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ON ONE FREDHOLM INTEGRAL EQUATION OF THIRD
KIND

D. SHULAIA

Abstract. In the class of Hölder functions we give the necessary
and sufficient condition for solvability of a Fredholm integral equa-
tion whose kernel has fixed singularity in the segment of variation of
an independent variable. Finding a solution is reduced to solving a
regular integral equation of second kind.

1. Introduction

The theory of linear integral equations of third kind

A(x)ϕ(x) =

b
∫

a

K(x, y)ϕ(y)dy + f(x), x ∈ [a, b] (A)

(where A(x) vanishes at some points of the segment) acquires more and
more significance in applied problems of mathematical physics (theory of
elasticity, transport theory, etc.) and investigations in this area are of great
interest.

Immediately after the appearance of the classical theory of Fredholm
integral equations of second kind Picard and Fubini initiated investigations
of integral equations of the above-mentioned type.

In considering equation (A), Picard [1] supposed that A(x), K(x, y), and
f(x) are holomorphic functions with respect to the complex variables x and
y in a domain containing the interval (a, b) and that A(x) has simple zeros
αi (i = 1, 2, . . . , k) only. Ignoring the intervals (αi − εi; αi + ηi), he applied
Fredholm’s theory to the remainder interval and proved that for εi → 0,
ηi → 0 the limit of the solution of the resulting Fredholm equation is a
solution of equation (A).
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In 1938 Friedrichs [2] performed, in the Hilbert space, spectral analysis
of the operator corresponding to equation (A) under the assumption that
A(x) = x.

In 1973 Bart and Warnock [3] investigated the problem of solvability of
this equation in the class of generalized functions.

Works [4–6] generalize the above results.
In the present paper we consider integral equation (A) in the class of

Hölder functions assuming that the real function A(x) has simple zero in
the segment of variation of an independent variable (A(x0) = 0, A′(x0) 6= 0,
x0 ∈ (a, b)). Along with this equation we consider, as an auxiliary one,
the corresponding integral equation depending on the parameter, and using
this equation, we construct a singular integral operator. The theorem on
expansion of an arbitrary Hölder class function in eigen functions of the in-
tegral equation depending on both the parameter and the singular operator
is proved. The application of the theorem is exemplified by solution of the
original integral equation.

2. Expansion Theorem

The condition imposed on the function A(x) enables us to consider in-
stead of (A) the equation

xϕ(x) =

+1
∫

−1

K(x, y)ϕ(y)dy + f(x), x ∈ (−1, 1). (X)

It is assumed that:
(a) K(x, y) is the real function satisfying the Hölder condition;
(b) f(x) is the real function satisfying the condition H∗ [7].
By the solution of equation (X) we mean the real function of the class

H∗ which for every x ∈ (−1, +1) satisfies equality (X).
Let us consider, along with equation (1), a homogeneous equation of the

type

(x− ν)ϕν(x) =

+1
∫

−1

K(x, y)ϕν(y)dy, (1)

where ν is the complex parameter. By the solution of equation (1) is meant
a complex function of the class H∗.

The equation under consideration is integral with a kernel depending
analytically on the parameter ν in the plane cut along [−1,+1]. When
ν ∈ [−1,+1], it reduces to an equation of third kind. Many papers (see,
e.g., [8–11]) have been devoted to the investigation of such equations. Based
on the results of these papers, one can directly state that characteristic
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numbers (values of the parameter ν for which equation (1) has a non-trivial
solution) and fundamental functions (a non-trivial solution of equation (1))
possess, for ν 6∈ [−1, +1], the following properties:

(a) If ν0 is the characteristic number of the kernel K(x, y) of rank q, then
ν0 is likewise the characteristic number of the kernel K(y, x) of the same
rank.

(b) If ν1 and ν2 are two different characteristic numbers of the kernel
K(x, y), ϕν1(x) is the fundamental function of the kernel K(x, y) corre-
sponding to the characteristic number ν1, and ϕ∗ν1

(x) is the fundamental
function of the kernel K(y, x) corresponding to the characteristic number
ν2, then

+1
∫

−1

ϕν1(x)ϕ∗ν2
(x)dx = 0. (2)

(c) The set of characteristic numbers of the kernel K(x, y) is finite.
(d) If the kernel K(x, y) is symmetric, then all its characteristic numbers

are real.
We have

Theorem 1. Let a homogeneous integral equation of second kind of the
form

M0(t, x) =

+1
∫

−1

K(x, y)−K(x, t)
y − t

M0(t, y)dy, x ∈ [−1, +1], (3)

have only a trivial solution for some value of the parameter t = t′ ∈ [−1, +1].
Then the number t′ will not be the characteristic number of the kernels
K(x, y) and K(y, x).

