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HYPERPLANE SINGULARITIES OF ANALYTIC
FUNCTIONS OF SEVERAL COMPLEX VARIABLES

M. SHUBLADZE

Abstract. A new class of non-isolated singularities called hyperplane
singularities is introduced. Special deformations with simplest critical
points are constructed and an algebraic expression for the number of
Morse points is given. The topology of the Milnor fibre is completely
studied.

0. Introduction

This paper continues the investigation of special classes of non-isolated
singularities.

In [1] and [2] germs of analytic functions having a smooth one-dimensional
submanifold as a singular set were investigated, the simplest ones of such
germs being obtained as limits of simple isolated singularities of series Ak

and Dk. In our work germs of analytic functions f : (Cn+1, 0) → (C, 0) are
considered, having singularities on the hyperplane

H = {(x, y1, y2, . . . , yn) ∈ C× Cn | x = 0}.

Such singularities are called hyperplane singularities.
The paper is divided into 6 sections.
In Section 1, coordinate transformations preserving the singular hyper-

plane H are introduced and the equivalence of germs under such transfor-
mations is defined. Moreover, simplest germs of A∞ (local expression x2)
and D∞ (local expression x2y1) types are determined.

In Section 2 the notion of an isolated hyperplane singularity is introduced
and investigated.

In Section 3, for isolated hyperplane singularities, a special deformation
is constructed, having only A∞ and D∞ type singular points on the hyper-
plane H and only Morse points outside H.
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In Section 4 the number of Morse points is calculated for special defor-
mation of f .

In Section 5 the topology of the Milnor fibre is studied using the special
deformation. It is shown that the Milnor fibre is homotopy equivalent to the
wedge of a circle S1 with 2µ + σ copies of the sphere Sn, where µ = µ(g)
is the Milnor number of the isolated singularity g(0, y1, . . . , yn), while σ
is the number of Morse points of the deformation of f. To this end we
investigate the problem of determining a homotopy type of the complement
of a nonsingular (smooth) submanifold.

In Section 6 consideration is given to germs of analytic functions repre-
sentable as f = xkg(x, y1, . . . , yn), called hyperplane singularities of transver-
sal type Ak. For such singularities all the results obtained in Sections 1–5
are generalized.

1. Hyperplane Singularities

Let f : (Cn+1, 0) → (C, 0) be a germ of a holomorphic complex func-
tion of n + 1 complex variables (x, y1, . . . , yn) and let the hyperplane H =
{(x, y1, . . . , yn) | x = 0} consist of points z ∈ Cn+1 such that
gradf(z) = 0.

In the ring On+1 of all germs at zero of holomorphic functions, single out
the ideals

m = {f ∈ On+1 | f(0) = 0},
(x) = {f ∈ On+1 | f(0, y1, . . . , yn) = 0,∀(y1, . . . , yn) ∈ Cn+1}.

We are going to investigate elements from the ideal (x2). The following
characterization of these elements is valid:

Lemma 1.1. Let f : (Cn+1, 0) → (C, 0) be a germ of a holomorphic
function, having H as its singular set. Then such a germ can be represented
in the form f = x2g(x, y1, . . . , yn), where g is a smooth germ from the ring
On+1.

In the group Dn+1 of germs of local diffeomorphisms of Cn+1 at the ori-
gin, consider a subgroup consisting of diffeomorphisms ϕ ∈ Dn+1 satisfying
ϕ(H) = H. In the following all the coordinate transformations considered
will preserve the hyperplane H, i.e., belong to DH .

Let us introduce some definitions.

Definition 1.2. A singular point z ∈ H is called a point of type A∞, if
Hessx f = ∂2f

∂x2 (x, y1, . . . , yn) is nonzero at this point.
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Definition 1.3. A singular point is called a point D∞ if the gradient of
the function Hessx f with respect to variables yi, i = 1, . . . , n, written as

(

∂
∂y1

(

∂2f
∂x2

)

,
∂
∂y2

(

∂2f
∂x2

)

, . . . ,
∂

∂yn

(

∂2f
∂x2

))

,

is not equal to zero at this point.

The following simple assertions are easy to prove.

Proposition 1.4. A singular point z ∈ H is of the type A∞ if and only
if in some neighborhood of z there exists a coordinate transform from the
group DH which reduces f to x2.

Proposition 1.5. A singular point z ∈ H has type D∞ if and only if in
some neighborhood of z there is a coordinate transform with respect to H
which changes f to x2y1.

Let Orb(f) denote an orbit of the germ f under the action of DH . As
always the simplest orbits are of interest.

Having in mind to characterize isolated singularities, and in accord with
the finite dimensional case, let us introduce a measure for germ complexity.

Definition 1.6. The number

codim(f) = dimC
[

(x2)/τ(f)
]

,

where τ(f) is the tangent space to Orb(f) at f , is called the codimension
of a hyperplane singularity f .

2. Isolated Hyperplane Singularities

Now we can give a simple criterion for finite determinacy:

Theorem 2.1. Let f ∈ (x2) be a hyperplane singularity not of type
A∞ or D∞ such that in the presentation f = x2g(x, y1, . . . , yn) the germ
g(0, y1, . . . , yn) is, as a germ of a function of y1, . . . , yn, an isolated singu-
larity. Then the following assertions are equivalent:

(a) codim f is finite;
(b) the function g(x, y1, . . . , yn) has an isolated singularity;
(c) f has a singularity of type A∞ outside points with g(0, y1, . . . , yn) = 0

and a singularity of typeD∞ at points with g(0, y1, . . . , yn) = 0, except the
origin.
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Proof. Let us show that (a) implies (b). Indeed, if codimf < +∞, then
dimC

[

(x2)/τ(f)
]

