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ON SOME MULTIDIMENSIONAL VERSIONS OF A
CHARACTERISTIC PROBLEM FOR SECOND-ORDER

DEGENERATING HYPERBOLIC EQUATIONS

S. KHARIBEGASHVILI

Abstract. Some multidimensional versions of a characteristic prob-
lem for second-order degenerating hyperbolic equations are considered.
Using the technique of functional spaces with a negative norm, the
correctness of these problems in the Sobolev weighted spaces are
proved.

In the space of variables x1, x2, t let us consider a second-order degener-
ating hyperbolic equation of the kind

Lu ≡ utt − tm(ux1x1 + ux2x2) + a1ux1 + a2ux2 + a3ut + a4u = F, (1)

where aj , j = 1, . . . , 4, F are the given functions and u is the unknown real
function, m = const > 0.

Denote by

D : 0 < t <
[

1− 2 + m
2

r
] 2

2+m
, r = (x2

1 + x2
2)

1
2 <

2
2 + m

a bounded domain lying in a half-space t > 0, bounded above by the cha-
racteristic conoid

S : t =
[

1− 2 + m
2

r
] 2

2+m
, r ≤ 2

2 + m

of equation (1) with the vertex at the point (0, 0, 1), and below by the base

S0 : t = 0, r ≤ 2
2 + m
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of that conoid; equation (1) has on S0 a non-characteristic degeneration.
In what follows, the coefficients ai, i = 1, . . . , 4, of equation (1) in D are
assumed to be the functions of the class C2(D).

For equation (1), consider a multidimensional version of the characteristic
problem which is formulated as follows: On the domain D, find a solution
u(x1, x2, t) of equation (1) satisfying the boundary condition

u
∣

∣

S = 0. (2)

As will be shown below, the following Cauchy problem on finding in D a
solution of equation

L∗v ≡ vtt − tm(vx1x1 + vx2x2)− (a1v)x1 − (a2v)x2 − (a3v)t + a4v = F (3)

by the initial conditions

v
∣

∣

S0
= 0, vt

∣

∣

S0
= 0 (4)

is the problem conjugate to problem (1), (2), where L∗ is the operator
formally conjugate to the operator L.

Note that for m = 0, when equation (1) is non-degenerating and con-
tains in its principal part a wave operator, some multidimensional Goursat
and Darboux problems have been investigated in [1–6]. For a hyperbolic
equation of second-order with non-characteristic degeneration of the kind

utt − |x2|mux1x1 − ux2x2 + a1ux1 + a2ux2 + a3ut + a4u = F,

as well as for a hyperbolic equation of second-order with characteristic de-
generation

utt − ux1x1 −
(

|x2|mux2

)

x2
+ a1ux1 + a2ux2 + a3ut + a4u = F

the multidimensional variants of the Darboux problem are respectively stu-
died in [7] and [8]. Other variants of multidimensional Goursat and Darboux
problems can be found in [9–11].

Denote by E and E∗ the classes of functions from the Sobolev space
W 2

2 (D), satisfying respectively the boundary condition (2) or (4) and van-
ishing in some (own for every function) three-dimensional neighborhood of
the circle Γ = S ∩ S0 : r = 2

2+m , t = 0 and of the segment I : x1 = x2 = 0,
0 ≤ t ≤ 1. Let W+(W ∗

+) be a Hilbert space with weight, obtained by closing
the space E(E∗) in the norm

‖u‖21 =
∫

D

[

u2
t + tm(u2

x1
+ u2

x2
) + u2]dD.

Denote by W−(W ∗
−) a space with negative norm which is constructed

with respect to L2(D) and W+(W ∗
+) [12].
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Let n = (ν1, ν2, ν0) be the unit vector of the outer to ∂D normal, i.e.,
ν1 = cos(n̂, x1), ν2 = cos(n̂, x2), ν0 = cos( ̂n, t). By definition, the derivative
with respect to the conormal can be calculated on the boundary ∂D of the
domain D for the operator L by the formula

∂
∂N

= ν0
∂
∂t
− tmν1

∂
∂x1

− tmν2
∂

∂x2
.

Remark 1. Since the derivative with respect to the conormal ∂
∂N for the

operator L is an interior differential operator on the characteristic surfaces
of equation (1), by virtue of (2) and (4) we have for the functions u ∈ E
and v ∈ E∗ that

∂u
∂N

∣

∣

∣

S
= 0,

∂v
∂N

∣

∣

∣

S0

= 0. (5)

Impose on the lower coefficients a1 and a2 in equation (1) the following
restrictions:

Mi = sup
D

∣

∣t−
m
2 ai(x1, x2, t)

∣

∣ < +∞, i = 1, 2. (6)

Lemma 1. For all functions u ∈ E, v ∈ E∗ the following inequalities
hold:

‖Lu‖W∗
−
≤ c1‖u‖W+ , (7)

‖L∗v‖W− ≤ c2‖v‖W∗
+
, (8)

where the positive constants c1 and c2 do not depend respectively on u and
v, ‖ · ‖W+ = ‖ · ‖W∗

+
= ‖ · ‖1.