Proof. Suppose on the contrary that there exists a continuous function
ϕ∗t′(x) 6≡ 0 such that the relation

(x− t′)ϕ∗t′(x) =

+1
∫

−1

K(y, x)ϕ∗t′(y)dy

is valid. Then the equality

+1
∫

−1

K(y, t′)ϕ∗t′(y)dy = 0
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holds, and hence ϕ∗t′(x) is a non-trivial solution of a homogeneous integral
equation of the form

ϕ∗t′(x) =

+1
∫

−1

K(y, x)−K(y, t′)
x− t′

ϕ∗t′(y)dy,

for which equation (3) is the associated one having also a non-trivial solution
when t = t′. But this contradicts the condition of the theorem.

Consequently, if the kernel K(x, y) is a function such that the homoge-
neous equation (3) has, for all values of the parameter t ∈ [−1, +1], only a
trivial solution, then characteristic numbers will not belong to the segment
[−1, +1].1 Here we shall consider such a case, i.e., it will be assumed that
the homogeneous integral equation (3) admits, for any value of the parame-
ter t ∈ [−1, +1], only a trivial solution. Obviously, then a nonhomogeneous
integral equation of the type

M(t, x) =

+1
∫

−1

K(x, y)−K(x, t)
y − t

M(t, y)dy + K(x, t), t, x ∈ [−1, +1], (4)

will have a unique solution satisfying the Hölder condition with respect to
t and x. Note that if

K(x, y) =
∑

n

gnPn(x)Pn(y),

then equation (4) will have a solution as a function expressed by uniformly
convergent series of the form

M(t, x) =
∑

n

gnPn(x)hn(t),

where hn(t) are defined from the recurrent relation

(n + 1)hn+1(t) + nhn−1(t) = (2n + 1)(t− gn)hn(t),

h0(t) = 1 (n = 0, 1, . . . ).

1Such a property takes place, for example, in the case of a function admitting expan-
sion into a uniformly convergent series of the type

K(x, y) =
∑

n

gnPn(x)Pn(y),

where gn are real numbers and Pn(x) is the nth order Lagrange polynomial. Moreover,

if α is an exponent, C is a Hölder constant of the function K(x, y), and
α

2αC
> 1, then

equation (3) admits a trivial solution only.
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In the class of functions H∗ let us determine a singular integral operator

L(u)(x) =
(

1−
+1
∫

−1

M(x, x′)
x′ − x

dx′
)

u(x) +

+

+1
∫

−1

M(t, x)
x− t

u(t)dt, x ∈ (−1, +1). (5)

Theorem 2. The equality

(x− ν)L(u)(x)−
+1
∫

−1

K(x, y)L(u)(y)dy = L
(

(t− ν)u(t)
)

(x) (6)

holds.

Proof. By virtue of the fact that M(t, x) satisfies equation (4), we have

+1
∫

−1

K(x, y)L(u)(y)dy = L
(

(x− t)u(t)
)

(x).

This implies that equality (6) is valid.

The operator L possessing the above property plays an important role
in investigating the original nonhomogeneous equation. Using this operator
and fundamental functions of the kernel K(x, y), the solution of the original
equation (X) can be expanded into a series. To prove this, we first have to
establish some basic properties of the operator L.

It is obvious that the singular integral operators L(u) and L′(v), where

L′(v)(t) =
(

1−
+1
∫

−1

M(t, x)
x− t

dx
)

v(t) +

+1
∫

−1

M(t, x)
x− t

v(x)dx, t ∈ (−1,+1), (7)

are the associated ones, which means that the equality

+1
∫

−1

v(x)L(u)(x)dx =

+1
∫

−1

u(t)L′(v)(t)dt

holds.
Fundamental functions and the operators L and L′ can be defined by

means of the kernel K(x, y). In the sequel the functions and operators
defined by K(y, x) will be provided with the sign *.
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Theorem 3. Fundamental functions of the kernel K(y, x) are solutions
of the homogeneous singular equation

L′(v)(t) = 0.

