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VERTICAL COHOMOLOGIES AND THEIR APPLICATION
TO COMPLETELY INTEGRABLE HAMILTONIAN

SYSTEMS

Z. TEVDORADZE

Dedicated to the memory of Roin Nadiradze

Abstract. Some functorial and topological properties of vertical co-
homologies and their application to completely integrable Hamilto-
nian systems are studied.

§ 1. Introduction

If on a smooth Riemannian manifold Mn we have a distribution V of
dimension k, which is actually a smooth section of the Grassman fiber bun-
dle Gk(TMn) → Mn adjoint to the tangent fibration TMn to the manifold
Mn, then by means of the Riemannian metric we obtain TMn = V ⊕ N ,
where N is a normal fiber bundle to V . Let P : TMn → V ⊂ TMn be a
natural projection. The operator P defines the mapping P ∗ : Λ∗(Mn) →
Λ∗(Mn) ((Λ∗(Mn), d∗) is the de Rham differential complex) by the for-
mula (P ∗α)(X1, . . . , Xq) = α(PX1, . . . , PXq), where α ∈ Λq(Mn) and
X1, . . . , Xq ∈ S(Mn) are the smooth vector fields on Mn.

Denote by Λ∗V (Mn) all fixed points of the operator P ∗. In what follows we
shall consider the case where V is integrable, i.e., where Mn is partitioned
into leaves and the tangent space to the leaf that passes through the point
x ∈ Mn is Vx. Then the pair (Λ∗V (Mn), d∗V ) forms a differential complex
with the differential d∗V = P ∗ ◦ d∗.

The cohomologies of the complex (Λ∗V (Mn), d∗V ) are called vertical and
denoted by H∗

V (Mn) ([1]). It has turned out that these cohomologies coin-
cide with those of the classical BRST operator ([2], [3]).

In §2 the vertical cohomologies are defined without fixing the metric on
Mn, and some of their functorial properties are studied. The FOL category
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of smooth foliations and leaf-to-leaf transforming mappings is introduced,
and a natural transformation of the de Rham functor Λ∗ to the functor
Λ∗F is constructed (Proposition 2.2). The notion of leaf-to-leaf transforming
homotopic mappings is introduced, and the homotopy axiom for vertical
cohomologies is proved (Theorem 2.5). The notion of a relative group of
vertical cohomologies is introduced by analogy with de Rham’s theory, and
the long exact cohomologic sequences (2.6) and (2.7) are derived. More-
over, for a leaf-to-leaf transforming mapping f : (Mn,F1) → (Nm,F2),
the cohomology groups H∗(f) are constructed and proved (Theorem 2.8)
to be isomorphic for leaf-to-leaf transforming homotopic mappings. Fi-
nally, a double complex (K∗∗, D∗) is constructed for the countable covering
U = {uα}α∈A of the manifold Mn. It is shown that the cohomologies of
(K∗∗, D∗) are isomorphic to the vertical cohomologies. A combinatorial
definition of vertical comologies in the Čech sense (Theorems 2.10 and 2.12)
is also given.

In §3 some of the main facts from the topological theory of integrable
Hamiltonian systems ([5], [6]) are presented. Using the notion of vertical co-
homologies, the groups corresponding to nonresonance Hamiltonian systems
are constructed (Theorems 3.3 and 3.4).

In §4 the case of a spherical pendulum is considered as an example.

§ 2. Vertical Cohomologies

2.1. Definition of Vertical Cohomologies. Let Mn be a smooth n-
dimensional manifold, and V be a k-dimensional involutive distribution on
Mn whose foliation is denoted by F . The bundle of exterior p-forms on V
is denoted by Ap(V ), and the set of smooth sections of the bundle Ap(V )
by Λp

F (Mn). Then Λp
F (Mn) is a module over the algebra of infinitely dif-

ferentiable functions C∞(Mn) on Mn.
Let α ∈ Λp

F (Mn), and let X1, . . . , Xp be the smooth vector fields on Mn

which are tangent to the leaves of the foliation F , i.e., they are the smooth
sections of the bundle V

pF→ Mn. Then the mapping defined by the formula

α(X1, . . . , Xp) : x
j7−→ α(X1(x), . . . , Xp(x)), (2.1)

which on the module of sections S(V ) of V assigns an exterior p-form to an
element α ∈ Λp