Proof. By the definition of a negative norm, for u ∈ E with regard for
equalities (2), (4) and (5) we have

‖Lu‖W∗
−

= sup
v∈W∗

+

‖v‖−1
W∗

+
(Lu, v)L2(D) = sup

v∈E∗
‖v‖−1

W∗
+
(Lu, v)L2(D) =

= sup
v∈E∗

‖v‖−1
W∗

+

∫

D

[

uttv − tmux1x1v − tmux2x2v + a1ux1v + a2ux1v +

+a3utv + a4uv
]

dD = sup
v∈E∗

‖v‖−1
W∗

+

∫

∂D

[

utvν0 − tmux1vν1 −

−tmux2vν2
]

ds + sup
v∈E∗

‖v‖−1
W∗

+

∫

D

[

− utvt + tm(ux1vx1 + ux2vx2) +

+a1ux1v + a2ux2v + a3utv + a4uv
]

dD = sup
v∈E∗

‖v‖−1
W∗

+

∫

∂D

∂u
∂N

vds +
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+ sup
v∈E∗

‖v‖−1
W∗

+

∫

D

[

− utvt + tm(ux1vx1 + ux2vx2) + a1ux1v + a2ux2v +

+a3utv + a4uv
]

dD = sup
v∈E∗

‖v‖−1
W∗

+

∫

D

[

− utvt + tm(ux1vx1 +

+ux2vx2) + a1ux1v + a2ux1v + a3utv + a4uv
]

dD. (9)

Due to (6) as well as the Cauchy inequality, we have
∣

∣

∣

∫

D

[

− utvt + tm(ux1vx1 + ux2vx2)
]

dD
∣

∣

∣ ≤
[
∫

D

(u2
t + tmu2

x1
+

+tmu2
x2

)dD
] 1

2 ×
[

∫

D

(v2
t + tmv2

x1
+ tmv2

x2
)dD

] 1
2 ≤ ‖u‖W+‖v‖W∗

+
, (10)

∣

∣

∣

∫

D

[a1ux1v + a2ux2v + a3utv + a4uv)
]

dD ≤

≤ M1

(

∫

D

tmu2
x1

dD
) 1

2 ‖v‖L2(D) + M2

(

∫

D

tmu2
x2

dD
) 1

2 ‖v‖L2(D) +

+sup
D
|a3| ‖ut‖L2(D)‖v‖L2(D) + sup

D
|a4| ‖u‖L2(D)‖v‖L2(D) ≤

≤
(

2
∑

i=1

(

Mi + sup
D
|a2+i|

)

)

‖u‖W+‖v‖W∗
+

= c̃‖u‖W+‖v‖W∗
+
. (11)

From (9)–(11) it follows that

‖Lu‖W∗
−
≤ (1 + c̃) sup

v∈E∗
‖v‖−1

W∗
+
‖u‖W+‖v‖W∗

+
= c1‖u‖W+ ,

i.e., we get inequality (7). Since the proof of inequality (8) repeats that of
inequality (7), therefore Lemma 1 is proved completely.

Remark 2. By virtue of inequality (7) ((8)), the operator L : W+ →
W ∗
−(L∗ : W ∗

+ → W−) with a dense domain of definition E(E∗) admits a
closure, being a continuous operator from the space W+(W ∗

+) to the space
W−(W ∗

−). Retaining for this operator the previous notation L(L∗), we note
that it is defined on the whole Hilbert space W+(W ∗

+).

