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THE TENSOR CATEGORY OF LINEAR MAPS AND
LEIBNIZ ALGEBRAS

J. L. LODAY AND T. PIRASHVILI

Abstract. We equip the category LM of linear maps of vector spaces
with a tensor product which makes it suitable for various construc-
tions related to Leibniz algebras. In particular, a Leibniz algebra be-
comes a Lie object in LM and the universal enveloping algebra func-
tor UL from Leibniz algebras to associative algebras factors through
the category of cocommutative Hopf algebras in LM. This enables
us to prove a Milnor–Moore type theorem for Leibniz algebras.

The relationship between Lie algebras, associative algebras and Hopf
algebras can be briefly summarized by the following diagram, in which �
indicates a pair of adjoint functors (−→ left adjoint to ←−):

(Hopf)

P↙ ↘ forgetful
↗U

(Lie)
( )L

←−−→
U

(As)

In this diagram (Lie), (As) and (Hopf) stand for the categories of Lie
algebras, associative and unital algebras, Hopf co-commutative algebras,
respectively.

In [1] (see also [2] and [3]), there is a definition of non-commutative
version of Lie algebras called Leibniz algebras. Explicitly, a Leibniz algebra
is an algebra whose product denoted by [−,−] satisfies the relation

[x, [y, z]]− [[x, y], z] + [[x, z], y] = 0.

Note that Lie algebras are particular examples of Leibniz algebras. In
[2] we constructed and studied the universal enveloping algebra UL(g) of
a Leibniz algebra. Unlike the functor U , the functor UL does not factor
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through (Hopf). The purpose of this paper is to show that there exists
some factorization provided that one replaces (Hopf) by the category of
“Hopf objects in the category of linear maps”. More precisely, we embed
the functor UL into the diagram

(Hopf in LM)
P↙ ↘ forgetful↗U

(Leib) ←−−→ (Lie in LM)
( )L

←−−→
U

(As in LM) −→ (As)

| ↑
| |

UL
The motto is to replace the tensor category of vector spaces by the tensor

category LM of linear maps f : V →W . The key point is the definition
of the tensor product of two linear maps (called the infinitesimal tensor
product) :





V
↓
W



⊗





V ′

↓
W ′



 :=





V ⊗W ′ ⊕W ⊗ V ′

↓
W ⊗W ′



 .

In this tensor category one easily defines the notions of associative algebras,
Lie algebras, Hopf algebras and the related functors. One can also prove all
classical theorems like the Poincaré–Birkhoff–Witt theorem and the Milnor–
Moore theorem.

Any Leibniz algebra g gives rise to a Lie object in LM, namelly g →→ gLie,
where gLie is simply g quotiented by the ideal generated by the elements
[x, x] for x ∈ g. This functor (Leib)→(Lie in LM) permits us to construct
the factorization of UL indicated in the above diagram. The field K is fixed
throughout the paper. The category of vector spaces over K is denoted by
Vect. It is a tensor category for the tensor product ⊗K of vector spaces
abbreviated into ⊗.

1. The infinitesimal tensor category of linear maps

1.1. The category LM. The objects of the category of linear maps LM
are the K-linear maps f : V →W , where V and W are K-vector spaces. We

sometimes denote it by





V
f ↓
W



 , or





V
↓
W



 , or (V, W ), if no confusion

can arise. The image of v ∈ V under f is denoted by f(v) or v̄. A morphism
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(α, ᾱ) in LM from (V, W ) to (V ′,W ′) is a commutative diagram in Vect

V α−→ V ′

f




y





yf ′

W ᾱ−→ W ′.

The composition in LM is obvious.
We define the infinitesimal tensor product of two objects (V, W ) and

(V ′,W ′) of LM by




V
f ↓

W



 ⊗





V ′

f ′ ↓
W ′



 :=





V ⊗W ′ ⊕W ⊗ V ′

f⊗1W ′ ↓ +1W⊗f ′

W ⊗W ′



 . (1.1.1)

Note that there is another tensor product given by (V ⊗ V ′,W ⊗ W ′),
but we do not use this tensor product in the present paper.

We will sometimes write (V W ′+WV ′,WW ′) for the infinitesimal tensor
product. In the sequel we refer to f as the “vertical map”. “Upstairs” and
“downstairs” refer to V and W , respectively.