Proof. We have

L′(ϕ∗νk
)(t) =

(

1−
+1
∫

−1

M(t, x)
x− t

dx
)

ϕ∗νk
(t) +

+

+1
∫

−1

M(t, x)
∫ +1
−1 K(y, x)ϕ∗νk

(y)dy

(x− t)(x− νk)
dx. (8)

Using
1

x− t
1

x− νk
=

( 1
x− t

− 1
x− νk

) 1
t− νk

,

expression (8) we write as

L′(ϕ∗νk
)(t) =

(

1−
+1
∫

−1

M(t, x)
x− t

dx
)

ϕ∗νk
(t) +

+

+1
∫

−1

1
t− νk

1
x− t

M(t, x)

+1
∫

−1

K(y, x)ϕ∗νk
(y)dydx−

−
+1
∫

−1

1
t− νk

1
x− νk

M(t, x)

+1
∫

−1

K(y, x)ϕ∗νk
(y)dydx. (9)

Taking into account the fact that M(t, x) is the solution of equation (4)
and performing transformations, we get

+1
∫

−1

1
t− νk

1
x− νk

M(t, x)

+1
∫

−1

K(y, x)ϕ∗νk
(y)dydx =

=

+1
∫

−1

1
t− νk

M(t, x)ϕ∗νk
(y)dydx =

=

+1
∫

−1

1
t− νk

ϕ∗νk
(x)

(
+1
∫

−1

K(x, y)−K(x, t)
y − t

M(t, y)dy + K(x, t)
)

dx =
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=

+1
∫

−1

1
t− νk

1
y − t

M(t, y)

+1
∫

−1

K(x, y)ϕ∗νk
(x)dydx =

−
+1
∫

−1

M(t, y)
y − t

dyϕ∗νk
(t) + ϕ∗νk

(t),

by virtue of which (9) implies L′(ϕ∗νk
) = 0.

Analogously, we obtain

L∗.(ϕνk) = 0, k ∈ 1, 2, . . . , r. (10)

Lemma 1. The equalities

L.(K(x, ·))(t) = M(t, x), L∗(K(·, x))(t) = M∗(t, x), t, x ∈ [−1, +1],

hold.

Proof. Using relation (4), we have

L.(K(x, ·)(t) =
(

1−
+1
∫

−1

M(t, y)
y − t

dy
)

K(x, t) +

+1
∫

−1

M(t, y)
y − t

K(x, y)dy =

= K(x, t) +

+1
∫

−1

K(x, y)−K(x, t)
y − t

M(t, y)dy = M(t, x).

The second formula is proved in a similar way.

Lemma 2. The equality

L∗
′
(M(t0, ·)−K(·, t0))(t) + M∗(t, t0) =

= L′(M∗(t, ·)−K(t, ·))(to) + M(t0, t), t, t0 ∈ [−1,+1],

holds.

Proof. Using relation (4) and performing appropriate operations on the
left-hand side of the above equality, we obtain

L∗
′
(M(t0, ·)−K(·, t0))(t) + M∗(t, t0) =

=
(

1−
+1
∫

−1

M∗(t, x)
x− t

dx
)

+1
∫

−1

K(x, y)−K(x, t0)
y − t0

M(t0, y)dy +

+

+1
∫

−1

M∗(t, x)
x− t

+1
∫

−1

K(x, y)−K(x, t0)
y − t0

M(t0, y)dydx + M∗(t, t0) =
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=
(

1−
+1
∫

−1

M(t0, y)
y − t0

dy
)

+1
∫

−1

K(x, t0)−K(t, t0)
x− t

M∗(t0, y)dx +

+

+1
∫

−1

M(t0, y)
y − t0

+1
∫

−1

K(x, y)−K(t, y)
x− t

M∗(t, x)dxdy −

−
(

1−
+1
∫

−1

M∗(t, x)
x− t

dx
)

K(t, t0)−
+1
∫

−1

M∗(t, x)
x− t

K(x, t0)dx +

+
(

1−
+1
∫

−1

M(t0, y)
y − t0

dy
)

K(t, t0) +

+1
∫

−1

M(t0, y)
y − t0

K(t, y)dy + M∗(t, t0) =

= L′
(

M∗(t, ·)−K(t, ·)
)

(t0) + M(t0, t).

From these lemmas there follows the equality

L∗
′(

M(t0, ·)
)

(t) = L′
(

M∗(t, ·)
)

(t0). (11)

Theorem 4. The singular integral operator L∗
′
regularizes the operator

L, and the equality

L∗
′(

L(u)
)

(t) = N(t)u(t), t ∈ (−1;+1), (12)

holds, where

N(t) =
(

1−
+1
∫

−1

M(t, x)
x− t

dx
)(

1−
+1
∫

−1

M∗(t, x)
x− t

dx
)

+ π2M∗(t, t)M(t, t).