Lemma 2. Problem (1), (2) and problem (3), (4) are self-conjugate, i.e.,
for any u ∈ W+ and v ∈ W ∗

+ the following equality holds:

(Lu, v) = (u, L∗v). (12)
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Proof. According to Remark 2, it suffices to prove equality (12) in the case
where u ∈ E and v ∈ E∗. Obviously, in that case (Lu, v) = (Lu, v)L2(D).
Therefore we have

(Lu, v) = (Lu, v)L2(D) =
∫

∂D

[utvν0 − tmux1vν1 − tmux2vν2]ds +

+
∫

∂D

[a1ν1 + a2ν2 + a3ν0]uv ds +
∫

D

[

− utvt + tmux1vx1 + tmux2vx2 −

−u(a1v)x1 − u(a2v)x2 − u(a3v)t + a4uv
]

dD =
∫

∂D

[utvν0 − tmux1vν1 −

−tmux2vν2]ds +
∫

∂D

[a1ν1 + a2ν2 + a3ν0]uv ds−
∫

∂D

[uvtν0 −

−tmuvx1ν1 − tmuvx2ν2]ds +
∫

D

[

uvtt − utmvx1x1 − utmvx2x2 −

−u(a1v)x1 − u(a2v)x2 − u(a3v)t + a4uv
]

dD =
∫

∂D

[(

v
∂u
∂N

− u
∂v
∂N

)

+

+(u1ν1 + a2ν2 + a3ν0)uv
]

ds + (u, L∗v)L2(D). (13)

Equality (12) follows immediately from equalities (2), (4), (5), and (13).

Consider the conditions

Ω|S ≤ 0,
[

tΩt − (λt + m)Ω
]∣

∣

D ≥ 0, (14)

where the second inequality holds for sufficiently large λ, and Ω = a1x1 +
a2x2 + a3t − a4.

Remark 3. It can be easily seen that inequality (14) is the corollary of
the condition

Ω
∣

∣

D ≤ const < 0.

Lemma 3. Let conditions (6) and (14) be fulfilled. Then for any u ∈ W+

the inequality

c
∥

∥t
1
2 (m−1)u

∥

∥

L2(D) ≤ ‖Lu‖W∗
−

(15)

with the positive constant c independent of u is valid.
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Proof. Due to Remark 2, it suffices to prove inequality (15) in the case
where u ∈ E. If u ∈ E, then for α = const > 0 and λ = const > 0 the
function

v(x1, x2, t) =

t
∫

0

eλτταu(x1, x2, τ)dτ (16)

belongs to the space E∗. The fact that for α ≥ 1 the function v ∈ E∗

can be easily verified, and for 0 < α < 1 this statement follows from the
well-known Hardy’s inequality

1
∫

0

t−2g2(t)dt ≤ 4

1
∫

0

f2(t)dt,

where f(t) ∈ L2(0, 1) and g(t) =
∫ t
0 f(τ)dτ .

By (16), the inequalities

vt(x1, x2, t) = eλttαu(x1, x2, t), u(x1, x2, t) = e−λtt−αvt(x1, x2, t) (17)

are valid.
With regard for (2), (4), (5), and (17) we have

(Lu, v)L2(D) =
∫

∂D

[

v
∂u
∂N

+ (a1ν1 + a2ν2 + a3ν0)uv
]

ds +
∫

D

[−utvt +

+tmux1vx1 + tmux2vx2 − u(a1v)x1 − u(a2v)x2 − u(a3v)t + a4uv]dD =

= −
∫

D

eλttαuut dD +
∫

D

e−λtt−α[tm(vx1tvx1 + vx2tvx2)−

−(a1vx1 + a2vx2)vt − (a1x1 + a2x2 + a3t − a4)vtv − a3v2
t ]dD. (18)

By virtue of (2) we find that

−
∫

D

e−λttαuut dD = −1
2

∫

D

eλttα(u2)tdt = −1
2

∫

∂D

eλttαu2ν0 ds +

+
1
2

∫

D

eλt(αtα−1 + λtα)u2 dD =
1
2

∫

D

eλt(αtα−1 + λtα)u2 dD =

=
α
2

∫

D

eλttα−1u2 dD +
1
2

∫

D

λe−λtt−αv2
t dD, (19)

∫

D

e−λttm−α(−vx1tvx1 + vx2tvx2)dD =
1
2

∫

∂D

e−λttm−α(v2
x1

+
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+v2
x2

)ν0 ds +
1
2

∫

D

e−λt[λtm−α + (α−m)tm−α−1](v2
x1

+ v2
x2

)dD ≥

≥ 1
2

∫

D

e−λt[λtm−α + (α−m)tm−α−1](v2
x1

+ v2
x2

)dD. (20)

In deriving inequality (20) we have taken into account that

ν0|S ≥ 0, (v2
x1

+ v2
x2

)|S0 = 0.