For two linear maps (V, W ) and (V ′,W ′) the interchange map

τ = τ(V,W ),(V ′,W ′) : (V, W )⊗ (V ′,W ′)→(V ′,W ′)⊗ (V,W ) (1.1.2)

is given by v⊗w′+ w⊗ v′ 7→ v′⊗w + w′⊗ v upstairs and w⊗w′ 7→ w′⊗w
downstairs. It is clear that τ(V ′,W ′),(V,W ) = τ−1

(V,W ),(V ′,W ′).

1.2. In the sequel a tensor category X is a K-linear category which is
strict monoidal. It means the following : for any two objects X and
X ′, Hom(X, X ′) is a K-vector space for which the composition is bilin-
ear. Moreover, there is a functor X ×X →X , (X, Y ) 7→ X⊗Y (the monoid
law, cf. [4]), which is strictly associative, compatible with the composition
((f ◦ g) ⊗ (f ′ ◦ g′) = (f ⊗ f ′) ◦ (g ⊗ g′) and idx⊗ idy = idx⊗y) and unital
(∃ 1 ∈ ObX such that X ⊗ 1 = 1⊗X = X).

A tensor category is symmetric if for any objects X and Y an isomorphism
τ = τX,Y : X ⊗ Y ∼→ Y ⊗X, is given, which is functorial in X and Y and
such that τY,X = τ−1

X,Y .
The paradigm is the category of vector spaces over K.
Obviously, the infinitesimal tensor category of linear maps, as defined in

1.1, is a symmetric tensor category. Its unit element 1 is (0,K). Since the
two functors

V ect −→ M −→ V ect,

W 7−→ (0,W ), (V, W ) 7−→ W,
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preserve ⊗ and since the composite is the identity, it is clear that the down-
stairs object of an associative algebra (resp. Lie algebra, etc . . . ) in LM
is an associative algebra (resp. Lie algebra, etc . . . ) in the classical sense
(cf. Section 2 below).

1.3. From definition (1.1) it immediately follows that the iterated tensor
product of n copies of (V,W ) is

(V, W )⊗n =
(

⊕

i+j=n−1
i≥0,j≥0

W⊗i ⊗ V ⊗W⊗j ,W⊗n
)

.

The symmetric product S2(V, W ) is defined as the linear map which is
universal for the morphisms φ originating from (V, W )⊗2 which satisfy φ =
τ ◦ φ. Downstairs we get S2W and upstairs we get (V W + WV )/ ≈, where
the equivalence relation ≈ is given by v ⊗ w ≈ w ⊗ v so that S2(V, W ) ∼=
(V ⊗W,S2W ). More generally, the n-th symmetric product is

Sn(V,W ) ∼= (V ⊗ Sn−1W,SnW ).

The exterior product Λ2(V, W ) is universal for morphisms from (V, W )⊗2

satisfying φ = −τ ◦ φ. Downstairs we get Λ2W and upstairs we get (V W +
WV )/ ≈, where the equivalence relation is now given by v⊗w ≈ −w⊗v. So
we get Λ2(V,W ) ∼= (V ⊗W,Λ2W ). The n-th exterior product is therefore

Λn(V,W ) ∼= (V ⊗ Λn−1W,ΛnW ).

2. Algebra in LM and a bimodule over algebra

2.1. Definition. An associative algebra in the tensor category X is an
object X equipped with a morphism µ : X ⊗X→X such that µ(µ⊗ 1) =
µ(1⊗ µ). It is unital if there a morphism ε : 1→X is given such that both
composites X ∼= X ⊗ 1 1⊗ε→ X ⊗X

µ→ X and X ∼= 1 ⊗X ε⊗1→ X ⊗X
µ→ X

are the identity. It is commutative if µ ◦ τ = µ.

2.2. Definition. A bimodule over the algebra (M, R) is a K-linear map
f : M →R, where R is an associative algebra, M is an R-bimodule and f
is an R-bimodule map.

A bimodule over the algebra (M, R) is said to be commutative if R is
commutative and the bimodule M is symmetric. It is unital if R is unital
and M is a unitary bimodule.
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2.3. Proposition An associative algebra in the infinitesimal tensor cate-
gory LM is equivalent to a bimodule over the algebra.
Proof. By definition (M,R) is an algebra in LM if a morphism

µ : (MR + RM, RR) = (M, R)⊗ (M, R) −→ (M,R)

in LM is given which is associative. Downstairs it simply means that R
is an algebra. Upstairs it provides us with two linear maps M ⊗ R→M
and R⊗M →M . The associativity condition implies that the two possible
maps MRR + RMR + RRM −→ M are the same. This ensures that M is
an R-bimodule.