F (Mn), is an isomorphism.
Let us now define the operator

dp
F : Λp

F (Mn) → Λp+1
F (Mn)
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by the relation

(dp
Fα)(X1, . . . , Xp+1) =

p+1
∑

i=1

(−1)i−1Xiα(X1, . . . , ̂Xi, Xi+1, . . . , Xp+1) +

+
∑

i<j

(−1)i+jα([Xi, Xj ], X1, . . . , ̂Xi, . . . , ̂Xj , . . . , Xp+1),

where α ∈ Λp
F (Mn), Xi ∈ S(V ), i = 1, p + 1.

It is easy to verify that the embedding i : S(V ) ↪→ S(TMn) induces the
projection i∗q : Aq(S(TM)) → Aq(S(V )). Indeed, let α ∈ Aq(S(V )). Define
α ∈ Aq(S(TM)) so that i∗qα = α. Any Riemannian metric defines a smooth
section P : Mn → End(TMn) of the bundle of homomorphisms End(TMn)
of the tangent bundle TMn, where P (x) : TxMn → Vx ⊂ TxMn is the
orthogonal projection onto a leaf of the foliation F which passes through
the point x ∈ Mn. The element α can be defined by the formula

α(X1, . . . , Xq) = α(PX1, . . . , PXq), Xi ∈ S(TMn), i = 1, q.

The following diagram is commutative:

Aq(S(TMn))
i∗q−−−−→ Aq

F (Mn)




ydq





y
dq
F

Aq+1(S(TMn))
i∗q+1−−−−→ Aq+1

F (Mn)

,

where by A∗F (Mn) is denoted A∗(S(V )). Indeed,

(dq
F i∗qα)(X1, . . . , Xq+1) =

q+1
∑

j=1

(−1)j−1(Xj)(i∗qα)(X1, . . . , ̂Xj , . . . , Xq+1) +

+
∑

j<t

(−1)j+t(i∗qα)([Xj , Xt], X1, . . . , ̂Xj , . . . , ̂Xt, . . . , Xq+1) =

= (dqα)(X1, . . . , Xq+1) = (i∗q+1d
qα)(X1, . . . , Xq+1).

The commutativity dq
F ◦ i∗q = i∗q+1 ◦ dq implies dq

F ◦ dq−1
F = 0. Thus i∗

is a cochain mapping between the differential complexes (A∗(S(TMn), d∗)
and (A∗F (Mn), d∗F ).

Definition 2.1. Cohomology groups of the complex (A∗F (M), d∗F ) are
called vertical cohomologies of the foliation (Mn,F), and we denote them
by H∗

F (Mn).
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It is easy to verify that d∗F is an antidifferentiation of order 1, i.e., if
α ∈ Aq

F (Mn), β ∈ Al
F (Mn), we have

dq+l
F (α ∧ β) = (dq

Fα) ∧ β + (−1)qα ∧ (dl
Fβ),

where ∧ is an exterior product. This implies that the homomorphism i∗

induces a homomorphism between the de Rham cohomology algebra and
the cohomology algebra H∗

F (Mn). We denote this homomorphism by the
same symbol i∗. Since we already know that the cochain mapping i∗ is an
epimorphism, we have a short exact sequence of cochain differential com-
plexes

0 −→ ZF
j∗−→ A∗(S(TMn)) i∗−→ A∗F (Mn) −→ 0, (2.2)

where by (Z∗F , d∗) is denoted the kernel of the mapping i∗. Sequence (2.2)
induces a long exact sequence of cohomology groups

0 −→ ˜H0
F (Mn)

j∗−→ H0(Mn) i∗−→ H0
F (Mn) δ−→ ˜H1

F (Mn)
j∗−→ · · · . (2.3)

Here by ˜H∗
F (Mn) are denoted the cohomology groups of the complex (Z∗F , d).

Since Hk+m
F (Mn) = 0, m > 0, from (2.3) we get ˜Hm+k

F (Mn) ≈ Hm+k(Mn),
m > 1.

Denote by FOL a category whose objects are smooth foliations (Mn,F),
and morphisms from (Mn

1 ,F1) to (Mm
2 ,F2) are leaf-to-leaf transforming

mappings, i.e., smooth mappings h from Mn
1 to Mn

2 which preserve the
foliation structure by performing a leaf-to-leaf transformation.