Proof. Performing the operations indicated on the left-hand side of (12) and
using Poincaré–Bertrand’s transposition formula [7], we obtain

L∗
′(

L(u)
)

(t) =
(

(

1−
+1
∫

−1

M(t, x)
x− t

dx
)(

1−
+1
∫

−1

M∗(t, x)
x− t

dx
)

+

+π2M∗(t, t)M(t, t)
)

u(t) +

+

+1
∫

−1

u(t′)
t− t′

(

L∗
′(

M(t′, ·)
)

(t)− L′
(

M∗(t, ·)
)

(t′)
)

dt′.

Taking into consideration equality (11), we obtain formula (12).
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Lemma 3. The inequuality N(t) 6= 0, t ∈ [−1, +1], holds.

Proof. Using equality (11), we have

N(t) =
(

(

1−
+1
∫

−1

M(t, x)
x− t

dx
)

+ ixM(t, t)
)

×

×
(

(

1−
+1
∫

−1

M∗(t, x)
x− t

dx
)

+ iπM∗(t, t)
)

.

Let there exist some t′ ∈ [−1, +1] such that N(t′) = 0. Then either

1−
+1
∫

−1

M(t′, x)
x− t′

dx = 0 and M(t′, t′) = 0,

or

1−
+1
∫

−1

M∗(t′, x)
x− t′

dx = 0 and M∗(t′, t′) = 0.

Therefore, owing to (4) the number t′ ∈ [1, +1] will be the fundamental
value of the kernel K(x, y). But this is not true.

The boundary properties of the integral operator

Ων(F )(x) ≡ F (ν, x)−
+1
∫

−1

K(x, y)
y − ν

F (ν, y)dy, x ∈ [−1, +1],

where ν is an arbitrary point on the plane, F (ν, x) is a piecewise holomorphic
in ν function on the plane cut along the segment [−1, +1] which satisfies the
Hölder condition in x, are of great importance for further investigation of
the operator L. By using the Sokhotskii–Plemelj formulas [7] for boundary
values of the operator Ων we get

(

Ωt(F )(x)
)± ≡ F±(t, x)−

+1
∫

−1

K(x, y)
y − t

F±(t, y)dy ∓

∓ixK(x, t)F±(t, t), t ∈ (−1;+1). (13)

Theorem 5. Let f0 ∈ H∗. For the singular integral equation

L(u) = f0 (14)
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to have a solution in the class H∗, it is necessary and sufficient that the
function f0 satisfy the conditions

+1
∫

−1

f0ϕ∗νk
dx = 0, k = 1, 2, . . . , r. (15)

If these conditions are fulfilled, then the solution is unique and expressed by
the formula

u = L∗
′
(f0). (16)

Proof of the Necessity. Let us introduce into consideration the piecewise
holomorphic function

Φ(ν, x) =
1

2πi

+1
∫

−1

M(t, x)
t− ν

u(t)dt, x ∈ [−1, +1],

where ν is an arbitrary point on the plane. This function possesses the
following properties:

10. In the plane with a cut [−1,+1] it is analytic with respect to the
variable ν, while for the variable x it satisfies the Hölder condition.

20. As ν →∞ it vanishes uniformly with respect to the variable x.
By virtue of (13) we have

(

Ωt(Φ)(x)
)+ −

(

Ωt(Φ)(x)
)−

= M(t, x)u(t)−

−
+1
∫

−1

K(x, y)
M(t, y)u(t)

y − t
dy +

+1
∫

−1

K(x, t)
M(y, x)
y − t

u(y)dy

which implies, according to (4), that
(

Ωt(Φ)(x)
)+ −

(

Ωt(Φ)(x)
)−

= K(x, t)L(u).

Owing to (14) the function Φ(ν, x) will be a solution of the following bound-
ary value problem:
(

Ωt(Φ)(x)
)+ −

(

Ωt(Φ)(x)
)−

= K(x, t)f0(t). t ∈ (−1, +1), x ∈ [−1, +1].

Let
Ψ(ν, x) = Ων(Φ)(x).