< +∞, where τ(f) has type (ξxg + ξx2gx, η1x2gy1 , . . . ,
ηnx2gyn), ξ ∈ (x), ηi ∈ m, i = 1, . . . , n. To the function g associate the
ideal (gx, gy1 , . . . , gyn); according to Briançon–Skoda’s theorem [3], gn+1 ∈
(gx, gy1 , . . . , gyn). Clearly, this implies τn+1(f) ∈ (x2gx, x2gy1 , . . . , x

2gyn)
and since

dimC
[

(x2)/τn+1(f)
]

= dimC
[

(x2)/τ(f)
]

+ dimC
[

τ(f)/τn+1(f)
]

< +∞,

one obtains

dimC
[

(x2)/(x2gx, x2gy1 , . . . , x
2gyn)

]

= dimOn+1
C [(gx, gy1 , . . . , gyn)] < +∞;

hence g(x, y1, . . . , yn) has an isolated singularity.
(b)⇒(c). Let g have an isolated singularity and g(0, y1, . . . , yn) have

an isolated singularity at zero, i.e., grad g(0, y1, . . . , yn) = 0 only at the
origin. Then for an arbitrary point z of the space {g(0, y1, . . . , yn) = 0}
the gradient of this function will be nonzero; assume, for definiteness, that
∂g
∂y1

(0, y1, . . . , yn) is not zero at z and consider a transformation from the
group DH

x̃ = x, ỹ1 = g(x, y1, . . . , yn), ỹi = yi, i = 2, . . . , n,

whose Jacobian is ∂g
∂y1

(0, y1, . . . , yn) 6= 0 and reduces f to the form x̃2ỹ1,
i.e., f has type D∞ at the point z.

At the points outside the set g(0, y1, . . . , yn) = 0 on the singular hyper-
plane x = 0, consider the element of the group DH determined by

x̃ = x
√

g(x, y1, . . . , yn), ỹ = yi, i = 1, . . . , n,

whose Jacobian equals
√

g(0, y1, . . . , yn) 6= 0 and which transforms f to the
function x̃2, i.e., f has type A∞ at these points.

(c)⇒(a). Let f be some representative of the germ of a given hyperplane
singularity. Define on its domain a sheaf of On+1-modules as follows:

F(u) = (x3)/
(

τ(f) ∩ (x3)
)

,

where (x3) and τ(f) are considered as modules over the ring of holomorphic
functions on u ⊂ Cn+1, while On+1 is the sheaf of holomorphic functions
on Cn+1. The sheaf F is coherent, hence we may use the fact that F has
support consisting of a single point if and only if dimΓ(F) < ∞, where as
usual Γ(F) denotes the space of sections of F over u.

For x 6= 0 the function f is regular at p = (x, y1, . . . , yn), and one has
dimFp = 0; hence (x3) ∼= (On+1)p and τ(f) ∼= (On+1)p. If x = 0, but
(y1, . . . , yn) does not belong to the space {g(0, y1 . . . , yn) = 0}, then the
germ of f is right equivalent to x2 under the action of DH , and (x2) ∼=
τ(f); hence at this points dimFp = 0. Suppose now that x = 0 and
g(0, y1, . . . , yn) = 0. Then f is right equivalent to the germ of x2y1, if
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(x, y1, . . . , yn) 6= (0, . . . , 0); hence outside the origin one obtains τ(f) ∼= (x3)
and consequently dimC Fp = 0. Hence the sheaf F has support 0, whence,
by the above remark about one-point supported sheaves, one concludes that
dimC (x3)/

(

(x3) ∩ τ(f)
)

< ∞. This implies the finiteness of multiplicity of
the hyperplane singularity f.

Definition 2.2. A hyperplane singularity f = x2g(x, y1, . . . , yn) not of
type A∞ or D∞ is called isolated if both g(0, y1, . . . , yn) and
g(x, y1, . . . , yn) have isolated singularities.

3. Deformations of Hyperplane Singularities

For isolated hyperplane singularities one can construct special deforma-
tions having singular points of type A1, A∞, D∞.

Theorem 3.1. Let f : (Cn+1, 0) → (C, 0) be an isolated hyperplane sin-
gularity f = x2g(x, y1, . . . , yn). Then there exists a deformation fλ, λ ∈
Cn+1, within the class of isolated hyperplane singularities, which has singu-
lar points of types A∞ and D∞ on the hyperplane H and only Morse points
outside H, and such a deformation can be given in the form

fλ = x2(g(x, y1, . . . , yn) + λ1y1 + · · ·+ λnyn + λn+1),

where λ1, . . . , λn+1 are sufficiently small complex numbers.

Proof. Suppose that on the hyperplane H one has

g(0, y1, . . . , yn) + λ1y1 + · · ·+ λnyn + λn+1 6= 0;

then consider the transformation from the group DH given by

x̃ = x
√

g(x, y1, . . . , yn) + λ1y1 + · · ·+ λnyn + λn+1,

ỹi = yi, i = 1, . . . , n.

Since ∂x̃
∂x

∣

∣

∣

x=0
=

√

g(0, y1, . . . , yn) + λ1y1 + · · ·+ λnyn + λn+1 6= 0, the Ja-
cobian of this transformation is nonzero, and in these coordinates the sin-
gularity ˜f has type A∞.

Now suppose g(0, y1, . . . , yn) + λ1y1 + · · ·+ λnyn + λn+1 = 0 and choose
λn+1 from Reg(g(0, y1, . . . , yn) + λ1y1 + · · · + λnyn) and λi, i = 1, . . . , n,
from Reg grad(g(0, y1, . . . , yn)). This is possible, since f has an isolated
hyperplane singularity and hence g(x, y1, . . . , yn) and g(0, y1, . . . , yn) have
isolated singularities. Supposing, for definiteness, that ∂g

∂y1
(0, y1, . . . , yn) +

λ1 = 0, and consider a transformation of the form

x̃ = x,

ỹi = g(0, y1, . . . , yn) + λ1y1 + · · ·+ λnyn + λn+1,

ỹi = yi, i = 2, . . . , n.
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This is an element of DH , with the Jacobian ∂g
∂y1

+ λ1, which is nonzero.
In the new coordinates, fλ has only D∞ type singular points on the

smooth submanifold

{(y1, . . . , yn) ∈ C | g(0, y1, . . . , yn) + λ1y1 + · · ·+ λnyn + λn+1 = 0} ,

while outside the submanifold the function fλ has only A∞ type singularities
on H.