If h is the leaf-to-leaf transforming mapping between the foliations
(Mn

1 ,F1) and (Mn
2 ,F2), then h defines the morphism h∗ between the

C∞(Mm
2 )-module Λ∗F2

(Mm
2 ) and the C∞(Mn

1 )-module Λ∗F1
(Mn

1 ) by the for-
mula

(h∗α)(X1, . . . , Xp)(x) = α(h>X1(x), . . . , h>Xp(x)), (2.4)

where α ∈ Λp
F2

(M2) and X1, . . . , Xp ∈ S(V1), V1 is the distribution associ-
ated with F1, and h> is the tangent mapping to h. We have the commuta-
tive diagram

Λ∗(Mm
2 ) h∗−−−−→ Λ∗(Mn

1 )




y
i∗2





y
i∗1

Λ∗F2
(Mm

2 ) h∗−−−−→ Λ∗F1
(Mn

1 )

.

A direct calculation shows that h∗ is a cochain mapping, i.e., d∗F1
◦ h∗ =

h∗+1 ◦ d∗F2
. Hence we have
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Proposition 2.2. The mapping i∗ is a natural transformation of the de
Rham functor Λ∗ to the functor Λ∗F , where Λ∗ and Λ∗F are the contravariant
functors from the FOL category to the category of differential graded algebras
and their homomorphisms.

2.2. A Homotopy Axiom for Vertical Cohomologies. Let (Mn,F)
be a foliation of dimension k. On the manifold Mn ×R we define naturally
a foliation ̂F of dimension k + 1 whose leaves are manifolds Lα×R, α ∈ A,
where Lα, α ∈ A, are the leaves of the foliation F .

Lemma 2.3. The projection π : Mn×R→ Mn defines an isomorphism
in vertical cohomologies.

Proof. Consider the zero section s of the trivial bundle Mn×R π−→ Mn, i.e.,
s(x) = (x, 0), x ∈ Mn. Then the mappings π and s are the leaf-to-leaf trans-
forming mappings which define the cochain mappings π∗ : (Λ∗F (Mn), d∗F ) →
(Λ∗
F̂

(Mn × R), d∗
F̂

) and s∗ : (Λ∗
F̂

(Mn × R), d∗
F̂

) → (Λ∗F (Mn), d∗F ). Since
s∗ ◦ π∗ = 1, π∗ is an monomorphism. We shall show that π∗ induces an
isomorphism at the cohomology level. To this end, we shall construct a
cochain equivalence of the mappings 1 and π∗ ◦ s∗.

Note that each form from Λ∗F (Mn × R) can be uniquely represented by
linear combinations of the following two types of forms:

(I) (π∗ϕ) · f, ϕ ∈ Λ∗F (Mn), f ∈ C∞(Mn × R);

(II) (π∗ϕ) ∧ dt · f, ϕ ∈ Λ∗F (Mn), f ∈ C∞(Mn × R),

where t is the coordinate on the straight line R. Define the operator K∗ :
Λ∗
F̂

(Mn × R) → Λ∗
F̂
−1(Mn × R) as follows:

K∗((π∗ϕ) · f) = 0,

K∗((π∗ϕ) ∧ dt · f) = π∗ϕ ·
t

∫

0

f dt.

A direct calculation shows that the relation

1− π∗ ◦ s∗ = (−1)q−1(dq−1

F̂
Kq −Kq+1dq

F̂
)

is fulfilled on the forms of types (I) and (II).

Definition 2.4. Two leaf-to-leaf transforming mappings f, g : (Mn
1 ,F1)

→ (Mm
2 ,F2) between the foliations (Mn

1 ,F1) and (Mm
2 ,F2) are called leaf-

to-leaf transforming homotopic if there exists a leaf-to-leaf transforming
mapping

F : (Mn
1 × R, ̂F1) → (Mm

2 ,F2)
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such that
{

F (x, t) = f(x), t ≥ 1,
F (x, t) = g(x), t ≤ 0,

x ∈ M, t ∈ R.

Theorem 2.5 (A Homotopy Axiom). Leaf-to-leaf transforming ho-
motopic mappings induce identical mappings in vertical cohomologies.

