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BOUNDARY PROPERTIES OF FIRST-ORDER PARTIAL
DERIVATIVES OF THE POISSON INTEGRAL FOR THE
HALF-SPACE Rjf,, (k> 1)

S. TOPURIA

ABSTRACT. Boundary properties of first-order partial derivatives of

the Poisson integral are studied in the half-space RL—l (k>1).

The boundary properties of the Poisson integral for a circle were thor-
oughly studied by Fatou [1]. In particular, he showed that the following
theorems are valid:

Theorem A. If there exists a finite f'(xq), then

ou(f;r,x)

li
1m (95['

N
retr etz

= f'(z0),

where u(f;r,x) is the Poisson integral for a circle, and the symbol rei® 5
€0 means that the point re'™ tends to '*° along the paths which are non-
tangential to the circumference (see [2], p. 100, and [3], p. 156).

Theorem B. If there exists a finite or infinite D1 f(xg) which is a first
symmetric derivative of f at the point xo (see [2], p. 99 — 100), i.e.,

f(zo+h) = f(zo—h)

Dif(wo) = Jim, oh ’
then
. Ou(firx
Jm (fT) = D1f (@o).

1991 Mathematics Subject Classification. 31B25.
Key words and phrases. The Poisson integral for the half-space, angular limit, deriva-
tives of the integral, differential properties of the density.

585
1072-947X/97/1100-0585$12.50/0 © 1998 Plenum Publishing Corporation



586 S. TOPURIA

In [4] a continuous 27-periodic function f(z) is constructed such that
le(on) = 0, but
lim ou(f;r,x)
reiz Leiro Ox
does not exist. Thus it is shown that Theorem B cannot be strengthened
in the sense of the existence of an angular limit.

An analogue of Theorem A for a half-plane Ri is proved in [5, Theorem
4], while an analogue of Theorem B given in [6, Theorem 1] shows that this
theorem cannot be strengthened in the sense of the existence of an angular
limit.

The question as to the validity of Fatou’s theorem for a bicylinder was
considered in [7], where it is proved that in the neighborhood of some point
the density of the Poisson integral can have no smoothness that would en-
sure the existence of a boundary value of partial derivatives of the Poisson
integral at the considered point. Furthermore, in this paper sufficient con-
ditions are found for the convergence of first- and second- order partial
derivatives of the Poisson integral for a bicylinder, and it is shown that the
results obtained cannot be strengthened (in the definite sense).

The boundary properties of the integral Dyu(f;r, 91,92, ..., 9k_2, p) were
studied in [8] (see also [9], p. 118), where u(f;r, ¥1,92,...,0_2¢p) is the
Poisson integral for the unit sphere in R¥ (k > 2), and Dy, is the Laplace
operator on the sphere, i.e., the angular part of the Laplace operator written
in terms of spherical coordinates (see [9], p. 14). The boundary properties
of first- and second- order partial derivatives of the Poisson integral for the
unit sphere in R? are given a detailed consideration in [10, 11, 12], but for
the half-space R in [13], [14], [15]. In [14] it is shown that there exists
a continuous function of two variables f(z,y) € L(R?) which, at the point
(z0,90), has the partial derivatives f; (zo,y0) and f;(zo,%0), but the inte-
grals % and %ﬂjyz) (u(f;z,y,z) is the Poisson integral for R? )
of this function have no values at the point (zg,yo) even along the normal.

Hence the question arises how to generalize the notion of derivatives of a
function of many variables so that a Fatou type theorem would hold for the
integral u(f;x, vx+1) (u(f; @, 2541) is the Poisson integral for REF! (k > 1)).

In this paper, the notion of a generalized partial derivative is introduced
for a function of many variables and Fatou type theorems are proved on
boundary properties of first-order partial derivatives of the Poisson integral
for a half-space. These results complement and generalize the author’s
studies in [13], [14], [15]. In particular, in this paper it is shown that the
boundary properties of derivatives of the Poisson integral for a half-space
essentially depend on the sense in which the integral density is differentiable.
Examples are constructed testifying to the fact that the results obtained are
unimprovable (in the definite sense).
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1. NOTATION, DEFINITIONS, AND AUXILIARY PROPOSITIONS

The following notation is used in this paper:
R* is a k-dimensional Euclidean space (R = R');

r = (z1,m2,...,2), t = (t1,t2,...,t), 20 = (29,29,...,20) are the
points (vectors) of the space R¥;
k
(x,t) = > x;t; is the scalar product;
i=1
lz] = (2, 2); x +t = (x1 +t1, 22 +to, ..., 2p + 1r);
e; (i =1,2,...,k) is the coordinate vector.