Consider the whole critical set of fλ. It consists of a singular hyperplane
H and a set determined by the system of equations































x 6= 0
2g + 2λ1y1 + · · ·+ 2λn+1 + xgx = 0
gy1 = −λ1
...
gyn = −λn .

At these points Hessfλ has the form

Hessfλ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

3xgx + x2gxx x2gxy1 . . . x2gxyn

x2gy1x x2gy1y1 . . . x2gy1yn

...
...

. . .
...

x2gynx x2gyny1 . . . x2gynyn

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Consequently the set {Hessfλ = 0} does not depend on λ1, . . . , λn+1 and
so for almost all λ1, . . . , λn+1 the points given by the above system are the
Morse ones.

Following Damon [4], one can introduce the notion of a versal deformation
of hyperplane singularities. The theorem on deformation implies

Corollary 3.2. A hyperplane singularity possesses a versal deformation
if and only if it is isolated, in which case the deformation can be given as
F (x, y1, . . . , yn, λ) = f(x, y1, . . . , yn) +

∑σ
i=1 λiei(x, y1, . . . , yn), where σ =

codim f, and e1, . . . , eσ are the representatives for the C-base of the space
(x2)/τ(f).

4. The Number of Morse Points

Let f ∈ (x2) have an isolated hyperplane singularity; then according to
Theorem 3.1, there exists a deformation, having, on H, A∞ and D∞ type
singular points and a certain number s of Morse points outside H. It turns
out that this number does not depend on the deformation choice and can
be calculated in a purely algebraic way.
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Theorem 4.1. The number of Morse points of a deformation of f is
calculated by the formula

s = dimC
[

(x2)/(xfx, fy1 , . . . , fyn)
]

.

Proof. Let F : (Cn+1 × Cσ, 0) → (C, 0) be a versal deformation of the
singularity f, where f = x2g(x, y1, . . . , yn). Then F = x2G(x, y1, . . . , yn, λ),
λ ∈ Cσ, where G ∈ Ox,y1,...,yn,λ satisfies G|λ=0 = g.

Clearly, the number of Morse points of s is obtained as the number of
solutions of the following system of equations lying outside the singular
hyperplane {x = 0}, for some sufficiently small value of the parameter λ,

Fx = 0, Fy1 = 0, . . . , Fyn = 0,

where Fx and Fyi are the partial derivatives of the function F with respect
to x and yi, respectively.

One can trace a part consisting of values of the parameter λ0 which obey
the transversality of the intersection of the plane λ = λ0 with the singular
set of Fλ0 outside the singular plane {x = 0}; hence by the definition of the
intersection index, the number of Morse points coincides with the intersec-
tion index of the plane {λ = 0} with the germ of the surface S ⊂ Cn+1×Cσ

determined as closure of the germ of the set

{Fx = 0, Fy1 = 0, . . . , Fyn = 0, x 6= 0}.

Since x 6= 0, one can cancel it, which exactly corresponds to considering
only the singularities outside {x = 0}; hence

S = {2G + xGx = 0, Gy1 = 0, . . . , Gyn = 0} ⊂ Cn+1 × Cσ.

Since the set S is defined only by functions with isolated singularities, one
gets by [5]

S = dimC [Ox,y1,...,yn,λ/(2G + xGx, Gy1 , . . . , Gyn)] =

= dimC [Ox,y1,...,yn/ (Ox,y1,...,yn(2g + xgx, gy1 , . . . , gyn))] =

= dimC
[

(x2)/(2x2g + x3gx, x2gy1 , . . . , x
2gyn)

]

=

= dimC
[

(x2)/(xfx, fy1 , . . . , fyn)
]

.

5. Topology of Isolated Hyperplane Singularities

Let f : (Cn+1, 0) → (C, 0) be an isolated hyperplane singularity with the
singular set H = {x = 0}, and let fλ be a deformation of the singularity f
obtained by Theorem 3.1. Choose ε0 > 0 such that for any ε with 0 ≤ ε ≤ ε0
one has f−1(0) t ∂Bε, i.e., the fibre f−1(0) is transversal to the boundary
of a ball of radius ε in Cn+1. (This is possible since f−1(0) is an algebraic
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stratified set.) For such ε > 0 there is η(ε) such that f−1(t) t ∂Bε for any
0 < |t| < η(ε). Fix ε ≤ ε0 and consider 0 < η ≤ η(ε) and the restriction

fλ : XD = f−1(Dη) ∩Bε → Dη,

where Dη is a disc of radius η in C.

Lemma 5.1. Let fλ be a deformation of the isolated hyperplane singu-
larity f. Consider the restriction

fλ : XD,λ = f−1
λ (Dη) ∩Bε → Dη,

for any 0 ≤ ‖λ‖ < δ and 0 < |t| < η, where δ and η are sufficiently small
numbers. Then the following assertions are valid:

1. f−1
λ (t) t ∂Bε.

2. Fibrations induced over ∂Dη by f and fλ are equivalent.
3. XD and XD,λ are homeomorphic.

Proof. At the points of H ∩ ∂Bε one has A∞ and D∞ type singulari-
ties. If z ∈ H ∩ ∂Bε is an A∞ type singular point, there exist coordi-
nates (x, y1, . . . , yn) with fλ(s)(x, y1, . . . , yn) ∼ x2, where fλ(s) is a one-
parameter deformation of the singularity f and the coordinate x depends
on λ smoothly. For t 6= 0 the tangent space f−1

λ(s)(t) is obtained from the
equation

x0(x− x0) = 0,

i.e., x = x0, which is a hyperplane parallel to H and hence transversal to
∂Bε, as H is preserved under the coordinate transform involved.