The commutativity of the diagram associated to the defining morphism
implies that f is a bimodule map.

Note that the infinitesimal tensor product of two bimodules over algebras
is still a bimodule over algebra.

We leave the reader the task of translating Definitions 2.1, 2.2 and Propo-
sition 2.3 into the coalgebra framework.

2.4. Free bimodule over algebra. To any linear map (V, W ) one asso-
ciates the bimodule over the algebra (T (W ) ⊗ V ⊗ T (W ), T (W )), where
T (W ) is the tensor algebra over W . The T (W )-bimodule structure of
T (W ) ⊗ V ⊗ T (W ) is clear. The vertical map sends ω ⊗ v ⊗ ω′ to the
product ωv̄ω′. This is a free object among bimodules over algebras in the
following sense : the functor (V, W ) 7→ (T (W )⊗ V ⊗ T (W ), T (W )) is left
adjoint to the forgetful functor which assigns to a bimodule over algebra its
underlying linear map.

2.5. Commutative bimodule over algebra. A commutative algebra in
LM is an algebra (M, R) in LM for which the product map µ : (M, R)⊗
(M,R)→(M,R) satisfies µ ◦ τ = µ. It is immediate to check that this is
equivalent to : R is commutative and M is symmetric.

The free commutative bimodule over algebra associated to the linear map
(V,W ) is (S(W )⊗V , S(W )), where S(W ) is the classical symmetric algebra
over W (e.g. polynomial algebra if W is finite dimensional), and S(W )⊗V
is a symmetric S(W )-bimodule.

2.6. Module over a bimodule over algebra. For an algebra object
(M, R) in LM a left (M, R)-module is an object (V, W ) of LM equipped
with a morphism

(M, R)⊗ (V,W )→(V,W )

satisfying the obvious associativity axiom.
Explicitly, this is equivalent to a left R-module map V →W , together

with an R-module map
α : M ⊗R W →V

satisfying some obvious compatibility with the vertical maps.
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2.7. Algebra associated to a bimodule over algebra. In this subsec-
tion we construct a functor

(Bimod/Alg) −→ (As)

from the bimodules over algebra to the associative algebras.

2.8. Proposition. Let (M, R) be a bimodule over algebra. The formula

(m + r)(m′ + r′) = f(m)m′ + mr′ + rm′ + rr′

for r, r′ ∈ R and m,m′ ∈ M , endows the direct sum M ⊕R with an algebra
structure. This algebra is denoted by M ⊕f R. If (M, R) is commutative,
then M ⊕f R is a commutative algebra.

Proof. The proof is straightforward and follows from the bimodule proper-
ties of M and of f .

Note that if f = 0, then M⊕f R is the dual number extension (also called
the infinitesimal extension) of R by M . It means that M is a square-zero
ideal.

There is a dual construction based on the product mm′ = mf(m′).
If (V, W ) is a left (M,R)-module (cf. 2.6), then the direct sum V ⊕W

becomes a left M ⊕f R-module by

(m + r)(v + w) = α(m⊗ v̄ + m⊗ w) + rv + rw.

3. Lie algebra in LM and Leibniz algebras

3.1. Definition. A Lie algebra in a tensor category X is an object X
equipped with a morphism

µ : X ⊗X→X

satisfying
(i) µ ◦ τ = −µ,

(ii) µ(1⊗ µ)− µ(µ⊗ 1) + µ(µ⊗ 1)(1⊗ τ) = 0.

3.2. Proposition. A Lie object in LM is equivalent to a linear map
f : M → g, where g is a Lie algebra, M is a (right) g-module and f is
g-equivariant.

We denote by [m, g] the action of g ∈ g on m ∈ M .