From (19) we have

−
∫

D

eλttαuut dD ≥ α
2

∥

∥t
1
2 (α−1)u

∥

∥

2
L2(D) +

1
2

∫

D

λe−λtt−αv2
t dD. (21)

Below we assume that the parameter α = m.
By (6) we obtain
∣

∣

∣

∫

D

e−λtt−m(a1vx1 + a2vx2)vt dD
∣

∣

∣ ≤ M
∫

D

e−λtt−m
[

v2
t +

1
2
tm(v2

x1
+

+v2
x2

)
]

dD ≤ M
∫

D

e−λtt−mv2
t dD +

M
2

∫

D

e−λt(v2
x1

+ v2
x2

)dD, (22)

where M = max(M1,M2).
Since ν0

∣

∣

S ≥ 0, using conditions (4) and (14) and integrating them by
parts, we obtain

−
∫

D

e−λtt−m(a1x1 + a2x2 + a3t − a4)vtv dD =

−1
2

∫

D

e−λtt−mΩ(v2)tdD = −1
2

∫

∂D

e−λtt−mΩv2ν0ds +

+
1
2

∫

D

e−λtt−m−1[tΩt − (λt + m)Ω
]

v2dD ≥ 0. (23)

In deriving inequality (23) we have used the fact that the function t−mv2

has on S0 a zero trace, i.e., t−mv2
∣

∣

S0
= 0.

From (18) by virtue of (20)–(23) we have

(Lu, v)L2(D) ≥
m
2

∥

∥t
1
2 (m−1)u

∥

∥

2
L2(D) +

1
2

∫

D

λe−λtt−mv2
t dD +

+
1
2

∫

D

λe−λt(v2
x1

+ v2
x2

)dD −M
∫

D

e−λtt−mv2
t dD − M

2

∫

D

e−λt(v2
x1

+
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+v2
x2

)dD − sup
D
|a3|

∫

D

e−λtt−mv2
t dD =

m
2

∥

∥t
1
2 (m−1)u

∥

∥

2
L2(D) +

+
(λ

2
−M − sup

D
|a3|

)

∫

D

e−λtt−mv2
t dD +

1
2
(λ−M)

∫

D

e−λt(v2
x1

+

+v2
x2

)dD ≥ m
2

∥

∥t
1
2 (m−1)u

∥

∥

2
L2(D) + σ

∫

D

e−λt(v2
t + v2

x1
+ v2

x2
)dD ≥

≥
√

2mσ inf
D

e−λt
∥

∥t
1
2 (m−1)u

∥

∥

2
L2(D)

(

∫

D

[

v2
t + tm(v2

x1
+ v2

x2
)
]

dD
) 1

2
, (24)

where σ =
[λ

2 −M− supD |a3|
]

> 0 for sufficiently large λ, and infD e−λt =
e−λ > 0. When deriving inequality (24), we have taken into account the
fact that t−m

∣

∣

D ≥ 1.
If u ∈ W+(W ∗

+) and because u|S = 0 (u|S0 = 0), we can easily prove the
inequality

∫

D

u2dD ≤ c0

∫

D

u2
t dD

for which c0 = const > 0 independent of u. Hence we find that in the space
W+(W ∗

+) the norm

‖u‖2W+(W∗
+) =

∫

D

[

u2
t + tm(u2

x1
+ u2

x2
) + u2]dD

is equivalent to the norm

‖u‖2 =
∫

D

[

u2
t + tm(u2

x1
+ u2

x2
)
]

dD. (25)

Therefore, retaining for norm (25) the previous designation ‖u‖W+(W∗
+),

from (24) we have

(Lu, v)L2(D) ≥
√

2mσe−λ‖t 1
2 (m−1)u‖L2(D) ‖v‖W∗

+
. (26)

If now we apply the generalized Schwarz inequality

(Lu, v) ≤ ‖Lu‖W∗
−
‖v‖W∗

+

to the left-hand side of (26), then after reducing by ‖v‖W∗
+

we get inequality

(15) in which c =
√

2mσe−λ.
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Consider the conditions

a4
∣

∣

S0
≥ 0, (λa4 + a4t)

∣

∣

D ≥ 0, (27)

of which the second one takes place for sufficiently large λ.

Lemma 4. Let conditions (6) and (27) be fulfilled. Then for any v ∈ W ∗
+

the inequality

c‖v‖L2(D) ≤ ‖L∗v‖W− (28)

is valid for some c = const > 0 independent of v ∈ W ∗
+.

