification theorems for sections as well as for weak formal maps
are given, too.

1. Introduction

The paper continues the study of the obstruction theory to the section
problem in a Serre fibration which we began in [1], [2]. We consider a Serre

fibration F −→ E
ξ−→ X of path connected spaces, where X is a polyhedron

and weak formal (weak Z-formal in the terminology of [1]), i.e., an A∞-
algebra structure in the sense of Stasheff on the integral cohomology H∗(X)
[3] is degenerate. We also assume that π1(X) acts trivially on π∗(F ) and
H∗(F ). Here we extend the class of spaces playing the role of a fibre F by
replacing the split injectivity of the Hurewicz homomorphism

u : πi(F ) −→ Hi(F )

by condition (A) at the cost of condition (B) below.
Namely, for the spaces X and F , we consider the following condition:

(A) The short sequence

0 −→ Hi(X; πi−1(F )) u∗−→ Hi(X;Hi−1(F ))
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is exact, where u∗ is induced by the Hurewicz homomorphism u in
the coefficients.

To state condition (B) first consider the differential (tri)-graded algebra
(dga)

(HH , d), Hi,j,t
H = Hi(X; Homj,t(RH∗(F ), RH∗(F ))

)

,

with total degree n = i− j − t, where

ρ : (R≥0Hq(F ), ∂R) −→ Hq(F ), ∂R : RiHq(F ) −→ Ri−1Hq(F ),

is a fixed free group resolution of Hq(F ) (for more details see Section 2).
An element h ∈ HH , h = {hi,j,t}, is referred to as twisting, if it is of total
degree 1, i− j ≥ 2, and d(h) = −hh. Denote

(C̃k
n, ∂R∗) =

(

∏

j≥0

Hk+j+n(X; RjHn(F )), ∂R∗
)

and

(L̃k
n, ∂R∗) =

(

∏

j≥0

Hk+j+n(X; Rjπn(F )), ∂R∗
)

.

For convenience, we can consider L̃∗∗ as a subcomplex of C̃∗∗ , i : L̃∗∗ ⊂ C̃∗∗ ,
by putting π0(F ) = Z and appropriaterly choosing a resolution RH∗(F ).

We have the homomorphism

dh : C̃k
∗ −→ C̃k+1

∗

defined by dh = ∂R + h∪−.
For any twisting element h ∈ HH , h = {hi,j,t}, with dhi,j,t preserving

L̃∗∗, i < m, we consider the following condition:

(B) For any elements a(n) = (a1, . . . , an), b(n−1) = (b1, . . . , bn−1), aj ∈
C̃0

j , bj ∈ L̃0
j , n < m− 1, with ∂R∗(aj) = ∂R∗(bj) = 0, [dh(a(n−1) −

b(n−1))]j+1 = 0 ∈ Hj+1(X;πj(F )), j ≤ n, (dh(a(n)))n+2 ∈ L̃1
n+1,

there exists bn ∈ L̃0
n such that ∂R∗(bn) = 0 and [dh(a(n)−b(n))]n+2 =

0 ∈ Hn+2(X;πn+1(F )).

For example, (B) is easily satisfied in the following cases:

(B1) u∗ : Hi(X;πi(F )) −→ Hi(X; Hi(F )), i > 0, is an epimorphism.
(B2) H∗(X) has the trivial multiplication.
(B3) There is a homomorphism β̃ : C̃q

∗ −→ L̃q
∗ with β̃ ◦ i = id and β̃ ◦dh =

dh ◦ β̃ for q = −1, 0, 1.
(B4) H2i(X; H2j(F )) = 0 and H2i(X;π2i−1(F )) = 0, i, j > 0.
(B5) h = 0.
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To a fibration ξ with a weak formal base X we assign a twisting element
h ∈ HH (induced, in fact, by Brown’s twisting cochain [4]) which is well
defined modulo the action of the multiplicative group of the algebra HH .
Thus the factorization of all twisting elements by this action yields the set
DH(X; H∗(F )) so that we have the class dH(ξ) of h in this set. In fact,
there is a bijection

λ : D(X; H∗(F )) ≈ DH(X;H∗(F ))

and dH(ξ) = λ(d(ξ)), where D(X; H∗(F )) and d(ξ) are defined in [5] (see
also [2], Section 2).