Proof. Let µ : (M, g) ⊗ (M, g)→(M, g) be the defining morphism. Down-
stairs it is equivalent to a Lie algebra structure on g. Upstairs it provides
a linear map M ⊗ g + g⊗M →M . By the symmetry property (i) the map
g⊗M →M can be deduced from the map M ⊗ g→ g. By property (ii) this
latter map equips M with a right g-module structure. Commutation of the
diagram associated with µ ensures that M → g is g-equivariant.
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3.3. Free Lie object in LM. Let (V, W ) be a linear map and let L(W )
be the free Lie algebra on W . In the following sequence of maps

V ⊗ T (W )⊗ L(W ) ↪→ V ⊗ T (W )⊗ T (W )→V ⊗ T (W )

the first map is induced by the inclusion L(W ) ↪→ T (W ) and the second
map is induced by the product in the tensor algebra T (W ). The composite
defines a right L(W )-module structure on V ⊗ T (W ).

3.4. Proposition. The linear map γ : V ⊗ T (W )→L(W ) induced by
γ(v ⊗ w1w2...wn) = [...[[v̄, w1], w2], ..., wn] and γ(v ⊗ 1) = v̄ is the free Lie
algebra in LM on (V,W ).

Proof. The L(W )-module structure of V ⊗T (W ) was defined above. Let us
show that γ is L(W )-equivariant. It suffices to treat the case V = W . Then
W⊗T (W ) is identified with T (W ) = W⊕· · ·⊕W⊗n⊕· · · , by multiplication.
The L(W )-equivariance follows from the formula γ(xy) = [γ(x), y] in T (W )
valid for any x ∈ T (W ) and any y ∈ L(W ) ⊂ T (W ).

So we have proved that (V ⊗ T (W ), L(W )) is a Lie object in LM. Let
us prove the universal freeness property.

Let (V, W )
φ→ (M, g) be a morphism in LM where (M, g) is a Lie ob-

ject. This data defines a unique Lie algebra homomorphism L(W )→ g. We
complete it into a morphism of Lie objects by defining

φ̃ : V ⊗ T (W )→M , v ⊗ w1, ...wn 7→ [...[φ(v), φ̄(w1)], ..., φ̄(wn)].

Since the maps from V to M and from W to g are prescribed and since we
need φ̃ to be coherent with the Lie actions, there is no other possible choice.
This proves the existence and uniqueness of (V ⊗ T (W ),L(W ))→(M, g).

For instance, the free Lie object on (W,W ) is (T (W ),L(W )).

3.5. Definition [1-3]. A right Leibniz algebra h is a vector space equipped
with a bilinear map

[−,−] : h× h→ h

which satisfies the Leibniz identity

[x, [y, z]]− [[x, y], z] + [[x, z], y] = 0

for all x, y, z ∈ h.

The notion of a morphism is obvious. The category of Leibniz algebras
is denoted by (Leib).

Note that a Lie algebra is a particular case of a Leibniz algebra.
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3.6. Lemma. For any Lie object (M, g) in LM the vector space M
equipped with the Lie bracket

[m,m′] := [m,m′]

is a Leibniz algebra. Moreover, M → g is a Leibniz homomorphism.

Proof. The g-action on m ∈ M satisfies

[m, [g, g′]] = [[m, g], g′]− [[m, g′], g]

for any g, g′ ∈ g. Applied to g = m′ and g′ = m′′, this relation gives
precisely the Leibniz relation. The rest is obvious from the definition.

3.7. (Leib) and (Lie in LM). The quotient of the Leibniz algebra h by
the 2-sided ideal generated by the elements [x, x] for x ∈ h is a Lie algebra
denoted by hLie. The surjective map h→ hLie is a Lie object in LM.

So we have constructed two functors

(Leib) ↔ (Lie in LM)

which are obviously adjoint to each other :

HomLieLM(h→ hLie,M → g) = HomLeib(h,M).

Moreover, starting from (Leib) the composite is the identity.
Note that the Leibniz algebra associated to the free Lie object (T (W ),

L(W )) is the free Leibniz object on W as constructed in [2].

3.8. Example. In [2] we showed that for any associative algebra A the
quotient A ⊗ A/ Imb can be equipped with a structure of Leibniz algebra
(b is the Hochschild boundary, cf. [1]). This Leibniz algebra comes in fact

from the Lie object A⊗A/ Im b b→ A, which is the basic object of study of
[5].

3.9. Exercise. Describe a Leibniz object in LM.

4. Universal enveloping algebra in LM

In this section we construct the functor U in the LM case.