Proof. Just as in Lemma 3 and because of Remark 2, it suffices to prove
the validity of inequality (28) for v ∈ E∗. Let v ∈ E∗ and let us introduce
into the consideration the function

u(x1, x2, t) =

ϕ(x1,x2)
∫

t

e−λτv(x1, x2, τ)dτ, λ = const > 0, (29)

where t = ϕ(x1, x2) is the equation of the characteristic conoid S. Although
on the circle r = 2

2+m the function

ϕ(x1, x2) =
[

1− 2 + m
2

r
] 2

2+m

has singularities and at the origin x1 = x2 = 0, but by the definition of
the space E∗, the function v vanishes in some neighborhood of the circle
Γ = S ∩ S0 and of the segment I : x1 = x2 = 0, 0 ≤ t ≤ 1, the function u
defined by equality (29) will belong to the space E. Moreover, it is obvious
that the equalities

ut(x1, x2, t) = −e−λtv(x1, x2, t), v(x1, x2, t) = −eλtut(x1, x2, t) (30)

hold.
Owing to (2), (4), (5), and (30), we have

(L∗v, u)L2(D) =
∫

∂D

[

u
∂v
∂N

− (a1ν1 + a2ν2 + a3ν0)vu
]

ds +

+
∫

D

[−vtut + tmvx1ux1 + tmvx2ux2 + a1vux1 + a2vux2 + a3vut +

+a4uv]dD =
∫

D

e−λtvtv dD −
∫

D

eλt[tm(ux1tux1 + ux2tux2) +

+(a1ux1 + a2ux2)ut + a3u2
t + a4uut

]

dD, (31)
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∫

D

e−λtvtv dD =
1
2

∫

∂D

e−λtv2ν0 ds +
1
2

∫

D

e−λtλv2 dD =

=
1
2

∫

S

e−λtv2ν0 ds +
1
2

∫

D

e−λtλv2 dD =

=
1
2

∫

S

eλtu2
t ν0 ds +

1
2

∫

D

eλtλu2
t dD, (32)

−
∫

D

eλttm(ux1tux1 + ux2tux2)dD = −1
2

∫

∂D

eλttm(u2
x1

+ u2
x2

)ν0 ds +

+
1
2

∫

D

eλt[λtm + mtm−1](u2
x1

+ u2
x2

)dD ≥

≥ −1
2

∫

∂D

eλttm(u2
x1

+ u2
x2

)ν0 ds +
1
2

∫

D

λeλttm(u2
x1

+ u2
x2

) dD. (33)

Since u|S = 0, for some α we have vt = αν0, vx1 = αν1, vx2 = αν2 on S.
Therefore the fact that the surface S is characteristic results in

[

u2
t − tm(u2

x1
+ u2

x2
)
]∣

∣

S = α2[ν2
0 − tm(ν2

1 + ν2
2)

]∣

∣

S = 0. (34)

Taking into account that m > 0 and hence tm|S0 = 0, equalities (2) and
(34) imply

1
2

∫

S

eλtu2
t ν0 ds− 1

2

∫

∂D

eλttm(u2
x1

+ u2
x2

)ν0 ds =

=
1
2

∫

S

eλt[u2
t − tm(u2

x1
+ u2

x2
)]ν0 ds = 0. (35)

Due to (32), (33), and (35), equality (31) yields

(L∗v, u)L2(D) ≥
1
2

∫

D

eλt[u2
t + tm(u2

x1
+ u2

x2
)
]

dD −

−
∫

D

eλt[(a1ux1 + a2ux2)ut + a3u2
t + a4uut

]

dD. (36)

Since ν0
∣

∣

S0
< 0, by (27) we have

−
∫

D

eλta4uutdD = −1
2

∫

D

eλta4(u2)tdD = −1
2

∫

∂D

eλta4u2ν0ds +
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+
1
2

∫

D

eλt(λa4 + a4t)u2dD ≥ 0. (37)

Using (6), we obtain

∣

∣

∣

∫

D

eλt(a1ux1 + a2ux2)utdD
∣

∣

∣ ≤ M
∫

D

eλt
[

u2
t +

1
2
tm(u2

x1
+ u2

x2
)
]

dD, (38)

where M = max(M1,M2).
With regard for (30), (37) and (38), from (36) we get

(L∗v, u)L2(D) ≥
(λ

2
−M − sup

D
|a3|

)

∫

D

eλt[u2
t + tm(u2

x1
+ u2

x2
)
]

dD ≥

≥ γ
[

∫

D

eλtu2
t dD

] 1
2
[

∫

D

eλt[u2
t + tm(u2

x1
+ u2

x2
)
]

dD
] 1

2
=

= γ
[

∫

D

e−λtv2dD
] 1

2
[

∫

D

eλt[u2
t + tm(u2

x1
+ u2

x2
)
]

dD
] 1

2 ≥

≥ γ inf
D

e−λt‖v‖L2(D)

[
∫

D

[

u2
t + tm(u2

x1
+ u2

x2
)
]

dD
] 1

2
, (39)

where γ =
(λ

2 −M − supD |a3|
)

> 0 for sufficiently large λ.
From (39), in just the same way as in obtaining inequality (26), we find

that

(L∗v, u)L2(D) ≥ c‖v‖L2(D) ‖u‖W+ ,

which immediately implies (28).