Let (see [16], p. 174) M = {1,2,...,k} (k € N, k > 2), B be an
arbitrary subset from M and B’ = M\ B. For any # € R* and an arbitrary
set B C M, the symbol z,, denotes a point from R¥ whose coordinates with
indices from the set B coincide with the corresponding coordinates of the

point z, while coordinates with indices from the set B’ are zeros (z,, = x,
B\i= B\ {i}); if B={i1,ia,...,is}, 1 < s <k (i <i, for [ <r), then

Ty = (i), Tiy, ..., xi,) € R®; m(B) is the number of elements of the set B;
L(R¥) is the set of functions f(z) = f(x1,z2,...,x)) such that
f(l‘) c L(Rk),

(1+[f?) =

REF = {(z, 2p41) € RFFY mpp > 0}
u(f;z, zp41) is the Poisson integral of the function f(z) for the half-space
R’frl, ie.,

u(f;2,241) = Bl
T2

t—x|2+xi+1)%.

zp () / f(t) dt
(1

Rk

In investigating the boundary properties of the partial derivatives
%uf(n& ¢) and %uf(r,ﬁ, ) of the spherical Poisson integral us(r, 9, ¢)
for the summable function (9, ¢) on the rectangle [0, ] X [0, 27|, Dzagnidze
introduced the notion of a dihedral-angular limit [10] which is applicable to
R’i"’l in the manner as follows: if the point N € RT‘I converges to the
point P(z°,0) under the condition x4 (Y (z; — 29)?)~1/2 > C > 0,'then

i€B
we shall write N(z,z541) — P(2°,0). When B = M, we have an angular
TR
convergence and thus we write N (z, 2x41) AN P(2°,0). Finally, the notation

N(z,7541) — P(2°,0) means that the point N(z,zj41) remaining in R¥+!
converges to P(z,0) without any restrictions.

Here and further C' denotes absolute positive constants which, generally speaking,
may be different in different relations.
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It is known that a%uf(r,ﬁ,cp) and %uf(r,ﬁ,cp) have dihedral-angular
limits if partial derivatives of the function f(¥,¢) exist in a strong sense
[10], [12]. This notion admits various generalizations when the function
depends on three and more variables and we shall also discuss them below.

Let uw € R. We shall consider the following derivatives of the function
f(x):

1. Denote the limit

o J@s s fue) - fz, +a)
(u,EB)é(O,E(}B) u

by:
(a) faln (20) for B # @;
(b) D 1(;1;B)f(x0) for i € B';
(¢) Dyi(zp) f(a°) for i € B.
2. Denote the limit
lim [z +ap +ue;) — f(z, + 2 — ue;)
(u’iB)H(O)E%) 2u

by:

(a) D} (2°) for B # &;

(b) wl(wB)f( 0) for i € B’;

(¢) D )f(2?) for i € B.

The followmg propositions are valid:

(1) If By C By, the existence of Dyy@p) f (%) implies the existence of
Dy, w5, f(2°) and Dy, 7, ) f(2°) = f;,(2°). The converse does not hold.

(2) The existence of @wi@Bl)f(a:O) implies the existence of fIi(EBQ)f(a:O)
and their equality.

(3lThe existencegf D, (zp)f(2°) implies the existence of D,z ) f(2)
and Dy, z) f(2°) = Da, @y f(2°) = fi, (2°).

(4) If f. (x) is a continuous function at z°, then for any B C M all
derivatives Dy, (z,)f(2°) exist and

5$i(EB)f(x0) = fa/h (xO)
Indeed, by virtue of the Lagrange theorem
fleg + 2% fue;) = flz, +2))  folrs + a5 +0(x)ue]u

u
= fllr, + 2 +0(z)ue], 0<6<1.

Hence we conclude that statement (4) is valid.
(5) There exists a function f(z) for which Dy, () f(2°) exist, but on an
everywhere dense set in the neighborhood of the point 20 there are no f, (x).



PARTIAL DERIVATIVES OF THE POISSON INTEGRAL 589

(6) If the function f(z) has finite derivatives

Dml(zg,...,xk)f(xo)a Dwz(w37...,xk)f(x0)v cee 7Dwk,1(wk)f('r0)

at the point 20, then its continuity at 2" with respect to the argument x,
is a necessary and sufficient condition for f(z) to be continuous at z° (see
12], p.15).