4.1. From (As in LM) to (Lie in LM). The classical functor (As)→
(Lie) associates to the associative algebra A the Lie algebra AL with bracket
given by [a, b] := ab− ba. It admits a generalization

(−)L : (As in LM)→(Lie in LM)

given by (M, R) 7→ (M,RL), where the Lie-action of RL on M is simply
[m, r] := mr−rm. It is immediate to verify that (M, RL) is a Lie algebra in
LM. Before constructing the adjoint functor we need to prove the following.
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4.2. Lemma. Let (M, g) be a Lie algebra object in LM and denote by
U(g) the universal enveloping algebra of g. There is a unique right U(g)-
action on U(g)⊗M satisfying

(x⊗m).g = xg ⊗m + x⊗ [m, g],

for any x ∈ U(g), m ∈ M and g ∈ g. As a result, U(g) ⊗ M becomes a
U(g)-bimodule.

Proof. Let us first show the following formula:

(1⊗m).[g, h] = ((1⊗m).g).h− ((1⊗m).h).g.

On one hand, one has

(1⊗m).[g, h] = [g, h]⊗m + 1⊗ [m, [g, h]]

= [g, h]⊗m + 1⊗ [[m, g], h]− 1⊗ [[m,h], g].

On the other hand, one has

((1⊗m).g).h = (g ⊗m + 1⊗ [m, g]).h

= gh⊗m + g ⊗ [m,h] + h⊗ [m, g] + 1⊗ [[m, g], h]

so that

((1⊗m).g).h)− ((1⊗m).h).g = (gh− hg)⊗m + 1⊗ [[m, g], h]

− 1⊗ [[m, h], g].

This shows that the right action of U(g) on U(g)⊗M is well-defined.
Since the left action is given by ω.(ω′ ⊗m) = (ωω′ ⊗m), it is clear that

U(g)⊗M is a U(g)-bimodule.

4.3. Definition. For any Lie algebra object (M, g) in LM the universal
enveloping algebra in LM denoted by U(M, g) is the associative algebra in
LM

(U(g)⊗M, U(g)),

where:
– U(g) is the classical enveloping algebra of g,
– U(g)⊗M is the U(g)-bimodule of Lemma 4.2,
– the vertical map is induced by 1⊗m 7→ m̄ ∈ g ⊂ U(g).

The vertical map is a U(g)-bimodule map, in particular, a right U(g)-
module map because m̄g = gm̄ + [m̄, g] in U(g).

Like in the classical case we verify that

U((M, g)⊕ (M ′, g′)) ∼= U(M, g)⊗ U(M ′, g′),

where the tensor product is the infinitesimal tensor product in LM.
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4.4. Proposition. The functor U : (Lie in LM)→(As in LM) is left
adjoint to the functor (−)L.

Proof. The proof is straightforward and left to the reader.

4.5. Example. Let (V ⊗ T (W ), L(W )) be the free Lie object over the
linear map (V, W ). From the definition of U it comes

U(V ⊗ T (W ),L(W )) = (U(L(W ))⊗ (V ⊗ T (W )), U(L(W ))
∼= (T (W )⊗ V ⊗ T (W ), T (W )),

which is the free associative algebra on (V, W ) as expected.

4.6. Universal enveloping algebra of a Leibniz algebra. For any
Leibniz algebra h the universal enveloping algebra UL(h) was defined in
[2] as follows. Let h` and hr be two copies of h with elements `x and rx cor-
responding to x ∈ h. Then UL(h) is the quotient of the associative algebra
T (h`⊕ hr) by the 2-sided ideal generated by the elements











(i) r[x,y] − (rxry − ryrx),
(ii) `[x,y] − (`xry − ry`x),
(iii) (ry + `y)`x,

for all x, y ∈ h.

4.7. Theorem. The functor UL is precisely the composite

(Leib) → (Lie in LM) U→ (As in LM) → (As)
h 7→ (h, hLie) (M,R) 7→ M ⊕f R

.

Proof. Up to a change of sign this is Proposition 2.4 of [2]. Let h be a Leibniz
algebra. Its image under the above composite is M⊕R, where R := U(hLie)
as an algebra, M := U(hLie) ⊗ h as an R-bimodule (cf. Lemma 4.2), and
the product of the two elements 1⊗ g and 1⊗ h of M is

f(1⊗ g)(1⊗ h) = ḡ(1⊗ h) = ḡ ⊗ h.