Denote by L2,α(D) a space of functions u such that tαu ∈ L2(D). Assume

‖u‖L2,α(D) = ‖talu‖L2(D), αm =
1
2
(m− 1).

Definition 1. For F ∈ W ∗
− we call the function u a strong generalized

solution of problem (1), (2) of the class L2,αm , if u ∈ L2,αm(D) and there
exists a sequence of functions un ∈ E such that un → u in the space
L2,αm(D) and Lun → F in the space W ∗

− as n →∞, i.e.,

lim
n→∞

‖un − u‖L2,αm (D) = 0, lim
n→∞

‖Lun − F‖W∗
−

= 0.

Definition 2. For F ∈ L2(D) we call the function u a strong generalized
solution of problem (1), (2) of the class W+, if u ∈ W+ and there exists a
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sequence of functions un ∈ E such that un → u and Lun → F in the spaces
W+ and W ∗

−, respectively, i.e.,

lim
n→∞

‖un − u‖W+ = 0, lim
n→∞

‖Lun − F‖W∗
−

= 0.

According to the results obtained in [13], the following theorems are the
corollaries of Lemmas 1–4.

Theorem 1. Let conditions (6), (14), and (27) be fulfilled. Then for
every F ∈ W ∗

− there exists a unique strong generalized solution u of problem
(1), (2) of the class L2,αm for which the estimate

‖u‖L2,αm (D) ≤ c‖F‖W∗
−

(40)

with the constant c independent of F is valid.

Theorem 2. Let conditions (6), (14), and (27) be fulfilled. Then for
every F ∈ L2(D) there exists a unique strong generalized solution u of
problem (1), (2) of the class W+ for which estimate (40) is valid.

Consider now a second-order hyperbolic equation with a characteristic
degeneration of the kind

L1u ≡ (tmut)t − ux1x1 − ux2x2 + a1ux1 + a2ux2 + a3ut + a4u = F, (41)

where 1 ≤ m = const < 2.
Denote by

D1 : 0 < t <
[

1− 2−m
2

r
] 2

2−m
, r = (x2

1 + x2
2)

1
2 <

2
2−m

a bounded domain lying in a half-space t > 0, bounded above by the char-
acteristic conoid

S2 : t =
[

1− 2−m
2

r
] 2

2−m
, r ≤ 2

2−m

of equation (41) with the vertex at the point (0, 0, 1) and below by the base

S1 : t = 0, r ≤ 2
2−m

of the same conoid where equation (41) has a characteristic degeneration.
Just as in the case of equation (1), in what follows, the coefficients ai,
i = 1, . . . , 4, of equation (41) in the domain D1 are assumed to be the
functions of the class C2(D).

For equation (41) let us consider a multidimensional version of the char-
acteristic problem which is formulated as follows: Find in the domain D1 a
solution u(x1, x2, t) of equation (41) satisfying the boundary condition

u
∣

∣

S1
= 0 (42)
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on the plane characteristic surface S1.
The characteristic problem for the equation

L∗1v≡(tmvt)t − vx1x1 − vx2x2 − (a1v)x1 − (a2v)x2 − (a3v)t + a4v=F (43)

in the domain D1 is formulated analogously for the boundary condition

v
∣

∣

S2
= 0, (44)

where L∗1 is the operator conjugate formally to the operator L1.
Denote by E1 and E∗

1 the classes of functions from the Sobolev space
W 2

2 (D1), satisfying the corresponding boundary condition (42) or (44) and
vanishing in some (own for every function) three-dimensional neighborhood
of the segment I : x1 = 0, x2 = 0, 0 ≤ t ≤ 1. Let W1+(W ∗

1+) be the Hilbert
space obtained by closing the space E1(E∗

1 ) in the norm

‖u‖2 =
∫

D1

[u2
t + u2

x1
+ u2

x2
+ u2]dD1.

Denote by W1−(W ∗
1−) a space with a negative norm, constructed with re-

spect to L2(D1) and W1+(W ∗
1+).

The following lemma can be proved analogously to Lemmas 1 and 2.

Lemma 5. For all functions u ∈ E1 and v ∈ E∗
1 the inequalities

‖L1u‖W∗
1−
≤ c1‖u‖W1+ , ‖L∗1v‖W1− ≤ c1‖v‖W∗

1+
,

are fulfilled and problems (41), (42) and (43), (44) are self-conjugate, i.e.,
for every u ∈ W1+ and v ∈ W ∗

1+ the equality

(L1u, v) = (u, L∗1v)

holds.