Proof. Let f, g : (Mn
1 ,F1) → (Mm

2 ,F2) be the leaf-to-leaf transforming
homotopic mappings and F : (Mn

1 × R, ̂F1) → (Mm
2 ,F2) be the homotopy

between f and g. Denote by s0 and s1 the sections s0, s1 : (Mn
1 ,F1) →

(Mn
1 ×R, ̂F1), s0(x) = (x, 0), s1(x) = (x, 1), x ∈ Mn

1 . Then f = F ◦ s1 and
g = F ◦ s0. Hence we have f∗ = s∗1 ◦ F ∗ and g∗ = s∗0 ◦ F ∗. From the proof
of Lemma 2.3 it follows that s∗1 = s∗0 = (π∗1)−1, where π1 : Mn

1 × R → Mn
1

is the projection. Therefore f∗ = g∗.

The foliations (Mn
1 ,F1) and (Mm

2 ,F2) will be said to be of the same
homotopy type if there are leaf-to-leaf transforming smooth mappings f :
Mn

1 → Mm
2 and g : Mm

2 → Mn
1 such that g ◦ f and f ◦ g are leaf-to-leaf

transforming homotopic mappings to the identical mappings of the foliations
(Mn

1 ,F1) and (Mm
2 ,F2), respectively.

Corollary 2.6. If two foliations (Mn
1 ,F1) and (Mm

2 ,F2) are of the same
homotopy type, then their vertical cohomologies are isomorphic.

2.3. Relative Vertical Cohomologies. Let (Mn,F1) and (Nm,F2) be
two foliations, and let f be a leaf-to-leaf transforming smooth mapping
f : Mn → Nm. Define the differential complex

(Λ∗(f), d∗), Λ∗(f) = ⊕
q≥0

Λq(f),

where

Λq(f) = Λq
F2

(Nm)⊕ Λq−1
F1

(Mn), d∗(ω, θ) = (−d∗F2
ω, f∗ω + d∗F1

θ).

We easily verify that d2 = 0 and denote the cohomology groups of this
complex by H∗(f). Note that the complex (Λ∗(f), d∗) is the cone of the
cochain mapping f∗ : Λ∗F2

(Nm) → Λ∗F1
(Mn). If we regraduate the complex

Λ∗F1
(Mn) as ˜Λp

F1
(Mn

1 ) ≡ Λp−1
F1

(Mn), then we obtain an exact sequence of
differential complexes

0 −→ ˜Λ∗F1
(Mn) α−→ Λ∗(f)

β−→ Λ∗F2
(Nm) −→ 0 (2.5)

with the obvious mappings α and β: α(θ) = (0, θ), β(ω, θ) = ω. From (2.5)
we have an exact sequence in cohomologies

· · · −→ Hq−1
F1

(Mn) α∗−→ Hq(f)
β∗−→ Hq

F2
(Nm) δ∗−→ Hq

F1
(Mn) −→ · · · .
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It is easily seen that δ∗ = f∗. Let ω ∈ Λq
F2

(Nm) be the closed form, and
(ω, θ) ∈ Λq(f). Then d(ω, θ) = (0, f∗ω + dq−1

F1
θ), and by the definition of

the operator δ∗ we have δ∗[ω] = [f∗ω + dq−1
F1

θ] = f∗[ω]. Hence we finally
get a long exact sequence

· · · −→ Hq−1
F1

(Mn) α∗−→ Hq(f)
β∗−→ Hq

F2
(Nm)

f∗−→ Hq
F1

(Mn) α∗−→ · · · . (2.6)

Corollary 2.7. If the foliations (Mn,F1) and (Nm,F2) are of the p-th
and q-th dimension, respectively, then

(i) β∗ : Hp+1(f) → Hp+1
F2

(Nm) is an epimorphism,
α∗ : Hq

F1
(Mn) → Hq+1(f) is an epimorphism,

β∗ : Hi(f) → Hi
F2

(Nm) is an isomorphism for i > p + 1,
α∗ : Hi

F1
(Mn) → Hi+1(f) is an isomorphism for i > q;

(ii) Hi(f) = 0 for i > max{p + 1, q}.

Theorem 2.8. If f, g : (Mn,F1) → (Nm,F2) are leaf-to-leaf transform-
ing homotopic mappings, then H∗(f) = H∗(g).