Define an algebra map UL(h)→M⊕R by rx 7→ x̄ ∈ R , `y 7→ −(1⊗y) ∈
M . Relation (i) is fullfilled, since it is the defining relation of U(hLie).
Relation (ii) follows from the definition of the right action of R on M .
Relation (iii) is a consequence of the formula mm′ = f(m)m′; indeed,

(ȳ − (1⊗ y))(−1⊗ x) = −ȳ(1⊗ x) + (1⊗ y)(1⊗ x)

= −ȳ(1⊗ x) + ȳ(1⊗ x) = 0.

It is easy to check that this well-defined map is an isomorphism of vector
spaces.
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4.8. Homology. In [1, §10.6] we defined the homology groups HLn(g) of
a Leibniz algebra g. In [2] we proved that

HLn(g) ∼= TorUL(g)
n (K, U(gLie)).

It is important to notice that this Tor-interpretation of HL(g) does not
depend simply on UL(g) but rather on the associative algebra in LM
U(g→ gLie). So it is natural to extend the HL-theory to Lie objects in
LM by

HLn(M → g) := TorU(M → g)
n (K, U(g)).

5. Hopf algebra in LM

5.1. Bialgebra and Hopf algebra in LM. Let (M,H) be a bialgebra in
LM. Then H is a bialgebra in the classical sense, M is an H-bimodule and
an H-bi-comodule. Moreover, these bimodule and bi-comodule structures
are compatible in the following sense : the maps

∆1 : M →M ⊗H and ∆2 : M →H ⊗M

defining the two co-module structures are H-bimodule maps. When this
bialgebra has an antipode S, then it is called a Hopf algebra in LM. By
definition, a Hopf algebra in LM is irreducible if it contains a unique simple
subcoalgebra. In fact, a Hopf algebra in LM is irreducible iff the downstairs
Hopf algebra is irreducible in the classical sense (cf. for instance [6]).

5.2. Theorem. The universal enveloping functor

U : (Lie in LM) −→ (As in LM)

factors through the category (Hopf in LM) of cocommutative Hopf algebras
in the category of linear maps.

Proof. Let (M, g) be a Lie object in LM. We define a coproduct

∆ : (U g⊗M, U g)→(U g⊗M, U g)⊗ (U g⊗M,U g)

as follows. Downstairs ∆ is the classical coproduct of the universal envelop-
ing algebra of g. Recall that it is induced by ∆(g) = g ⊗ 1 + 1 ⊗ g for
g ∈ g.

Upstairs the map

∆ : U g⊗M →(U g⊗M)⊗ U g +U g⊗(U g⊗M)

is induced by ∆(1 ⊗ m) = (1 ⊗ m) ⊗ 1 + 1 ⊗ (1 ⊗ m). It is extended to
U g⊗M thanks to the left U g-module structure. Let us show that ∆ is also
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a right U g-module map :

∆((1⊗m).g) = ∆(g ⊗m + 1⊗ [m, g]) = ∆(g)∆(m) + ∆(1⊗ [m, g]) =
= (g ⊗ 1 + 1⊗ g)((1⊗m)⊗ 1 + 1⊗ (1⊗m)) +

+((1⊗ [m, g])⊗ 1 + 1⊗ (1⊗ [m, g])) =

= (g ⊗m)⊗ 1 + (1⊗m)⊗ g + g ⊗ (1⊗m) + 1⊗ (g ⊗m) +

+((1⊗ [m, g])⊗ 1 + 1⊗ (1⊗ [m, g]) =

= (1⊗m)⊗ g + ((g ⊗m)⊗ 1 + (1⊗ [m, g])⊗ 1) +

+(1⊗ (g ⊗m) + 1⊗ (1⊗ [m, g])) + g ⊗ (1⊗m) =

= ((1⊗m)⊗ 1 + 1⊗ (1⊗m))(g ⊗ 1 + 1⊗ g) = ∆(1⊗m)∆(g).

Checking that ∆ is co-associative is straightforward.
It suffices, now, to show the existence of an antipode S : U(M, g)→

U(M, g). As we know, it is induced by S(g) = −g on U g. On U g⊗M we
induce it from S(1⊗m) = −1⊗m.

5.3. The functor P : (Bialg in LM)→(Lie in LM). Let (M,H) be
a bialgebra in LM. Let us define

P (M) := {m ∈ M | ∆(m) = m⊗ 1 + 1⊗m ∈ M ⊗H + H ⊗M}
P (H) := {x ∈ H | ∆(x) = x⊗ 1 + 1⊗ x ∈ H ⊗H}.