Now assume that z ∈ H ∩ ∂Bε is a D∞ type singularity; then one has

fλ(s)(x, y1, . . . , yn) ∼ x2y1.

Hence the tangent space to f−1
λ(s)(t) at (x0, y0

1 , . . . , y0
n) has the form

(x− x0)x0y0
1 + (y1 − y0

1)x2
0 = 0,

i.e., x = x0, y1 = y0
1 , which is transversal to ∂Bε, since the set y1 = y0

1
coincides with {g(0, y1, . . . , yn) + λ1y1 + · · ·+ λnyn + λn+1 = y0

1}, and this
set is compact and intersects ∂Bε ∩H transversally.

We have thus established that at the points z ∈ H∩∂Bε the transversality
condition holds, while at the points from ∂Bε\H the map is a submersion.
Since f−1(0) ∩ ∂Bε is compact and transversality is an open property, this
implies f−1

λ(s)(t) t ∂Bε, 0 ≤ ‖λ‖ < δ and 0 < |t| < η, which concludes the
proof of assertion (1).

Let us prove (2). Consider the mapping

F (x, y1, . . . , yn, s) = (fλ(s)(x, y1, . . . , yn), s).
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Define
YD,s0 = F−1(Dη × [0, s0]) ∩ (Bε × [0, s0])

and the mapping

FD,s : YD,s0 → Dη × [0, s0] → [0, s0]

which is well defined for any s ∈ [0, s0] fλ(s) : XD,s → Dη; the map FD,s is
submersive at the internal points of

F−1(∂Dη × [0, s0]) ∩ (intBε × [0, s0]),

since dfλ(s) has a maximal rank over the boundary of Dη. The restriction
of FD,s to the boundary of

F−1(∂Dη × [0, s0]) ∩ (∂Bε × [0, s0])

is also a submersion, since f−1
λ(s)(t) t ∂Bε for any t ∈ Dη, λ(s), s ∈ [0, s0].

Now one can apply the theorem of Ehresmann [6] to find that FD,s is a
trivial fibration over the contractible set [0, s0] and, consequently, for any s
the maps fλ(s) determine equivalent fibrations over the boundary of Dη.

Finally, (3) follows from Thom’s lemma on isotopy [7] needed for describ-
ing a homotopy type of the Milnor fibre.

Now let us turn to the main construction.
Let b1, . . . , bσ be Morse points for the deformation fλ := ˜f with critical

values ˜f(b1), . . . , ˜f(bσ). Define B1, . . . , Bσ to be disjoint 2n+2-dimensional
balls in Cn+1 centered at b1, . . . , bσ respectively, and let D1, . . . , Dσ be dis-
joint 2-dimensional discs centered at ˜f(b1), . . . , ˜f(bσ). Let

˜f : Bi ∩ ˜f−1(Di) → Di, i = 1, . . . , σ,

be locally trivial Milnor fibrations satisfying the transversality condition

˜f−1(t) t ∂Bi, t ∈ Di, i = 1, 2, . . . , σ.

Choose furthermore a small cylinder B0 around H and a 2-dimensional disc
D0 ⊂int ˜f(B0), satisfying

∂B0 t ˜f−1(t) for t ∈ D0.

First of all, let us investigate the fibration ˜f : B0 ∩ ˜f−1(D0) → D0. Its fibre
˜f−1(t) ∩ B0 can be in turn fibred over Bε ∩ (H\U) using the projection π,
where U is a tubular neighborhood of the smooth nonsingular subvariety

g(0, y1, . . . , yn) + λ1y1 + · · ·+ λnyn + λn+1 = 0,

with π(x, y1, . . . , yn) = (0, y1, . . . , yn). This projection may have singulari-
ties. To describe them, consider the mapping

ϕ
f̃

: ˜f−1(D0) ∩B0 → C× Cn,
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defined by

ϕ
f̃
(x, y1, . . . , yn) = ( ˜f(x, y1, . . . , yn), y1, . . . , yn).

The Jacobi matrix of this mapping has the form












∂f̃
∂x

∂f̃
∂y1

· · · ∂f̃
∂yn

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1













.

Hence the critical set of ϕ
f̃

is given by the equation

∂ ˜f
∂x

= 0. (Γ)

The hypersurface Γ contains the hyperplane H, i.e., Γ = H ∪Γ
f̃
; and the

projection
π := ˜f−1(t) ∩B0 → Bε ∩ (H\U)

is smooth outside Γ
f̃
.

Lemma 5.2. The hypersurface Γ
f̃

meets H at D∞ type points.

Proof. We shall prove that if Γ
f̃

meets H at D∞ type points, then Γ
f̃

coincides with H.
Let ˜f = x2g̃, where g̃ = g(x, y1, . . . , yn) + λ1y1 + · · ·+ λnyn + λn+1 and

g̃(0, . . . , 0) 6= 0. Then

∂ ˜f
∂x

= 2xg̃ + x2g̃

and since g̃(0, . . . , 0) 6= 0, x can be expressed by the module x2. Hence

(x) ⊂ (∂f̃
∂x ) + (x2).

By Nakayama’s lemma this implies (x) = (∂f̃
∂x ). Consequently, the set

defined by the equality ∂f̃
∂x = 0 coincides with the set x = 0, i.e., Γ

f̃
= H.

This concludes the proof.