Proof. Let F : (Mn × R, ̂F1) → (Nm,F2) be the homotopy mapping be-
tween f and g. Let s0 and s1 be the zero and the unit section, respectively,
of the trivial bundle Mn × R π−→ Mn. Then F ◦ s0 = g and F ◦ s1 = f .
Hence we have a homomorphism between the short exact sequences

0 −−−−→ ˜Λ∗
F̂1

(Mn × R) α′−−−−→ Λ∗(F )
β′−−−−→ Λ∗F2

(Nm) −−−−→ 0




y
s∗1





y
id⊕s∗1





yid

0 −−−−→ ˜Λ∗F1
(Mn) −−−−→ Λ∗(f) −−−−→ Λ∗F2

(Nm) −−−−→ 0

.

This homomorphism defines a homomorphism between the corresponding
long cohomologic sequences

··· → Hq
F2

(Nm) → Hq

F̂1

(Mn×R) → Hq+1(F ) → Hq+1
F2

(Nm) → Hq+1

F̂1

(Mn×R) → ···

↓id ↓s∗1 ↓γ ↓id ↓s∗1
··· → Hq

F2
(Nm) → Hq

F1
(Mn) → Hq+1(f) → Hq+1

F2
(Nm) → Hq+1

F1
(Mn) → ···

,

where γ is the mapping induced by id ⊕ s∗1. Since s∗1 is an isomorphism
(Lemma 2.3), by virtue of the lemma on five homomorphisms we conclude
that γ is also an isomorphism, i.e., H∗(f) ≈ H∗(F ). By a similar reasoning
we can conclude that H∗(g) ≈ H∗(F ).

If (Mn,F1) is a subfoliation of the foliation (Wm,F2), i.e., the embedding

Mn j
↪→ Wm is simultaneously a leaf-to-leaf transforming mapping, then the

cohomology algebra H∗(j) will be said to be the algebra of relative vertical
cohomologies. Denote it by H∗

F2,F1
(W ; M).
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Now sequence (2.6) can be rewritten as

· · · −→ Hq−1
F1

(M) α∗−→ Hq
F2,F1

(W ; M)
β∗−→ Hq

F2
(W )

j∗−→
j∗−→ Hq

F1
(M) α∗−→ · · · . (2.7)

Note that if we forget the structure of the foliation, then, as is known,

the embedding Mn j
↪→ Wm defines a long exact cohomological sequence

of the pair (Wm,Mn) in de Rham’s theory. One can easily verify that
the homomorphism i∗ from Proposition 2.2 defines a morphism between
the long exact cohomological sequence of the pair (Wm, Mn) in de Rham’s
theory and sequence (2.7).

2.4. The Generalized Mayer–Vietoris Principle for Vertical Coho-
mologies. A Combinatorial Definition of Vertical Cohomologies.
Let (Mn,F) be a smooth foliation of dimension k; let U = {uα}α∈A be an
open countable covering of the manifold Mn. Similarly to Čech-de Rham’s
theory, we define a double complex which will be used to calculate vertical
cohomologies of the foliation (Mn,F).

Denote by uα0···αp the intersection of open sets u0, . . . , up and by
∐

the
disjunctive union. Then we have a sequence of open sets

Mn ←−
∐

α0

uα0

∂0←−←−
∂1

∐

α0<α1

uα0α1

∂0←−∂1←−←−
∂2

∐

α0<α1<α2

uα0α1α2

←−←−←−←− · · · ,

where ∂i is the embedding ∂i(uα0···αp) = uα0···α̂i···αp
. This sequence of

embeddings induces a sequence of restriction mappings of vertical forms

Λ∗F (Mn) r∗−→
∏

α0

Λ∗F (uα0)
δ0−→−→
δ1

∏

α0<α1

Λ∗F (uα0α1)
δ0−→δ1−→−→
δ2

δ0−→δ1−→−→
δ2

∏

α0<α1<α2

Λ∗F (uα0α1α2)
−→−→−→−→ · · · ,

where δi is induced by the imbedding ∂i, i.e., δi = (∂i)∗.
Let us define the difference operator δ by the following rule: if ωα0···αp ∈

Λq
F (uα0···αp) denotes the components of the element ω∈

∏

α0<···<αp

Λq
F (uα0···αp),

then

(δω)α0···αp+1 =
p+1
∑

i=0

(−1)iωα0···α̂i···αp+1
, (2.8)

where ωα0···α̂i···αp+1
≡ δi(ωα0···αi−1αi+1···αp+1).