It is evident that the function Ψ(ν, x) vanishes at infinity with respect
to the variable ν and it is analytic in a plane with a cut [−1, +1], while
with respect to the variable x ∈ [−1,+1] it satisfies the Hölder condition;
moreover,

Ψ+(t, x)−Ψ−(t, x) = K(x, t)f0(t), t ∈ (−1, +1), x ∈ [−1, +1].
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Consequently,

Ων(Φ)(x) =
1

2πt

+1
∫

−1

K(x, t)
t− ν

f0(t)dt, x ∈ [−1,+1]. (17)

For the integral equation (17) to define the analytic function Φ(ν, x) in a
plane with a cut [−1, +1], it is necessary and sufficient that its right-hand
side satisfy the conditions

+1
∫

−1

ϕ∗νk
(x)

+1
∫

−1

K(x, t)
t− νk

f0(t)dt dx = 0, k = 1, 2, . . . , r.

After simplification we get equality (15). The necessity is proved.
Proof of the Sufficiency. Let the function f0(x) ∈ H∗ satisfy conditions
(15). Then the solution of equation (17) is a piecewise holomorphic function
vanishing at infinity. Using (13), from (17) we have

Φ+(t, x)− Φ−(t, x) +

+1
∫

−1

K(x, y)
y − t

(

Φ+(t, y)− Φ−(t, y)
)

dy +

+

+1
∫

−1

K(x, t)
t′ − t

(

Φ+(t′, x)− Φ−(t′, x)
)

dt′ = K(x, t)f0(t), (18)

t ∈ (−1, +1), x ∈ [−1, +1].

Let
˜M(t, x) = Φ+(t, x)− Φ−(t, x)−M(t, x)u(t),

where u(t) is defined from the equality

(

1−
+1
∫

−1

M(t, x)
x− t

dx
)

u(t) = −
+1
∫

−1

Φ+(t, x)− Φ−(t, x)
x− t

dx + f0(t), (19)

t ∈ (−1, +1).

(Note that the factor of u(t) is different from zero. If for some t = t0 this con-
dition is violated, then equation (4) implies that the number t0 ∈ (−1,+1)
is the characteristic value of the kernel K(x, y), which contradicts our asser-
tion.) Multiplying both parts of equation (4) by u(t) and subtracting from
(18), we obtain

˜M(t, x) =

+1
∫

−1

K(x, y)
y − t

˜M(t, y)dy, t ∈ (−1, +1), x ∈ [−1, +1],
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and hence ˜M(t, x) = 0. Thus

Φ+(t, x)− Φ−(t, x) = M(t, x)u(t).

Substituting the above-obtained equality into (19) and using again the fact
that M(t, x) is the solution of equation (4), we arrive at equality (14). The
sufficiency is proved.

Theorem 6. Systems of fundamental functions {ϕνk} and {ϕ∗νk
} are

biorthogonal.

Proof. Owing to equality (3), it remains for us to prove that the numbers

Nνk =

+1
∫

−1

ϕνkϕ∗νk
dx, k = 1, 2, . . . , r,

are different from zero. Let us assume on the contrary that Nνp = 0 holds
for some νp. Then it is obvious that ϕνp satisfyies the conditions of Theorem
5 and the integral equation

L(u) = ϕνp

has a unique solution. Taking into consideration equality (10), we get u = 0.
Then ϕνp = 0, which is not true.

From the latter two theorems there follows

Theorem 7. Only the functions ϕ∗νk
, k = 1, 2, . . . , r, and their linear

combinations are solutions of the homogeneous singular equation

L′(ν) = 0.

We have now come to the question which plays an important role in
solving the initial equation, i.e., to the question of representing an arbitrary
function of the class H∗ by the characteristic functions of equation (2) and
by the above-introduced operator L.

Theorem 8. An arbitrary function f ∈ H∗ admits a representation of
the form

f(x) =
r

∑

1

aνkϕνk(x) + L(u)(x), x ∈ [−1,+1], (20)

where

aνk =
1

Nνk

+1
∫

−1

f(t)ϕ∗νk
(t)dt, u(t) =

1
N(t)

L∗
′
(f)(t),

aνk and u being defined uniquely.
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Proof. Indeed, if such a representation is possible, then to find aνk and u
we act as follows: multiplying (20) by ϕ∗νk

and integrating both parts of the
equality with respect to x, we get

+1
∫

−1

fϕ∗νp
dx =

r
∑

1

aνk

+1
∫

−1

ϕνkϕ∗νp
dx +

+1
∫

−1

L(u)ϕ∗νp
dx = aνpNνp .

To find the function u, we apply the operation L∗
′

to both parts of
equality (20). Then we have

L∗
′
(f) =

r
∑

1

aνkL∗
′
(ϕ∗νk

) + L∗
′
(L(u)) = Nu.