Let us consider the conditions

inf
D1

(a4 − a1x1 − a2x2 − a3t) > 0, (45)

inf
S1

a3 >
1
2

for m = 1, inf
S1

a3 > 0 for m > 1. (46)

Lemma 6. Let conditions (45) and (46) be fulfilled. Then for any u ∈
W1+ the inequality

c‖u‖L2(D1) ≤ ‖L1u‖W∗
1−

, (47)

with the positive constant c independent of u, is valid.
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Consider now the conditions

inf
D1

a4 > 0, (48)

inf
S1

a3 > −1
2

for m = 1, inf
S1

a3 > 0 for m > 1. (49)

Note that condition (46) results in condition (49).

Lemma 7. Let conditions (48) and (49) be fulfilled. Then for any v ∈
W ∗

1+ the inequality

c‖v‖L2(D1) ≤ ‖L∗1v‖W1− (50)

with the positive constant c independent of v holds.

Below we will restrict ourselves to proving only Lemma 6. Let u ∈ E1.
We introduce into consideration the function

v(x1, x2, t) =

ψ(x1,x2)
∫

t

e−λτu(x1, x2, τ)dτ, λ = const > 0, (51)

where t = ψ(x1, x2) is the equation of the characteristic conoid S2 of equa-
tion (41). Since 1 ≤ m < 2, the first and second-order derivatives of the
function

ψ(x1, x2) =
[

1− 2−m
2

r
] 2

2−m

with respect to the variables x1 and x2 will have singularities at the origin
only. But by the definition of the space E1, the function u vanishes in
some neighborhood of the segment I : x1 = x2 = 0, 0 ≤ t ≤ 1. Therefore
the function v defined by equality (51) belongs to the space E∗

1 , and the
equalities

vt(x1, x2, t) = −e−λtu(x1, x2, t), ut(x1, x2, t) = −eλtvt(x1, x2, t) (52)

hold.
Since the derivative with respect to the conormal

∂
∂N

= tmν0
∂
∂t
− ν1

∂
∂x1

− ν2
∂

∂x2

for the operator L1 is an interior differential operator on the characteristic
surfaces of equation (41), because of (42) and (44) for the functions u ∈ E1

and v ∈ E∗
1 we have

∂u
∂N

∣

∣

∣

S1

= 0,
∂u
∂N

∣

∣

∣

S2

= 0. (53)
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By (42), (44), (52) and (53) we arrive at

(Lu, v)L2(D1) =
∫

∂D1

[

v
∂u
∂N

+ (a1ν1 + a2ν2 + a3ν0)uv
]

ds +

+
∫

D1

[

− tmutvt + ux1vx1 + ux2vx2 − u(a1v)x1 − u(a2v)x2 − u(a3v)t +

+a4uv
]

dD1 =
∫

D1

e−λttmuutdD1 +
∫

D1

eλt[− vx1tvx1 − vx2tvx2 +

+(a1vx1 + a2vx2)vt + (a1x1 + a2x2 + a3t − a4)vtv + +a3v2
t

]

dD, (54)
∫

D1

e−λttmuutdD1 =
1
2

∫

D1

e−λttm(u2)tdD1 =
1
2

∫

∂D1

e−λttmu2ν0ds +

+
1
2

∫

D1

e−λt(λtm −mtm−1)u2dD1 =
1
2

∫

S2

e−λttmu2ν0ds +

+
1
2

∫

D1

eλt(λtm −mtm−1)v2
t dD1 =

1
2

∫

S2

eλttmv2
t ν0ds +

+
1
2

∫

D1

eλt(λtm −mtm−1)v2
t dD1, (55)

∫

D1

eλt[−vx1tvx1 − vx2tvx2 ]dD1 = −1
2

∫

∂D1

eλt[v2
x1

+ v2
x2

]ν0ds +

+
1
2

∫

D1

eλtλ[v2
x1

+ v2
x2

]dD1. (56)

Since v
∣

∣

S2
= 0 and the surface S2 is characteristic, similarly to equality

(34) we have

(tmv2
t − v2

x1
− v2

x2
)
∣

∣

S2
= 0. (57)