(7) The existence of the derivatives Dy, (5,,... o). (7 ), 12@3,_“@&,)]0(1'0)7
ooy Doy (ao,ai) [ 9) and Jo (@ 9) implies the existence of the differential
df (z%) (see [12], p. 16).

In what follows it will be assumed that f € L(R).

Lemma. The equalities

- / (ti — ) f(t — tie; + wie;)dt
(

y =0
k+3 ’
|t — Z‘|2 + .I‘iJrl) 2

Rk
(k+ Dap D5 (t; — x;)2dt
I = = =1
™ 2 (|t—x|2—|—xk+1) 2

hold for any (x,Tk+1)-

Proof. We have

T
(It + iy )

RE-1 0o
Further, if we use the spherical coordinates, p, 01, ..., 0;_2, ¢, we shall have
(k4 D D5 / tidt; B
- =3 ki3
w2 (It JFI%-H) 2

B (k—|—1)zk+1F(kJ2r1)/p2 sin? ¥, sin® ¥y - -sin® ¥;_1 cos ¥; "

=53 k+3
) (P + a2,
ka_l sin®—2 Yy - sin®~? i1 sing_odpdy - - - d¥g_odp =
k 2
2(k+1)D(ELL) T phtig
= (kt Z 1( 2 )/ €+3 / /sm V1 sin® 1 0y sinf T2 9,
Tz 14 p?) )

x cos? 9; sin* T Y, - sin O _oddOy - - Ao =

_ 2k )I(MY) (g)ﬁ s
= 2(k+ DI kD(5)

=1. 0O
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2. BOUNDARY PROPERTIES OF THE INTEGRAL ‘Mﬁ;iqf’“m
The following theorem is valid.

Theorem 1.
a) If a finite derivative D, (. f(20) exists at the point 2°, then
i(x)

au(fa (E,{Ek+1) _ af(xO) (1)
(z,xp41)—(2°,0) 8331' aa:i '

(b) There is a continuous function f € L(R¥) such that for any B C M,
m(B) < k, at the point 2° = (0,0,...,0) = 0 all derivatives Dy f(0) =
0, i=1,k, but the limits

lim au(f;0,$k+1)

1=1,k
Tg+1—0+ ox; ’ i

do not exist.

Proof.

k
(a) Let 29 =0, Ck = % It is easy to check that
2

™

Qulf; @, xhy1) _ Ckka/ (t; — ;) f(t) dt
'

O [t — 22 +a2,,)F

By virtue of the lemma we have

ou(f;z, xps1)

— D, f0) =
t2 r+t)— flo+t—tie) =
= Cka:k+1/ PR {f( ) ft(‘ ) *Dxi(m)f(o)]dt =
Bk (1t +2f ) 2 ¢
= Il +127
where
I = Cizpa /, Iy = Crxi41 /,
Vs CVs

Vs is the ball with center at 0 and radius 6. Let € > 0. Choose d > 0 such
that
fl@+1t) = fl@+1t—tie;)
t;

- 51L(z)f(0)‘ <eg

for |x| < 4, |t| < 2dl.
Hence

t3dt
|| < Ck$k+15/ﬁ
SR+
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t2dt
< Ck$k+1€/ ﬁ =€ (2)
e ([t + 2% y0) 2
It is likewise easy to show that
I, =0. (3)

im
(z,2p41)—(0,0)
Equalities (2) and (3) imply the validity of (1).
(b) Let D = (0 < t; < 00; 0 < 3 < 005...,0 <t < 00). Define the
function f as follows:

Ft) = Bty - tp if (b1, te,... tk) € D,
~]o if (ti,tg,...,tx) € CD.