As for the validity of representation (20), it follows from Theorems 5 and
7.

3. Solution of a Fredholm Equation of Third Kind

Now we shall, to the Hilbert–Schmidt approach from the theory of Fred-
holm integral equations of second kind and as an application (of Theorem
8), solve the equation

(x− ν)ϕ̃ν(x) =

+1
∫

−1

K(x, y)ϕ̃ν(y)dy + f(x), x ∈ (−1, +1). (21)

Theorem 9. If f ∈ H∗, ν∈[−1,+1] ∪ {νk}, then equation (21) has one
and only one solution ϕ̃ν(x) ∈ H∗ expressed by the formula

ϕ̃ν(x) =
r

∑

1

1
νk − ν

1
Nνk

ϕνk(x)

+1
∫

−1

fϕ∗νk
dx′ +

+L
( 1

t− ν
1

N(t)
L∗

′
(f)(t)

)

(x). (22)

Proof. Let ϕ̃ν(x) be the solution of equation (21) satisfying the conditions
H∗. By virtue of (20) we can write

ϕ̃ν(x) =
r

∑

1

a(ν)
νk

ϕνk(x) + L
(

u(ν)(t)
)

(x).

Substituting this equation into (21) and using equality (6) and the fact
that ϕνk(x) are fundamental functions, after appropriate transformations
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we obtain

f(x) =
r

∑

1

a(ν)
νk

(νk − ν)ϕνk(x) + L
(

(ν − t)u(ν)(t)
)

(x).

Using the method of finding a(ν)
νk and u(ν)(t), we get

a(ν)
νk

=
1

νk − ν
1

Nνk

+1
∫

−1

fϕ∗νk
dx, u(ν)(t) =

1
t− ν

1
N(t)

L∗
′
(f)(t).

Thus we have stated that if equation (21) has a solution ϕ̃ν(x) ∈ H∗,
then it is unique and can be expressed by formula (22).

Direct substitution shows that the function ϕ̃ν(x) defined by the formula
(22) satisfies equation (21).

Theorem 10. If ν = νp is the fundamental value of the kernel K(x, y),
then the solution of equation (21) exists only when the condition

+1
∫

−1

fϕ∗νp
dt = 0 (23)

is fulfilled. Then equation (21) has in the class H∗ infinitely many solutions
represented by the formula

ϕ̃ν(x) = cϕνp(x) +
∑

k 6=p

1
νk − ν

1
Nνk

ϕνk(x)

+1
∫

−1

fϕ∗νk
dt +

+L
( 1

t− ν
1

N(t)
L∗·(f)(t)

)

(x) (24)

where c is an arbitrary constant number.

Proof. As in the previous case we get

a(ν)
νk

(νk − ν) =
1

Nνk

+1
∫

−1

fϕ∗νk
dx′,

from which it follows that equality (23) holds for ν = νp.
We have obtained the necessary condition which must be satisfied by

the function f(x) so that the nonhomogeneous equation (21) would have
a solution. In that case a(ν)

ν becomes indefinite and the solution has form
(24).

One can show that that the function ϕ̃νp(x) defined by formula (24)
satisfies equality (21).
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Theorem 11. For ν = t0 ∈ (−1, +1) the solution of equation (21) exists
only if the condition

L∗
′
(f)(t0) = 0 (25)

is fulfilled. Then the unique solution ϕ̃ν(x) ∈ H∗ can be written by formula
(22).

Proof. As above, we get

(t0 − t)u(t0)(t) = L∗
′
(f)(t),

whence for t = t0 there follows equality (25). This in fact is the necessary
condition which is satisfied by the function f(x) in order that the nonho-
mogeneous equation (21) would hold.

We can show that the function ϕ̃t(x) ∈ H∗ defined by formula (22)
satisfies equation (21) when condition (25) is fulfilled.

As a particular case of Theorem 11 we obtain the theorem which answers
the question we posed for equation (X).

Theorem 12. Let M∗(x) be the solution of a nonhomogeneous equation
of the type

M∗(x) =

+1
∫

−1

K(y, x)−K(0, x)
y

M∗(y)dy + K(0, x), x ∈ [−1, +1];

then the solution of equation (X) exists in the class H∗ if and only if the
condition

+1
∫

−1

f(x)− f(0)
x

M∗(x)dx + f(0) = 0

is fulfilled. Moreover, if the latter condition is fulfilled, then the solution
is unique and can be expressed by the right-hand side of formula (22) with
ν = 0.
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