We denote by h0 a component of a twisting element h in the subcomplex
H∗(X; RH∗(F )) = H∗(X; Hom(RH0(F ), RH∗(F ))), and we will refer to
it as the transgressive one. We say that dH(ξ) is transgressively trivial
(in perturbation degrees ≤ n), if there is h ∈ dH(ξ), h = {hi,j,t} with
h0 = 0 (hi,j,t

0 = 0, i − j ≤ n). Next, we say that the fibration ξ satisfies
conditions (A) and (B), if the base X and fibre F satisfy (A) and there is
some h ∈ dH(ξ) satisfying (B).

We have the following main theorem:

Theorem 1.1. Let F −→ E
ξ−→ X be a Serre fibration with X weak formal

and satisfying (A) and (B). Then ξ has a section if and only if dH(ξ) is
transgressively trivial.

This theorem is the key point for our obstruction theory. Namely, let sn :
Xn −→ E be a section on n-skeleton of X, and let o(sn) ∈ Hn+1(X; πn(F ))
be the obstruction element for extending sn on Xn+1. Using Proposition
2.5 below and the bijection λ, choose a twisting element g = {gi,j,t} with
gi,j,t
0 = 0, i − j ≤ n and gi,j,t ∈ Hi(X; H̃om

j,t
(RH∗(F ), RH∗(F ))), i ≤

n, where H̃om consists of those homomorphisms of Hom which preserve
Rπ∗(F ). Let now ξ satisfy (A), where Hi+1(X; πi(F )) is identified with its
image. Then define the subgroup In+1(ξ) ⊂ Hn+1(X; πn(F )) as follows:

In+1(ξ) =
{

[

(dg(y1 + · · ·+ yn))
]n+1 ∈ Hn+1(X; πn(F ))|

(dg(y1 + · · ·+ yn))j = 0, j < n, yj ∈ L̃0
j

}

.

The group In+1(ξ) has a filtration

0 = In+1
0 (ξ) ⊂ · · · ⊂ In+1

n−1 (ξ) = In+1(ξ),

where In+1
j (ξ) is obtained from the definition of In+1(ξ) by putting yi = 0

for i ≤ n− 1− j. Further, let On+1(ξ) be the set consisting of o(sn) corre-
sponding to all sections on Xn. We find that On+1(ξ) also has a filtration

0 = On+1
0 (ξ) ⊂ · · · ⊂ On+1

n−1(ξ) = On+1(ξ),
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where On+1
j (ξ) is defined by those sections which coincide with each other

on Xn−1−j .
We have

Theorem 1.2. Let ξ be as in Theorem 1.1 and having a section sn :
Xn −→ E. Then

On+1
j (ξ) = o(sn) + In+1

j (ξ), j ≤ n− 1.

Consequently,
On+1(ξ) = o(sn) + In+1(ξ).

Now On+1
j (ξ) can be regarded as a single element in the quotient group

Hn+1(X;πn(F ))/In+1
j (ξ).

Thus we obtain

Corollary 1.3. There is a section s′n+1 : Xn+1 −→ E with s′n+1|Xm =
sn|Xm , m < n, if and only if

On+1
n−1−m(ξ) = 0,

i.e., there exist elements yi ∈ L̃0
i , i = 1, . . . , n − 1, so that the following

system of equalities holds:

∂R∗(y1) = 0, ∂R∗(y2) + g2y1 = 0, . . . ,
[ n−1

∑

j=1

gn+1−jyj
]

= o(sn).

The problem of the vanishing of the (n+1)th obstruction element for n ≥
2 reduces to solving a system of linear equations with respect to elements
of the groups H∗+i(X; R∗πi(F )), i ≤ n− 1.

The definition of the group In(ξ) suggests a further formalization of
twisting cochains by replacing homology groups by homotopy ones of the
fibre so that we could develop an obstruction theory (see Section 3). In
fact, the twisting element g determining In(ξ) is restricted to a spherical
twisting element ν ∈ H∗(Xn+1; Hom(Rπ∗(F ), Rπ∗(F ))) which defines the
element don+1(ξ) in the set

Dn+1
H (X;π∗(F )) = DH(Xn+1; π∗(F )).

We refer to Dn+1
H (X;π∗(F )) as the (n + 1)th obstruction functor and to

don+1(ξ) as the (n + 1)th obstruction element of ξ, being motivated by [6]
(see also [7]), where an attempt is made to define such functors and elements
without any assumption on the existence of a section.