Taking into account that ν0
∣

∣

S1
< 0, with regard for equalities (54)–(57)

we find that

(Lu, v)L2(D) = −1
2

∫

S1

eλt[v2
x1

+ v2
x2

]ν0ds +
1
2

∫

S2

eλt[tmv2
t − v2

x1
−

−v2
x2

]ν0ds +
1
2

∫

D1

eλt[2a3 −mtm−1 + λtm]v2
t dD1 +

1
2

∫

D1

eλtλ[v2
x1

+
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+v2
x2

]dD1 +
∫

D1

eλt[a1vx1 + a2vx2 ]vtdD1 +
∫

D1

(a1x1 + a2x2 + a3t −

−a4)vtvdD1 ≥
1
2

∫

D1

eλt[2a3 −mtm−1 + λtm]v2
t dD1 +

+
1
2

∫

D1

eλtλ[v2
x1

+ v2
x2

]dD1 −
∣

∣

∣

∫

D1

eλt[a1vx1 + a2vx2 ]vtdD1 +

+
∫

D1

eλt(a1x1 + a2x2 + a3t − a4)vtvdD1. (58)

Since a3 ∈ C(D), it follows from condition (46) that for sufficiently large λ

(2a3 −mtm−1 + λtm
∣

∣

D1
≥ 4δ = const > 0

and thus

1
2

∫

D1

eλt[2a3 −mtm−1 + λtm]v2
t dD1 ≥ 2δ

∫

D1

eλtv2
t dD1. (59)

Integration by parts gives
∫

D1

eλt(a1x1 + a2x2 + a3t − a4)vtvdD1 =
1
2

∫

∂D1

eλt(a1x1 + a2x2 +

+a3t − a4)v2ν0ds− 1
2

∫

D1

eλt[λ(a1x1 + a2x2 + a3t − a4) +

+(a1x1 + a2x2 + a3t − a4)t
]

v2dD1,

whence by condition (44) and inequalities ν0
∣

∣

S1
< 0 and (45) we find that

for sufficiently large λ the inequality
∫

D1

eλt(a1x1 + a2x2 + a3t − a4)vtvdD1 ≥ 0 (60)

is valid.
Using the inequality

(a + b)2 ≤ 2a2 + 2b2, |ab| ≤ δ|a|2 +
1
4δ
|b|2,

we obtain
∣

∣

∣

∫

D1

eλt[a1vx1 + a2vx2 ]vtdD1 ≤ δ
∫

D1

eλtv2
t dD1 +
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+
γ
2δ

∫

D1

eλt(v2
x1

+ v2
x2

)dD1, (61)

where γ = max
(

supD1
|a1|2, supD1

|a2|2
)

.
With regard for (59), (60), and (61), for sufficiently large λ we get from

(58) that

(Lu, v)L2(D) ≥ δ
∫

D1

eλtv2
t dD1 +

(λ
2
− λ

2δ

)

∫

D1

eλt(v2
x1

+ v2
x2

)dD1,

which for λ ≥ 2δ + γ
δ yields

(Lu, v)L2(D) ≥ δ
∫

D1

eλt[v2
t + v2

x1
+ v2

x2
]dD1. (62)

In the same way as in proving inequality (15) in Lemma 3, from (62) follows
inequality (47) which proves Lemma 6.

Definition 3. For F ∈ W ∗
1−(W1−) we call the function u(v) a strong

generalized solution of problem (41), (42) (of problem (43), (44)) of the
class L2, if u(v) ∈ L2(D1) and there exists a sequence of functions un(vn) ∈
E1(E∗

1 ) such that un → u (vn → v) in the space L2(D1) and L1un → F
(L∗1vn → F ) in the space W ∗

1−(W1−) as n →∞.

Definition 4. For F ∈ L2(D) we call the function u(v) a strong gen-
eralized solution of problem (41), (42) (of problem (43), (44)) of the class
W1+(W ∗

1+), if u(v) ∈ W1+(W ∗
1+) and there exists a sequence of functions

un(vn) ∈ E1(E∗
1 ) such that un → u (vn → v) and L1un → F (L∗1vn → F ) in

the spaces W1+(W ∗
1+) and W ∗

1−(W1−), respectively.

The following theorems are the corollaries of Lemmas 5–7.

Theorem 3. Let conditions (45), (46), and (48) be fulfilled. Then for
any F ∈ W ∗

1−(W1−) there exists a unique strong generalized solution u(v)
of problem (41), (42) (of problem (43), (44)) of the class L2 for which the
estimate

‖u‖L2(D1) ≤ c‖F‖W∗
1−

(

‖v‖L2(D1) ≤ c‖F‖W1−

)

(63)

with the positive constant c independent of F holds.

Theorem 4. Let conditions (45), (46), and (48) be fulfilled. Then for
any F ∈ L2(D1) there exists a unique strong generalized solution u(v) of
problem (41), (42) (of problem (43), (44)) of the class W1+(W ∗

1+) for which
estimate (63) is valid.
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