The vertical map sends any element in P (M) to an element in P (H), there-
fore P (M,H) := (P (M), P (H)) is a well-defined linear map.

5.4. Lemma. For any bialgebra (M, H), the linear map P (M,H) is a
Lie object in LM.

Proof. That P (H) is a Lie algebra is folklore. The action of P (H) on P (M)
is given, as expected, by the formula

[m,x] := mx− xm , m ∈ P (M) , x ∈ P (H).

Let us prove that [m,x] ∈ P (M).
One has

∆([m,x]) = ∆(mx)−∆(xm) = ∆(m)∆(x)−∆(x)∆(m) =

= (m⊗ 1 + 1⊗m)(x⊗ 1 + 1⊗ x)− (x⊗ 1 + 1⊗ x)(m⊗ 1 + 1⊗m) =

= mx⊗ 1 + 1⊗mx− xm⊗ 1− 1⊗ xm = [m,x]⊗ 1 + 1⊗ [m,x].

As above, the rest of the proof follows the classical pattern.
Note that by composition (5.3 and 3.5) any bialgebra (M, H) in LM

gives rise to a Leibniz algebra P (M).
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5.5. Poincaré-Birkhoff-Witt in LM. From now on we suppose that
the ground field K contains Q. In any symmetric tensor category one can
perform the following construction. Let X be a Lie object and U(X ) its
universal enveloping algebra. The canonical map X →U(X ) extends to an
algebra map p : T (X )→U(X ). For a fixed integer n and any permutation
σ ∈ Sn there exists a morphism σ : X⊗n→X⊗n. Restricting p to X⊗n one
can form 1

n!

∑

σ∈Sn
p ◦ σ, which obviously factors through the symmetric

power SnX . Whence a morphism e : S(X )→U(X ).
Applied to the Lie object (M, g) of LM this construction gives a mor-

phism
e : (S(g)⊗M,S(g))→(U(g)⊗M, U(g)).

Downstairs this map is the classical symmetrization map : e(x1...xn) =
1
n!

∑

σ xσ(1)...xσ(n). Upstairs this map is slightly more complicated (and is
not e⊗ 1M ). For instance, e(g ⊗m) = g ⊗m + 1/2(1⊗ [m, g]).

As in the classical case, e is an isomorphism of coalgebra objects in LM
(cf., for instance, [7] p. 281). This assertion is, essentially, a rephrasing of
the PBW -theorem for Leibniz algebras obtained in [2].

5.6. Milnor–Moore theorem in LM. The functor U : (M, g) 7→
U(M, g) = (U(g) ⊗M, U(g)) is an equivalence between the category of Lie
algebras in LM and the category of irreducible cocommutative Hopf algebras
in LM, the quasi-inverse functor being P .
Proof. The isomorphism PU(M, g) ∼= (M, g) is a consequence of 5.5. Con-
versely, if (M, h) is an irreducible cocommutative Hopf algebra in LM, then
h ∼= UP (h) thanks to the classical Milnor–Moore theorem. It follows from
the cocommutative conditions that

P (M) = {x ∈ M, ∆1(x) = x⊗ 1}.

Since M is a right Hopf module, the natural map UP (M, H)→(M,H)
is an isomorphism by Theorem 4.1.1 in [6].

5.7. The internal hom-functor of LM. In a reasonable tensor category
the tensor product is left adjoint to a hom-functor :

hom(A, hom(B, C)) ∼= hom(A⊗B, C).

In order for such an isomorphism to exist it is necessary for hom(B,C)
to be an object in the tensor category. Such a functor is called an internal
hom-functor and then the category is a “closed category” in the sense of
MacLane [4].

There exists an internal hom-functor in LM which is described as fol-
lows. Let f : V →W and f ′ : V ′→W ′ be two linear maps. Then hom
((V,W),(V’,W’)) is the linear map ϕ : X→Y where
Y = HomLM((V, W ), (V ′,W ′)) = {α : V →V ′, β : W →W ′ | f ′◦α = β◦f},
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X = {(α, β; β̃) | (α, β)} as above and β̃ : W →V ′ such that β = f ′ ◦ β̃},
ϕ consists in forgetting β̃.
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7, rue René-Descartes
67084 Strasbourg Cedex
France

T. Pirashvili
A. Razmadze Mathematical Institute
Georgian Academy of Sciences
1, Aleksidze St., Tbilisi 380093
Georgia