The lemma implies that the projection π is a locally trivial fibration
outside D∞ type singular points, and its fibre is given by the equation
˜f = t. And since the set π−1(Bε ∩ (H\U)) is compact and consists of A∞
type singular points, ( ˜f ∼ x2), the fibre locally consists of two points. By
compactness of the aforementioned set one can choose a radius for B0 in
such a way that π will define a double covering over Bε ∩ (H\U).
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Let us introduce the space Bε ∩ (H\U) = ˜Bε\U , where ˜Bε is a 2n-
dimensional ball in the space Cn and U is a small tubular neighborhood of
the smooth nonsingular variety

˜V = {g(0, y1, . . . , yn) + λ1y1 + · · ·+ λnyn + λn+1 = 0};

obviously, ˜Bε\˜V and ˜Bε\U are of the same homotopy type.
Our aim is to investigate a homotopy type of the complement to ˜V .
The homology of that space is easily computed from Leray’s exact ho-

mological sequence

δ∗−→ Hq( ˜Bε\˜V )
j∗−→ Hq( ˜Bε)

i∗−→ −Hq−2(˜V ) δ∗−→ Hq−1( ˜Bε\˜V )
j∗−→

obtained from Leray’s exact cohomological sequence [8] by the Poincaré
duality

δ∗−→ Hp( ˜Bε\˜V )
j∗−→ Hp( ˜Bε)

i∗−→ Hp(˜V ) δ∗−→ Hp+1( ˜Bε\˜V )
j∗−→,

where j∗ are induced by the embedding j : ˜Bε\˜V ⊂ ˜Bε, i∗ is the intersection
of cycles from H∗( ˜B) and H∗(˜V ), and δ∗ is the Leray coboundary.

Since ˜V is a smooth nonsingular submanifold of real codimension two
which is homotopy equivalent to the wedge of µ(g) copies of the n − 1-
spheres, where µ(g) is the Milnor number of the isolated singularity g, one
obtains H0(˜V ) = Z,Hn−1(˜V ) = Zµ(g), and Hi(˜V ) = 0 for i 6= 0, n − 1.
Taking this in account, one obtains from Leray’s exact homological sequence
that

H1( ˜Bε\˜V ) = Z,Hn( ˜Bε\˜V ) = Zµ(g) and Hi( ˜Bε\˜V ) = 0, if i 6= 0, 1, n.
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To find the homotopy type of the Milnor fibre, let us prove

Lemma 5.3. For sufficiently small t the complement ˜Bε\˜V of the non-
singular hypersurface ˜V inside the ball ˜Bε is homotopy equivalent to the
space obtained from the direct product S1 × ˜V by filling all the vanishing
spheres Sn−1

i , i = 1, 2, . . . , µ, with n-dimensional balls, in one of the fibres
{t0} × V for some t0 ∈ S1, where µ is the Milnor number of the isolated
singularity g(0, y1, . . . , yn).

Proof. Take a small neighborhood u of the point t0 ∈ D0 and let ū be
its closure. Let t0 ∈ ∂u. Connect the critical values ti of the mapping
g(0, y1, . . . , yn) + λ1y1 + · · · + λnyn + λn+1 with t by disjoint paths vi(τ),
where vi(0) = ti and vi(1) = t0 (see Figure 1).

The disc D0\t is a deformation retract of the set
⋃µ

i=1 vi(τ)∪(ū\t). Since
g̃(0, y1, . . . , yn) = g(0, y1, . . . , yn) + λ1y1 + · · · + λnyn + λn+1 is a locally
trivial Milnor fibration in the ball ˜Bε, by the homotopy lifting property one
obtains that g̃−1(D0\t) is homotopy equivalent to g̃−1 ⋃µ

i=1 vi(τ) ∪ (ū\t).
Restrictions of the locally trivial fibration on the contractible set are trivial;
consequently g̃−1(ū\t) is a total space of the trivial fibration over ū\t, i.e.,
over a circle, with fibre {g̃(0, y1, . . . , yn) = t}∩ ˜Bε, diffeomorphic to ˜V , hence
g̃−1(ū\t) is homotopy equivalent to the direct product S1 × ˜V .

Following [9], we shall show that the space Y = g̃−1(
⋃µ

i=1 v(τ)) is ob-
tained, up to homotopy type, from the fibre V by filling all the spheres
∆n−1

i , i = 1, 2, . . . , µ with n-dimensional balls Ti. Let

Si(t) : Sn−1
i −→ Si(t) ⊂ Fvi(t) (0 ≤ t ≤ 1)

be the family of maps of the standard n− 1-dimensional sphere Sn−1
i (the

index i counts copies of the sphere), determining the vanishing cycle ∆i =
Si(1)(Si(0) : Sn−1

i → Pi). Let Ti be the n-dimensional ball constructed as
the cone over the sphere Sn−1

i ,

T = [0, 1]× Sn−1
i /{0} × Sn−1

i .

The space ˜V ∪∆i {Ti} obtained from the fibre ˜V by filling in the vanishing
cycles ∆i with n-balls Ti is the quotient of ˜V ∪

⋃µ
i=1 Ti under the equivalence

relation

Si(1)(a) ∼ (1, a), a ∈ Sn−1
i , (1, a) ∈ Ti, i = 1, . . . , µ,

and its mapping to the space Y can be written as

ϕ(x) = x for x ∈ ˜V ⊂ Y ; ϕ(t, a) = Si(t)(a) for (t, a) ∈ Ti, 0 ≤ t ≤ 1,

a ∈ Sn−1
i . Let us construct the inverse mapping ψ : Y → ˜V ∪∆i {Ti}

by putting ψ(y) = y for y ∈ ˜V , ψ(y) = (t, a) for y ∈ ˜Vvi(t), if under the
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homotopy equivalence between ˜Vvi(t) and the wedge
∨µ

i=1 ∆i the point y
passes Si(t)(a) for a ∈ Sn−1

i . Consider the composition

ψ ◦ ϕ : ˜V ∪∆i {Ti} → ˜V ∪∆i {Ti}.