The role of spherical twisting elements is emphasized for the homotopy
classification of sections, too. Namely, for a spherical twisting element ν̃ ∈
don+1(ξ), we can form the complex

(L̃∗∗, dν̃), dν̃ = ∂R∗ + ν̃ ∪− .
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Then we obtain the following generalization of Theorem 2.10 of [2]:

Theorem 1.4. Let ξ with a weak formal base have a section sn : Xn −→
E. If ξ satisfies (B3), then there is a bijection

[Xn−1, E]s ≈ H0(L̃(n−1), dν̃),

where [ , ]s denotes the set of homotopy classes of sections.

2. Weak Formal Spaces, Maps and the Functor D

First we recall some facts about weak Z-formal spaces and maps [1] which
for simplicity we will call weak formal ones.

A space X is called weak formal, if the cohomology algebra H∗(X) and
the singular cochain algebra C∗(X) are weak homotopy equivalent, i.e.,
there are a differential graded algebra (dga) A and maps of dga’s

H∗(X)
ρ←− A k−→ C∗(X)

inducing an isomorphism in cohomology.
It is not hard to show that this is equivalent to the fact that an A∞-

algebra structure on H∗(X) ([3], [8]) is degenerated.
Moreover, a map f : X −→ Y is called weak formal, if there exists the

following (derivation) homotopy commutative diagram of dga’s

C∗(X)
C(f)←−−−− C∗(Y )

x



k

x



k

AX ←−−−− AY




y
ρ





y
ρ

H∗(X)
H(f)←−−−− H∗(Y ).

For example, any suspension, a space X with H∗(X) polynomial or with
Hi(X) = 0 for i < n and i > 3n− 2 are weak formal spaces. A suspension
map [1], a map X −→ Y , where X, Y are weak formal and Hi(X) = 0 for
i > 2n− 2 and Hi(Y ) = 0 for i < n, are weak formal maps.

Moreover, we have

Proposition 2.1. Any map X −→ Y is weak formal provided X is weak
formal and H∗(Y ) is polynomial.

Proof. It is analogous to that of Theorem 5.6 [1].
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Now we recall the definition of the set D(A) for a dga (A, d) (cf. [5]):
Suppose A = {Ai,j} is bigraded with d : Ai,j −→ Ai+1,j and total degree
n = i− j. By definition, D(A) = M(A)/G(A), where

M(A) =
{

a ∈ A1|d(a) = −aa, a = a2,1 + a3,2 + · · ·
}

,

G(A) = {p ∈ A0|p = 1 + p1,1 + p2,2 + · · ·
}

,

and the action G(A)×M(A) −→ M(A) is given by the formula

p ∗ a = pap−1 + d(p)p−1.

In other words, two elements a, a′ ∈ M(A) are on the same orbit if there is
p ∈ G(A), p = 1 + p′, with a′ − a = p′a− a′p′ + d(p′).

We have the following two theorems (cf. [1], [5]):

Theorem 2.2. If two dga maps f, g : A −→ B are homotopic, then
D(f) = D(g) : D(A) −→ D(B).

Thus D becomes the functor on the category of dga’s and (derivation)
homotopy classes of dga maps to the category of pointed sets.

Another useful property of D is the following comparison theorem:

Theorem 2.3. If f : A −→ B is a cohomology isomorphism, then D(f) :
D(A) −→ D(B) is a bijection.

Now let H∗ be a graded group and

ρ :
(

R≥0Hq, ∂R)

−→ Hq, ∂R : RiHq −→ Ri−1Hq,

its free group resolution. For a space X, consider the dga

(H,∇) =
(

C∗(X; Hom(RH∗, RH∗)),∇ = dC + ∂R∗)

which is bigraded via Hr,t =
∏

r=i−j Ci(X; Homj,t(RH∗, RH∗)), where
Hom(RH∗, RH∗) is the standard bigraded complex (algebra): fs,t : RjHq −→
Rj+sHq+t if fs,t ∈ Homs,t(R∗H∗, R∗H∗). We refer to i as the base topolog-
ical degree, to j as the fibre resolution degree, to t as the fibre weight, and
to n = i − j − t as the total degree. Moreover, we refer to r = i − j as
the perturbation degree, which will be exploited by the induction arguments
below (in particular, when RH∗ = H∗, the perturbation degree coincides
with the base topological one). Thus we have

H = {Hn}, Hn =
∏

n=r−t

Hr,t,

∇ : Hr,t −→ Hr+1,t.
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A twisting cochain h is an element of H of total degree 1 and at least of
perturbation degree 2 satisfying the condition ∇h = −hh, i.e., h has the
form

h = h2 + · · ·+ hr + · · · , hr ∈ Hr,r−1.