Clearly, f(t) is continuous in R* and fwi@B)f(O) =0,4 = 1,k, for any
B when m(B) < k.
If in the integral

ou(f;x,vpy1) _ Ckl'kJrl/ (ti — ;) f(t)dt
(

o [t =2+ afy)

Rk
we use spherical coordinates, then for the considered function we shall have

ou(f;0,2p41) C’kﬂka/ tif(t)dt _
- k+3
O A (It* + xi+1> 2

o0
B p 1c71/p]€ 1 B
= Crpi1 T 2 \EB pdp =
(02 + )
Tl41

o0 [ P
pr T RAT d,O pr TR dp _
= Cl‘k+1 / T o k+s3 > C.’L’k+1 / —ﬁpk 1dp >
0 ( 0 (

p2 +x%+1)T P2+xi+1) 2

Thk+1

> O$k+1 / pk+ki+1dp _ c .
Hence
ou(f;0
hm U(f, 7:Ek?+1) = +o0. 0
Tpp1—0+ ox

Corollary 1. If finite derivatives @xi(m)f(wo), i = 1,k, exist at the point
0
x", then

dzu(f;xa‘rkJrl) = df(xo)

im
(&, 11)—(20,0)
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Corollary 2. If f has a continuous partial derivative at the point a0,
then
au(fa x, .’L'k+1)
s = (20).

(z,x4+1)—(20,0) 3177 i

Corollary 3.
(a) If f is a continuously differentiable function at the point z°, then

dru(faxa ‘rk-i-l) = df(xo)

(@,2541)—(2°,0)

(b) There exists a differentiable function f(t1,t2) at the point (0,0) such
that df (0,0) = 0 but the limits

. ou(f;x1,2,73) : du(f; a1, w2, 33)
lim —_— lim — e 7 = 7
(z1,22,23)—(0,0,0) 8x1 (z1,22,23)—(0,0,0) 8.’E2

do not exist.

Proof of assertion (b) of Corollary 3. We set D = [0,1;0,1]. Let

Y3ty for ( )e D,

for (t1,t2) [—00,0; 0, 0o[U] — o0, 00; —00, 0],

f(ti,t2) = {

and continue f onto the set |0, 00;0,00[\D so that f € L(R?). It is easy to
check that f(t1,t2) is differentiable at the point (0,0) and

££,(0,0) = f;,(0,0) = 0.

Let (x1,72,23) — (0,0,0) for #7 = 0, 23 = 2%, 22 > 0. Then for the
considered function

Ou(f;0,22,23) %// tlf t1,t2) dtidts B
0x1 o 2_332) +$]5/2—
0 0
3x§ t1f(t1, to + x2) dtrdty
(t3 +t3 + x3)>/2
0 —z2

00
3$%//t1\°/t3 t2+$2 dtldtg
t2+t2+172)5/2
0 —xz2

29
2x5 2z

3x§ / / t1 /13 /a3 dtldtg

(2 +t3+z )5/2

x5 xf
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25 2
2x5 225

_ a3y / / 3 2 dtdt,
2 2 (

27 42)24 + 4dzd + 23)5/2
Ty Ty
! fi 0+ O
= — — .
62r gz o "2

Theorem 2. If a finite derivative ’Dzi@M\i)f(mO) exists at the point z°,

then
ou(f;x, rpq1) _ 3f($0)
(%i 837, '

lim
(2,21 41) > (20,0)

Proof. Let 2° = 0. By virtue of the lemma we have the equality

ou(f;x, vp41)
T - Dli(iwf\i)f(o) =

_ Ckkarl/ (| titi — =) e [f(t) — f(t—tie;) Dm@M\»f(O)} dt =
Rk

t—af? +93%4—1 ti

:II +127

where I} = Cyapy1 [, Lo = Crapsr [ -
Vs CVs
Let € > 0 and choose § > 0 such that

‘f(t) — f(t —tie;)
t;

~Dr@n fO)| <& for || <d.

Now,

k3
(|t — =z + mZ+1) 2

|| < Ckxkﬂﬁ/

Rk

< Ckwkﬂé‘/

Rk

2 dt
Et3

(It +af0) 2

t;| dt
+Ck$k+1€|$i|/% =
Rk (|2] +xk+1) 2

:5+ka+15\xi|/% =
5 (P* +apyy) 2
k+2 o0 .
ka+1|xi|5/ pF dp _ (1+ C|xi|)€-
)

+3 3
Tht1 1+p?) Th+1
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Hence we obtain
(225 +1) ™ (20,0)

In a similar manner we prove that

lim I,=0. 0O

(x,mk+1)i>(zo,0)

Theorem 3. If at the point x° there exist finite derivatives
Dwi(EM\i)f(xO) and D:rj(EB)f(xo); { 7é j7 B=M \ {7’7.7}7 then

lim Qulf;, xhs1) _ af(xo)’
a6 O O

u(f; @, xh41) _ 8f($0).