Then ψ(ϕ(x)) = x for x ∈ ˜V and ψ◦ϕ is homotopic to the identity mapping
of ˜V ∪∆i {Ti}, since ˜Vvi(t) for 0 < t ≤ 1 is homotopy equivalent to the
wedge of the spheres ∆i, while ˜Vvi(0) – to that without one of them (the one
vanishing along vi). Similarly, ϕ ◦ ψ : Y → Y is homotopic to Idy, which
proves the homotopy equivalence.

The space (ū\t) ∪
⋃µ

i=1 vi(τ) is the amalgam [10] of the diagram
µ
⋃

i=1

vi(τ) ←− {t0} −→ ū\t,

whence the inverse image of this space under the mapping g̃ will be the
amalgam of the inverse image of the diagram [10], i.e., of the diagram

g̃−1

( µ
⋃

i=1

v(τ)

)

←− ˜Vt0 −→ g̃−1(ū\t),

where ˜Vt0 is diffeomorphic to ˜V . We arrived at the amalgam of

˜V ∪∆i

µ
⋃

i=1

{Ti} ←− ˜V −→ ˜V × S1,

which is the space ˜V ×S1 with all the vanishing spheres in the fibre over t0
filled with n-balls.

An even more general fact can be proved.

Proposition 5.4. Let g : (Cn, 0) → (C, 0) be a germ of an isolated
singularity; then V = {g = t} ∩ Bε, where ˜Bε is a small ball in Cn, is, for
small t, homotopy equivalent inside ˜Bε to S1 × V with n-dimensional balls
filling in all the vanishing spheres of one of its fibres V.

Proof. Let g̃ be the morsification of the isolated singularity g in the ball
˜Bε, having nondegenerate critical points pi with different critical values
ti = g̃(pi); then V = {g = t} ∩ ˜Bε is diffeomorphic to V.

We shall show that ˜Bε\V is homotopy equivalent to ˜Bε\˜V , which by
Lemma 5.3 will imply our proposition.

Let ε > 0 and δ > 0 be chosen in such a way that g̃−1(t) = g̃−1
λ (t) is

transversal to ∂ ˜Bε for any 0 ≤ ‖λ‖ ≤ δ. Consider the mapping given by
F (x, λ) = (gλ(x), λ) and its restriction

Ft,δ = F−1({t} × [0, δ]) ∩ ( ˜Bε × [0, δ]) → {t} × [0, δ] → [0, δ].
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The mapping Ft,δ is submersive at the interior points of

F−1({t} × [0, δ]) ∩ (int ˜Bε × [0, δ]),

since dgλ has a maximal rank over {t}. Moreover, the restriction of Ft,δ on
the boundary of F−1({t}×[0, δ])∩(δ ˜Bε×[0, δ]) is submersive as g̃−1(t) t ∂ ˜Bε

for any λ ∈ [0, δ]. By Ehresmann’s theorem [6] one obtains a locally trivial
fibration over the contractible space [0, δ], which is trivial. Consequently, V
is diffeomorphic to the fibre ˜V .

Let T be a tubular neighborhood of the submanifold V. Choose 0 <
δ1 < δ sufficiently small for the fibre F−1(δ1) to lie inside T. Making δ1
still smaller, one can make T into a tubular neighborhood for F−1(δ1) too.
This will imply that ˜Bε\T is homotopy equivalent to ˜Bε\V and ˜Bε\F−1(δ1)
simultaneously; hence ˜Bε\V is homotopy equivalent to ˜Bε\F−1(δ1). By the
compactness of [0, δ] in a finite number of steps one obtains the homotopy
equivalence of ˜Bε\V to ˜Bε\˜V .

Corollary 5.5. The complement ˜Bε\V is homotopy equivalent to a
wedge of S1 and µ copies of the n-sphere Sn, where µ is the Milnor number
of the isolated singularity g(y1, . . . , yn).

Proof. By Lemma 5.4, ˜Bε\V is homotopy equivalent to the direct pro-
duct S1 × V, where over a point t0 ∈ S1 the fibre V is contracted to a
point, hence such a space is homotopy equivalent to the suspension of V
with the identified vertices, i.e., suspension of the wedge of (n− 1)-spheres
Sn−1

i , i = 1, . . . , µ(g), with identified vertices, which is obviously a wedge
of µ(g(y1, . . . , yn)) copies of the n-sphere and a circle (see Figure 2).
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We obtain that Bε ∩ (H\U), where U is a tubular neighborhood of the
smooth nonsingular subvariety g(0, y1, . . . , yn)+λ1y1 + · · ·+λnyn +λn+1, is
homotopy equivalent to the wedge of a circle S1 and µ = µ(g(0, y1, . . . , yn))
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copies of the n-sphere and one has a double covering

π : ˜f−1(t) ∩B0 → Bε ∩ (H\U).

Represent Bε ∩ (H\U) as a union of V1 and V2, where V1 has homotopy
type of a circle, while V2 has homotopy type of a wedge of n-spheres, and
where V1∩V2 is contractible. Since π is a double cover, π−1(V1) is homotopy
equivalent to the circle S1, while over the simply connected space V2 the
covering π is trivial, hence π−1(V2) consists of a disjoint union of two wedges
of µ = µ(g(0, y1, . . . , yn)) copies of the n-sphere Sn, and, since π−1(V1) is a
doubly winded circle, one obtains that ˜f−1(t)∩B0 is homotopy equivalent to
the wedge of S1 and 2µ(g(0, y1, . . . , yn)) copies of the n-spheres Sn. Hence
we arrive at

Lemma 5.6. Let an isolated hyperplane singularity be not of type A∞;
then the fibre of the Milnor fibration in a small cylinder B0

˜Xt = ˜f−1(t) ∩B0

is homotopy equivalent to the wedge of a circle S1 and 2µ copies of the n-
sphere, where µ is the Milnor number of the isolated singularity g(0, y1,...,yn).