For the perturbation degree the condition that h is twisting reads as

∇(h2) = 0, ∇(h3) = −h2h2, ∇(h4) = −h2h3 − h3h2, . . . .

Note that a single superscript for an element of H will always denote the
perturbation degree. On the other hand, it is obvious that the dga HH =
(H∗(X; Hom(RH∗, RH∗)), ∂R∗) inherits all the gradings from H.

Define

D(X;H∗) = D(H)

and

DH(X; H∗) = D(HH).

Then we have

Proposition 2.4. There is an isomorphism of functors

λ : D(X; H∗) ≈ DH(X;H∗)

on the category of weak formal spaces and weak formal maps.

Proof. It follows from Theorems 2.3 and 2.2.

Now let F −→ E
ξ−→ X be a Serre fibration. Then there is a twisting

cochain h ∈ H, H∗ = H∗(F ), which defines a twisted differential on the
tensor product C∗(X)⊗RH∗(F ) to obtain the Hirsch complex of ξ [9], [4],
[10], [5]. The class of h in D(X; H∗) is denoted by d(ξ) and is referred to
as (homological) predifferential.

The image of d(ξ) under λ will be denoted by dH(ξ).
By a slight modification of the proof of Proposition 2.4 we obtain [2]

Proposition 2.5. Let ξ have a section sn : Xn −→ E. Then there is
a twisting cochain h ∈ d(ξ) with hr

0 = 0, r ≤ n, ρ∗(hn+1
0 ) = u∗(c(sn)),

and hr(σ) : RH∗(F ) −→ RH∗(F ), r ≤ n, preserves the subgroup Rπ∗(F ) ⊂
RH∗(F ) for each simplex σ ∈ Xn.



156 S. SANEBLIDZE

3. Spherical Twisting Cochains and Obstruction Functors
Dn(X; π∗)

The ordinary theory of twisting cochains and, in particular, the set
D(X;H∗) were available for the study of the homology theory of a fibration.
However, for the needs of the obstruction theory to the section problem in a
fibration we defined, in [2], a spherical twisting cochain by a further inves-
tigation of the connection between a twisting cochain and the obstruction
cocycle for extending a section [11]. Motivated by [7],[6], this can be formal-
ized to obtain the so-called obstruction functors Dn(X; π∗) and obstruction
elements of a fibration in the manner as follows: First we simply define

Dn(X; π∗) = D(Xn;π∗).

But difficulties arise when we want to assign to a fibration ξ an element
in Dn(X;π∗) similarly to d(ξ) in the case π∗ = π∗(F ) (assuming π0 = Z).
The reason is that homotopy groups are not realizable as homologies of
a functorial chain complex of a space. Instead, for a fibration ξ with a
section sn−1 : Xn−1 −→ E we use Proposition 2.5 to obtain a twisting
cochain h ∈ d(ξ|Xn) so that h(σ), σ ∈ Xn−1, preserves Rπ∗(F ) ⊂ RH∗(F ),
hr

0 = 0, r ≤ n − 1, and ρ∗(hn
0 ) = u∗(c(sn−1)). Restrict h(n−1) + hn

0 to
C∗(Xn; Hom(Rπ∗(F ), Rπ∗(F ))) to obtain a spherical twisting cochain ν of
ξ. The class of ν in Dn(X;π∗(F )) is called the obstruction element of
ξ and is denoted by dcn(ξ). We will refer to Dn(X;π∗(F )) as the nth
obstruction functor (cf. [7], [6], where an attempt is made to define the
global obstruction functor without any assumption on the existence of a
section).

By Proposition 2.4 we also have a bijection

λπ : Dn(X;π∗) ≈ Dn
H(X; π∗).

Define don(ξ) = λπ(dcn(ξ))
Now we get a criterion for the existence of a section in terms of the

obstruction element:

Theorem 3.1. Let ξ be as in Corollary 1.3. Then there exists a section
on Xn+1 if and only if don+1(ξ) is transgressively trivial.

Proof. It is easy to see that the conditions of the theorem are equivalent to
On+1(ξ) = 0 and the proof follows from Corollary 1.3.