6(Ej 8xj

lim
(@,@k11)5(20,0)

Tq

Proof. Let 2% = 0. By virtue of the lemma we have

ulf; @, why1) Ck$k+1/ (tj —x;)fA)dt
'

. ki3
Ox; |t — |2 +xi+1) 2

kt3
(Jt = x)? + 27 4) 2

Cuain [z =S¢t 11tio) ftiertie it

]Rk
ti—z)[f(t) — f(t— tie;
:Ckil?k+1/<J :C)[fi) Qf( we)]dt%—
BH (|t — | +xk+1) 2
t;— ) [f(t — ties) — F(t — ties —tje;
+Ckxk+l/(j ) [f( 62) z( we €] dt =1, + I,
A (|t —z[*+zi,)
where
I, = Cra, / ti(t; — @) Cf() = f(t—ties) di —
' ) (- e a2 ) b
s k+1

ti(t;—x;) ()= f(t—tie;)
_C’kxk+1/( I = ),érg,[ < —Dg;,i(EM\i)f(O) dt+

J (=P, t

+ Ckk4+1Da, (m0 1) F(0) /

Rk

ti(tj —J}j)dt
k43
(It —al +a3,,)

I 1
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It is easy to see that I and

ity — )l | f(E) = f(t = ties)

|1 <C'k$k+1/ —Da (@) (0) |d.

kE3 )
PATEFTEEEINE z
Hence we obtain
lim [I;= lim I, =0.
(xvszrl)i"O (xvkarl)ﬁ_)O

x

c; x

Now we shall show that
lim Ig = 'ij (EM\“’”)f(O).

A
(z,2p41)—0
T

Indeed,
ti(t; —x;
I2 — Ckxk.l,_l/ | ](2] 2])| == X
K (|t — = erk-s-l) 2
f(t — tiei)—f(t — tiei —1 ‘6‘)
X[ : J7J _DIj(EM\{i,j})f(O)] dt-ﬁ-DIj@M\{i‘j})f(O).

This readily implies

. a7(0)

lim N I2 = 'ij(gM\{iyj})f(O) = 8.13j .

(z,xk41)—0

Finally, we obtain

o Dulfiman) _05(0)
8:vj 5l‘j

Ay
(z,xp41) — O

By a similar reasoning we prove

Theorem 4. If at the point z° there exist finite derivatives
Dl’l(rz,wg ..... Ik)f(x0)7 Dmg(mg,,mk)f(x0)7 M Dmk,l(mk)f(x()% 9/3k ($O)7 then

dulf;w wre1) _ 0f(a0)
81'1 8951 ’

lim

(@,@041) > (20,0)
xq

Ou(f;,zier) _ O ()
a$2 8x2 ’

lim
(z,2r41) 2> (29,0)
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lim ou(f;x, Thy1) _ 8f(a;0).
(@,2k41) 5 (20,0) Oy, oxy,

Corollary. If at the point 20 there exist finite derivatives ’le@M\l)f(xO),
Dm@M\{m})f(xo), ooy Day (ay f(@2), f1, (2Y), then

lim dou(f;x, 2p41) = df (2°).

(2,2 141) > (20,0)

Theorem 5.
(a) If at the wpoint z° there exists a finite derivative

D;i(izu\i)f(xo)’ then

ou(f;x — wie; + x?ei, Tht1)

=D f(z°).
(£—$i€i+$?€1,xk+1)—)(3?070) ox; T“f(m )
(b) There exists a continuous function f(x) such that D;i@M\v)f(xO) =0,
but the limit
ou(f; @, xhy1)
Oxi

lim
(2,2k41) > (20,0)

does not exist.

Proof. (a) Let 2° = 0. The validity of (a) follows from the equality

ou(fyz — zie; + ale;, wpp1) X 0
ox; - ,Dwi@M\i)f<m ) =
t2 ft+z—ae) — ft+ 2 — x40, — 2tie;)
= CkTr41 S o \EZ [ 2% -
(1t? + 2 p0) 2 i