We have already established that the critical set ˜f consists of
(a) the hyperplane H;
(b) Morse points b1, . . . , bσ.
We have defined the small discs Di around the points ˜f(bi), the disjoint

disc balls Bi over the points bi and the cylinder B0 over the singular set H.
Now choose ti ∈ ∂Di, t ∈ Dη and a system of separate paths γ0, γ1, . . . , γσ

from the point t to ti (see Figure 3)
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Let us introduce the notations

D =
σ
⋃

i=0

Di, XA = f˜−1(A) ∩Bε, A ⊂ Dη, ˜Xs = f−1(s) ∩Bε, s ∈ Dη.

Define suitable neighborhoods of the critical sets as follows:
(1) for the hyperplane H : r0(z) = |x|2 and let

B0(ε̃) = {z ∈ Bε | r0(z) ≤ ε̃, ε̃ � ε};

(2) for the Morse points bi : ri(z) = |z − bi|2 and

Bi(ε̃) = {z ∈ Bε | ri(z) ≤ ε̃, ε̃ � ε}.

As shown by Lemma 5.1, for ˜f there exists ε0 such that for any 0 < ε̃ ≤ ε̃0
the set X0 is transversal to ∂B0(ε̃) and there is ε̃i such that for any ε̃ with
0 < ε̃ ≤ ε̃i the set Xf(bi) is transversal to ∂Bi(ε̃), i = 1, 2, . . . , σ, as the
points bi are the Morse ones [11].

Since the transversality condition is open, for any 0 < ε̃ ≤ ε̃i, i =
0, 1, . . . , σ, there exists τi = τi(ε̃), such that Xi t ∂Bi(ε) for any

0 < |t− ˜f(bi)| ≤ τi, i = 0, 1, . . . , σ, where f(b0) = 0.

Now fix ε̃ > 0 and τ > 0 and require Bi(ε̃) and Di(τ) to be disjoint balls
and discs, respectively.

Denote

Bi = Bi(ε), Di = Di(τ), Ei = Bi ∩XDi ,

E = Bε ∩XDη , F i = Bi ∩Xti , F = Bε ∩Xt.

We shall need the isomorphism (see [2])

H∗(E, F ) '
σ

⊕

i=0

H∗(Ei, F i).

This implies that the homology groups H∗(E, F ) are direct sums of homol-
ogy groups over all critical sets. The situation for the Morse points b1, . . . , bσ

is very well known [11]

Hk+1(Ei, F i) = Hk(F i) =

{

Z, k = 0, n,
0, k 6= n.

Hence we finally obtain
{

Hn+1(E,F ) = Hn(E0, F 0)⊕ Zσ,
Hk(E, F ) = Hk(E0, F 0), k 6= n + 1.
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To calculate the homology groups Hk(E0, F 0), write down an exact se-
quence of the pair (E0, F 0) [12]

· · · → Hk(E0) → Hk(E0, F 0) → Hk−1(F 0) → Hk−1(E0) → . . . .

The spaces E0 = E ∩ B0 and E are homotopy equivalent, while E is con-
tractible [11]. Therefore

0 → Hk(E0, F 0) → Hk−1(F 0) → 0.

This implies Hk(E0, F 0) ∼= Hk−1(F 0).
Similarly, one obtains Hk(E, F ) = Hk−1(F ) so that we have

{

Hn(F ) = Hn(F0)⊕ Zσ ,
Hk−1(F ) = Hk−1(F0) , k 6= n.

By Lemma 5.6 we obtain

Proposition 5.7. Homology groups of the Milnor fibre are calculated as
follows:



















H0(F ) = Z,
H1(F ) = Z,
Hn(F ) = Z2µ+σ,
Hi(F ) = 0, i 6= 0, 1, n,

where µ = µ(g(0, y1, . . . , yn)) is the Milnor number of an isolated singularity
and σ is the number of the Morse critical points for ˜f, which by Theorem
4.1 equals

σ = dimC
[

(x2)/(xfx, fy1 , . . . , fyn)
]

.
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Now let us determine a homotopy type of the fibre F . We have
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Theorem 5.8. Let f be an isolated hyperplane singularity (not of A∞
type). Then the Milnor fibre of f is homotopy equivalent to the wedge of a
circle S1 and 2µ + σ copies of the n-dimensional sphere, where µ = µ(g) is
the Milnor number of the isolated singularity g(0, y1, . . . , yn), while σ is the
number of Morse points of the deformation ˜f.

Proof. Let Dη, D0, . . . , Dσ and Bε, B0, . . . , Bσ be as before. Let t be a
point in ∂D0, and choose a system of separate paths ψ1, . . . , ψσ from t to
D1, . . . , Dσ (see Figure 4).

Applying the Morse lemma [13] to |f | which has b1, . . . , bσ as Morse points
of the index n + 1, one obtains the homotopy equivalences

(XDη , Xt) ∼= (XD0 ∪ψ1 en+1
1 ∪ · · · ∪ ψσen+1

σ , Xt),

(XD0 , Xt) ' (XD0 ∩B0 ∪Xt, Xt).

Let ϕ1, ϕ2, . . . , ϕ2µ : Sn → F 0 and ϕ0 : S1 → F 0 represent the generators
of πn(F 0) and π1(F 0), respectively. Use ϕ0, . . . , ϕ2µ to attach a 2-cell and
n + 1-cells e2

0, e
n+1
1 , . . . , en+1

2µ to F0 = Xt ∩B0.
The inclusion Xt ∩B0 ⊂ XD ∩B0 extends to the homotopy equivalence

Xt ∪ϕ0 en+1
1 ∪ · · · ∪ϕ2µ en+1

2µ → XD0 ∩B0

as both spaces are contractible. This gives the homotopy equivalence

(XD0 , Xt) ' (Xt ∪ϕ0 en+1
1 ∪ · · · ∪ϕ2µ en+1

2µ , Xt).