4. The Proofs of Theorems 1.1 and 1.2

The proof of Theorem 1.1 goes along the lines of that of Theorem 2.8
[2]. Given a section of ξ, the existence of a twisting cochain h ∈ d(ξ) with
h0 = 0 follows from Proposition 2.5. To prove the converse we need to recall
some previous constructions.
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We have that ξ defines a colocal system of singular chain complexes over
the base X: To each simplex σ ∈ X is assigned the complex

(C∗(Fσ), γσ), Fσ = ξ−1(σ),

and to a pair τ ⊂ σ the induced chain map

C∗(Fτ ) → C∗(Fσ).

Then σ → Hom(RH∗(F ), C∗(Fσ)) also forms a colocal system over X.
Define K canonically as the simplicial cochain complex of X with coefficients
in the latter colocal system:

K = {Ki,j,t}, Ki,j,t = Ci(X;Homj,t(RH∗(F ), C∗(Fσ))
)

(C∗ is regarded as bigraded via C0,∗ = C∗, Cj>0,∗ = 0). Hence K becomes
a bicomplex via

Kr,t =
∏

r=i−j

Ki,j,t,

δ : Kr,t −→ Kr+1,t, δ = dC + ∂R,

γ : Kr,t → Kr,t−1, γ = {γσ}.

For convenience we refer to the gradings of K as to those of H. Next we
have a natural differential graded pairing (defined by the ∪-product and by
the composition of homomorphisms in coefficients)

(K, δ + γ)⊗ (H,∇) → (K, δ + γ),

and, since γ(kh) = γ(k)h, an induced differential graded pairing

(Kγ , δγ)⊗ (H,∇) −→ (Kγ , δγ)

where

(Kγ , δγ) = (H(K, γ), δγ) = C∗
(

X; Hom(RH∗(F ),H∗(F ))
)

.

Note that there is an epimorphism

ρ∗ : (H,∇) −→ (Kγ , δγ)

induced by the resolution map ρ above. Clearly, it induces an isomorphism
in cohomology.

Now consider the equation

(δ + γ)(k) = kh (1)

with respect to a pair (k, h),

k = k0 + · · ·+ kr + · · · , kr ∈ Kr,r,

h = h2 + · · ·+ hr + · · · , hr ∈ Hr,r−1.
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We also have the initial conditions

∇(h) = −hh,

γ(k0) = 0, [k0]γ = e ∈ K0,0
γ , e = ρ∗(1), 1 ∈ H.

A twisting cochain h ∈ d(ξ) is just a solution of this equation. On
the other hand, a given section, s, of ξ can be regarded as an element k0

of K0 = C∗(X;C∗(Fσ)) ⊂ K as follows: kr
0(σ

r) = s|σr , for an r-simplex
σr ∈ X, r ≥ 0, so that we can write k0 = s.

Let (k, h) be any solution of the equation with h0 = 0. We must find
some solution (k′, h) of the equation with k′0 defined by a section of ξ. Take
a section s0 : X0 −→ E with s0|σ0 = k0

0(σ
0). Since F is path connected,

we have an extension s1 : X1 −→ E of s0. But we choose s1 so that [k1
0 −

s1]γ = 0 (assuming u : π1(F ) ≈ H1(F )). Then we have o(s1) = 0. So
there is a section s2 : X2 −→ E. Again we will have o(s2) = [h3

0] = 0.
Hence we obtain a section s′3 : X3 −→ E. Now we have o(s′3) = [h2a2],
where some cocycle a2 ∈ C∗+2(X;R∗H2(F )). By the conditions of the
theorem (using the bijection λ) there is a cocycle c2 ∈ C∗+2(X; R∗π2(F ))
with [h2a2] = [h2c2]. Now in a standard manner change s′3 on X2 by the
cochain ρ∗(c2) ∈ C2(X; π2(F )) to obtain a section s3 : X3 −→ E. Then
o(s3) = 0. So a section on X4 exists.

Suppose that we have constructed by induction a section s′n : Xn −→ E
with

o(s′n) =
[

h2an−1 + h3(an−2 − cn−2) + · · ·+ hn−1(a2 − c2)
]

,

where some cocycles ai ∈ C∗+i(X; R∗Hi(F )) and ci ∈ C∗+i(X; R∗πi(F )).
By the conditions of the Theorem (using λ) there is a cocycle cn−1 ∈
C∗+n−1(X; R∗πn−1(F )) with

[h2cn−1] =
[

h2an−1 + h3(an−2 − cn−2) + · · ·+ hn−1(a2 − c2)
]

.