Rk’
0
~D, [ (@ )}dt.
(b) We set D; =[0,1;0,1], Do = p—1,0;0,1]. Let

tl\/g for (tl,tg) S Dl,
f(t1,t2) = \/—tl\/g for (tl,tg) S DQ,

0 for t5 <0

and continue f(t1,t2) onto the set R% \ (D; U D) so that f € L(R?). It
is easy to check that D;(tQ)f(O) =0. Let 29 = 2§ = 0 and (21,79, 73) —
(0,0,0) so that x5 = 0 and x3 = 1. Then for the constructed function we
have

ou(f; 1,0, x3) 313 (t1 — @1) f(t1, 1) dty dty

B, 21 ) (- 212+ (ta —2)® + 2372
R2




PARTIAL DERIVATIVES OF THE POISSON INTEGRAL 597

01
tf —t dtdt
:CIS{//lﬂUl\/l 12Jr
10

1—$1 +t%+$3}5/2

(t1 — 1)? + 13 + x3]>/2

+/1/1[t1x1 thldt2}+ o(1) =
0 0

_Cxl[//“ \thldtz—k

t + t2 )5/2

2 4 )5/2 -

_|_

/1t( V (it +$1)\th1dt2} o(1) =

:Cxl{/o/lt( (t1+x1)\rdt1dt2+

t2 +t2 )5/2

l1—x

L1
N / tl[\/(h +x1)V/t2 — \/(tl — 1)V dtldtz} —

(1 + 3 + x7)>/2

0
= 0331(11 + IQ) + 0(1),

where

x1

112/
0
13?1

/ /t1% \/t1 +$1—\/t1—:131) dtydty >

13 + 13 + 22)5/2

1

| t — t

/ 1 1—|—.1321 \/: \/1‘1 \/adtldt2>0,
(2 + 13 + x3)5/2

0

I

2I1 211

/ / tl \/tl + T2 — \/tl ) dtldtQ >

(2 + 3 + 27)5/2

r1 I3
2x1 2x
' lxl,/ \/2:10 - 1) d V2 -1 1
2)5/2 dhdtz = 98— =
xr1 I3

Thus, by the chosen path, we obtain

(9U(f;x1,0,x1) C
>
aZEl AR

)
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which yields

du(fiz1,0,21)
szl
path. O

— +oo when (21,22, 23) — (0,0,0) by the chosen

By a similar reasoning we prove

Theorem 6.

_(a) If at the point =z there exists a finite derivative
D* )f(xo),izl,k, then

ou(f;x, xps1)

1
(z,x)4+1)—(20,0) 81‘1'

=D}, f(2°).

(b) There exists a continuous function f(x) such that for any B C M,
m(B) < k, all derivatives D;i@B)f(O) =0, 1 =1,k, but the limits

lim au(fv 0; karl)
Trpt1—0+ 8£Ei

do not exist.

Statement (a) of Theorem 1 is a corollary of statement (a) of Theorem
6.

The validity of (b) follows from statement (b) of Theorem 1.

Theorem 7.
(a) If f has a total differential df (2°) at the point 2°, then

lim dou(f; 2, 2p41) = df (2°). (4)

(@25 41) > (20,0)

(b) there exists a continuous function f which has partial derivatives of
any order, but the limits

.0
. 8u(f,a: awk+1)
lim ————————=*
Tr41—0+ 333‘,’
do not exist.

Proof.
(a) By virtue of the lemma we have (2° = 0)

u(fsz, xryr)  0f(0)

ox; Ox;
k " o5 (0)
(=) 36l 0~ 10) - 2 S0
:Ckxk+1/ v= o - v= dt.
L Qs+ e ) 5 It
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This equality implies
ou(f;z,zp1)  9f(0)

li =
m 81‘1 8331' ’

i=1,k

A
(z,z)4+1)—0

Thus equality (4) is valid.
(b) Consider the function

{2t —ta)(ts — L) for (t1,02) € D= {(t,ta) :
f(ti,t2) = 0<t <oo it1 <ty <2h},
0 for (t1,t2) € CD.

This function is continuous in R2, has partial derivatives of any order at the
point (0, 0) which are equal to zero, but

dto >

Ju(f;0,0,z3) 33:3 it tl\/ 2ty — t2)(t2 — 5t1)
oxy / / (12 + 12 4 22)5/2

1t1

21?3

\/ 2t —ta)(t2 — *t1)
>O£E3/t1 dtl/ dty >

t2 +t2 3)5/2

e Q/ 2 — 3t,)(ty — 3t1)
> Cl’g/tl dtl/ dty >

(42 1 22)5/2

2123

\4/t dt
>C’:c3/t1dt1/ 2 :—/t?”dt
*gﬂJroo for x3 — 0+ O
== 3 .
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