Finally, we obtain the contractible space XDη from the fibre Xt by attaching
σ + 2µ copies of the n + 1-cell and one 2-cell, and since attaching n + 1-
cells does not change homotopy groups in dimension n − 1, it follows that
Xt ∪ϕ0 e2

0 is n− 1-connected.
The homology group Hn(Xt ∪ϕ0 en+1

1 ) must be free abelian, since any
torsion elements would give rise to nonzero elements in the (n + 1)th co-
homology group, which would contradict the fact that Xt ∪ϕ0 e2

0 is an n-
dimensional CW-complex. According to Hurewich’s theorem [12] there is
an isomorphism πn(Xt ∪ϕ0 e2

0) ' Hn(Xt ∪ϕ0 e2
0). Hence πn(Xt ∪ϕ0 e2

0) is a
free abelian group, and one can choose a finite number of maps

(Sn−1
i , basepoint) → (Xt ∪ϕ0 e2

0, basepoint)

representing the basis in the group πn(Xt∪ϕ0 e2
0). Wedging these maps gives

the map

Sn
∨

· · ·
∨

Sn → Xt ∪ϕ0 e2
0

inducing an isomorphism in homology, which, consequently, by Whitehead’s
theorem [12], is a homotopy equivalence. Therefore Xt ∪ϕ0 e2

0 is homotopy
equivalent to the wedge Sn ∨

· · ·
∨

Sn of n-spheres.
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This implies that π1(Xt) is generated by one element, and since H1(Xt) =
Z, we obtain π1(Xt) = Z.

Consider the map

(S1 ∨ Sn ∨ · · ·Sn,basepoint) → (Xt,basepoint)

defined as follows: the sphere Sn maps to Xt as the representative of a gener-
ator in the homology group Hn(Xt), whereas S1 maps as the representative
of the generator of π1(Xt). The constructed map induces an isomorphism of
homology groups and fundamental groups, hence, by Whitehead’s theorem,
the constructed map is a homotopy equivalence. This concludes the proof
of the theorem.

6. Hypersurface Singularities of Transversal Type Ak

In this section the germs of analytic functions f : (Cn+1, 0) → (C, 0) of
n + 1 complex variables shall be considered, having the hyperplane H =
{(x, y1, . . . , yn) | x = 0} as their singular set and representable in the form
f = xkg(x, y1, . . . , yn), where k > 2.

Let us introduce some definitions.

Definition 6.1. A singular point z in H is called an Ak∞ type singular
point if in some neighborhood U of the point z there exists a local coordinate
system (x, y1, . . . , yn) such that

H = {x = 0}, x(z) = 0, yi(z) = 0, i = 1, 2, . . . , n,

and in U the identity f = xk holds.

Definition 6.2. A singular point z in H is called a Dk∞ type singular
point if in some neighborhood U of the point z there exists a local coordinate
system (x, y1, . . . , yn) such that

H = {x = 0}, x(z) = 0, yi(z) = 0, i = 1, 2, . . . , n,

and in U the identity f = xky1 holds.

Definition 6.3. The codimension of the singularity of a germ is called

codim f = dimC
[

(xk)/τ(f)
]

.

Definition 6.4. A singularity f ∈ (xk) is called an isolated hyperplane
singularity of transversal type Ak if codimf < +∞.

Similarly to the isolated hyperplane singularity case one can prove
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Theorem 6.5. Let f ∈ (xk) be not of type Ak∞ or Dk∞, and, moreover,
let the germ g(0, y1, . . . , yn) from the representation f = xkg(x, y1, . . . , yn)
be not identically zero; then the following assertions are equivalent:

(a) codim f is finite;
(b) the function g(x, y1, . . . , yn) has an isolated singularity at zero;
(c) outside the points with g(0, y1, . . . , yn) = 0 the germ f has type Ak∞,

while at the points with g(0, y1, . . . , yn) = 0, except for the origin, it has
Dk∞ type singular points.

Theorem 6.6. Let f ∈ (xk) have an isolated hyperplane singularity of
transversal type Ak on the hyperplane H; then there exists a deformation ˜f
of the form

˜f = xk(g(x, y1, . . . , yn) + λ1y1 + · · ·+ λnyn + λn+1),

where
λn+1 ∈ Reg(g(x, y1, . . . , yn) + λ1y1 + · · ·+ λnyn)

and
λi ∈ Reg grad g(0, y1, . . . , yn)),

satisfying the condition: ˜f has only Ak∞ and Dk∞ type singular points on
H and only Morse type singular points outside H. Moreover, the number σ
of Morse points is calculated by the formula

σ = dimC
[

(xk)/(xfx, fy1 , . . . , fyn)
]

. (1)

Lemma 6.7. The Milnor fibre f−1(t)∩B0, where B0 is a cylinder around
the singular set H, admits a k-fold covering of a wedge of the circle S1 and
µ copies of the n-sphere Sn, where µ = µ(g(0, y1, . . . , yn)) is the Milnor
number of the isolated singularity g(0, y1, . . . , yn).
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This enables the proof of
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Lemma 6.8. The Milnor fibre f−1(t) ∩ B0 has the homotopy type of a
wedge of the circle S1 and k · µ copies of the n-sphere Sn (see Figure 5).

This implies

Theorem 6.9. The Milnor fibre of the isolated hyperplane singularity of
transversal type Ak in the ball Bε ⊂ Cn+1 is homotopy equivalent to the
wedge of a circle and µk + σ copies of the n-sphere, where µ is the Milnor
number of the isolated singularity g(0, y1, . . . , yn), while σ is the number of
Morse points calculated by formula (1).
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