Now change s′n on Xn−1 by the cochain ρ∗(cn−1) ∈ Cn−1(X; πn−1(F )) to
obtain a section sn : Xn −→ E. Then o(sn) = 0. So a section s′n+1 : Xn −→
E exists, and

o(s′n+1) =
[

h2an + h3(an−1 − cn−1) + · · ·+ hn(a2 − c2)
]

,

where some cocycle an ∈ C∗+n(X; R∗Hn(F )). Thus we have constructed
by induction a global section of ξ.

Proof of Theorem 1.2. Let s̄n : Xn −→ E be another section of ξ co-
inciding with sn on Xj . Consider the fibration ξ′ over X × I induced by
the projection X × I −→ X and equation (1) for it. (For convenience, we
regard the standard cellular decomposition of the cylinder X × I.) In the
initial conditions we fix the solution (k, h) on X × 0 with h ∈ d(ξ), kn

0 = sn

and (k̄, h̄) on Xn × 1 with h̄ ∈ d(ξ), k̄n
0 = s′n. (In particular, we have
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[h̄n+1
0 ] = o(s̄n).) Let h′ ∈ d(ξ′) be any twisting cochain satisfying these

conditions. Consider c(n−1) ∈ C0
(n−1), Ck

n =
∏

j≥0 Ck+j+n(X;RjHn(F )),
defined by

c(n−1)(σ) = h′(n)
0 (σ × I).

We can easily choose h′ so that ci = 0, i ≤ n − 1 − j. The fact that h′ is
twisting implies that dh(c(n−1)) = 0 in C1

(n−1) and
[

h′n+1
0 |X×1

]

=
[

h′n+1
0 |X×0

]

+
[

h2cn−1 + · · ·+ hnc1],

i.e.,
o(s̄n) = o(sn) +

[

h2cn−1 + · · ·+ hnc1].

Now using the bijection λ and condition (B) we can replace h and ci

above by the twisting element g and some elements yi ∈ L̃0
i , respectively.

Conversely, let some v ∈ In+1
n−j−1(ξ) and yi ∈ L̃0

i , n − j ≤ i ≤ n − 1,
be elements determining v. Then the proof of Theorem 1.1 shows that yi

define a section s′n : Xn −→ E such that s′n|Xn−1−j = sn|Xn−1−j and

o(s′n) = o(sn) + v.

5. Homotopy Classification of Sections

We will prove Theorem 1.4. The proof is similar to that of Theorem 2.10
[2].

Proof of Theorem 1.4. Observe that we have a bijection

α : H∗(L̃(n−1), dν̃) ≈ H∗(L(n−1), dν),

where Lk
n =

∏

j≥0 Ck+j+n(X; Rjπn(F )), ν ∈ λ−1
π (don+1(ξ)). So it is suffi-

cient to show that there is a bijection
[

Xn−1, E
]

s ≈ H0(L(n−1), dν).

First define a map

ψ :
[

Xn−1, E
]

s −→ H0(L(n−1), dν)

as follows: Let s̄n : Xn −→ E be another section of ξ. Consider the fibration
ξ′ over X × I induced from ξ by the projection X × I −→ X. We consider
equation (1) for ξ′ with the initial conditions, where we fix a given solution
(k, h) on X × 0, h ∈ d(ξ), while k̄n

0 = s̄n on X × 1. Let (k′, h′) be any
solution satisfying these conditions, where we require by the choice of k′

that
k′i+1

0 (σi × I) = χ(f i+1
0 )(σi × I)

in which f i+1 = δ(k′i) − k′i−1h′2 − · · · − k′1h′i and χ is some fixed homo-
morphism

χ : Ci+1(X × I;ZCi(Fσ)
)

−→ Ci+1(X × I;Ci+1(Fσ)
)
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defined by γ(χ(ci+1))(σi+1) = ci+1 − k0[ci+1]γ , and ZC denotes the cycles
of C. Let aj(σ) = h′j+1

0 (σ × I). Put bj = β(aj) where β : C∗∗ −→ L∗∗ is
induced by β̃.

It is easy to see the fact that h′ is twisting and condition (B3) implies

dν(b(n−1)) = 0

in L(n−1). Now show that the assignment s̄n −→ b(n−1)
s̄n does not depend on

the homotopy class of s̄n.
Let t̄n be a section homotopic to s̄n. Then we consider the fibration ξ′′

over X × I × I induced from ξ by the projection X × I × I −→ X. Again
consider equation (1) for ξ′′ with the initial conditions, where we fix the
solution (s̄n, h̄) for ξ′ on X × I × 0, the solution (t̄n, h̄) for ξ′ on X × 0× I,
a homotopy between s̄n and t̄n on X × I × 1, and the constant homotopy
for s̄n on X×1× I. Let h′′ ∈ d(ξ′′) be any twisting cochain satisfying these
conditions. Put

θ′j(σ) = h′′j+2
0 (σ × I × I), 0 ≤ j ≤ n− 1,

and θj = β(θ′j). Then we have

dν(θ(n−1)) = b(n−1)
s̄n − b(n−1)

t̄n .

Define the map ψ by ψ([s̄n]) = b(n−1)
s̄n .

Conversely, we assign to a dν-cocycle, a(n−1) ∈ L0
(n−1), a section of ξ on

Xn as follows. We have that the argument of the proof of Theorem 1.2
defines a section, s′n : Xn −→ E (up to homotopy, since we again use the
fixed homomorphism χ above) such that if we fix sn and s′n respectively
on X × 0 and X × 1 in the initial conditions of (1) for ξ′, then there will be
a twisting cochain h′ ∈ d(ξ′) with h′(n)

0 (σ × I) = a′(n−1)(σ), β(a′(n−1)) =
a(n−1).

Let a(n−1) and b(n−1) be two dν-cocycles and let s′n and t′n be the corre-
sponding sections. If a(n−1) − b(n−1) is a dν-boundary, then by considering
the fibration ξ′′ over X × I × I we will get that s′n is homotopic to t′n.
Therefore the map

H0(L(n−1), dν) −→ [Xn−1, E]s

is defined, which is obviously the converse of ψ.

6. Applications

We will give some applications of the obstruction theory to the homotopy
classification of maps which immediately follow from the statements above.
For the application to the Lusternik-Schnirelmann category see [12]. We
hope to consider other applications elsewhere.



OBSTRUCTIONS TO THE SECTION PROBLEM IN A FIBRATION 161

We have

Theorem 6.1. Let f, g : X −→ Y be two weak formal maps. Let X, ΩY
satisfy conditions (A), (B1) and H∗(Y × Y ) = H∗(Y )⊗H∗(Y ). Then f is
homotopic to g if and only if

H(f) = H(g) : H∗(Y ) −→ H∗(X).

Proof. Let ΩY −→ E
ξ−→ X be the fibration induced from the path fibration

ΩY −→ Y I ζ−→ Y × Y by the composition (f × g) ◦ ∆ : X −→ Y × Y ,
where ∆ : X −→ X × X is the diagonal map. Then by Theorem 1.1 it
is sufficient to show that d(ξ) is transgressively trivial. Indeed, we have
d(ξ) = D(f) ◦ D(∆)d(ζ). But D(∆)(d(ζ)) corresponds to the free loop
fibration on Y ; therefore, it is transgressively trivial by Proposition 2.5,
and so is d(ξ).

Now this theorem and Proposition 2.1 imply the following:

Corollary 6.2. Let X, ΩY satisfy conditions (A) and (B1), let X be
weak formal and H∗(Y ) be polynomial. Then two maps f, g : X −→ Y are
homotopic if and only if

H(f) = H(g) : H∗(Y ) −→ H∗(X).

Theorem 6.3. Let a fibration ξ have the trivial twisting cochain 0 ∈
d(ξ) (e.g., H∗(E) ≈ H∗(X) ⊗ H∗(F ) and H∗(F ) has no torsion) and u∗ :
Hi(X; πj(F )) −→ Hi(X;Hj(F )) be injective for j = i− 1 and split injective
for j = i, i > 0. Then

[X, E]s ≈
∏

i

Hi(X; πi(F )).

Proof. It is similar to that of Theorem 1.4.

Corollary 6.4. Let for spaces X, Y , u∗ : Hi(X; πj(Y )) −→ Hi(X; Hj(Y ))
be injective for j = i− 1 and split injective for j = i, i > 0. Then

[X,Y ] ≈
∏

i

Hi(X; πi(Y )).

Note that in Theorem 6.3 the space X is not needed to be weak formal.
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