By a standard reasoning one can verify that δ2 = 0.
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Consider now the double complex

Kp,q ≡ Cp(U,Λq
F ) =

∏

α0<···<αp

Λq
F (uα0···αp). (2.9)

whose horizontal mappings are the operators δ∗ and whose vertical map-
pings are the operators d∗F . As is known, this double complex can be reduced
to an ordinary differential complex (K∗, D∗):

Kn = ⊕
p+q=n

Kp,q, Dn = δp + (−1)pdq
F on Kp,q.

Lemma 2.9. The sequence

· · · −→ Λ∗F (Mn) r∗−→ K0,∗ δ0

−→ K1,∗ δ1

−→ K2,∗ δ2

−→ · · ·

is exact.

Proof. Let q ≥ 0 be an integer number. Clearly, Λq
F (Mn) is the kernel of

the first operator δ0, since an element from
∏

α0

Λq(uα0) is a global form on

Mn if and only if its components are consistent at the intersections.
Let {θα}α∈A be the partitioning of unity subordinate to the covering U =

{uα}α∈A. If ω ∈ Kp,q is the cocycle of the operator δp, then we can assign
to it p− 1 cochains Kω by the formula (Kω)α0···αp−1 =

∑

α
θαωαα0···αp−1 (it

is assumed here that ω...,α,...,β,... = −ω...,β,...,α,..., if α > β; clearly, this is
consistent with the operation δ, i.e., (δω)...,β,...,α,... = −(δω)...,α,...,β,...). In
that case

(δp−1Kω)α0···αp =
∑

i

(−1)i(Kω)α0···α̂i···αp
=

∑

i,α

(−1)iθαωαα0···α̂i···αp
=

=
∑

α

θα[ωα0··· ,αp − (δω)αα0···αp ] =
∑

α

θαωα0···αp = ωα0···αp .

Hence δp−1(Kω) = ω.

Theorem 2.10. The cohomologies of the double complex Kp,q, i.e., the
cohomologies of the complex (K∗, D∗), are isomorphic to the vertical co-
homologies H∗

F (Mn). This isomorphism is obtained by the mapping of the
restriction r∗.

Proof. Since D∗r∗ = (δ0 + d∗F )r∗ = δ0r∗ + d∗Fr∗ = d∗Fr∗ = r∗+1d∗F , r∗ is a
cochain mapping, it induces the mapping in cohomologies r∗.

Let ϕ ∈ Km be the cocycle, i.e., Dmϕ = 0. We can represent ϕ as a sum
ϕ = ϕ0,m +ϕ1,m−1 + · · ·+ϕp,m−p, where ϕi,j ∈ Kij and ϕp,m−p 6= 0. Then
δpϕp,m−p = 0. Hence by Lemma 2.9 we find that there exists an element
ϕ′ ∈ Kp−1,m−p such that δp−1ϕ′ = ϕp,m−p. Then the element ϕ−Dm−1ϕ′

is obviously cohomologic to ϕ and has no component in Kp,m−p. After
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repeating this procedure several times, we obtain an element ϕ̃ ∈ K0,m

which is cohomologic to ϕ. For this element we have dm
F ϕ̃ = 0, δ0ϕ̃ = 0,

i.e., ϕ̃ defines the global vertical closed form on Mn which by means of rm

transforms to ϕ̃. This shows that the mapping rm
∗ is epimorphic. Let us

now show that the mapping rm
∗ is monomorphic.

Let ϕ ∈ Λm
F (Mn) and dm

Fϕ = 0. Then if rm(ϕ) = Dm−1ϕ′, ϕ′ ∈ Km−1,
ϕ′ = ϕ′0,m−1+ · · ·+ϕ′p,m−p−1, where ϕ′p,m−p−1 6= 0, then δpϕ′p,m−p−1 = 0
(because Dm−1ϕ′ has only one component in K0,m).

Proceeding as above, we can find an element ϕ′′ such that ϕ′′ ∈ K0,m−1

and ϕ′ − ϕ′′ ∈ Dm−2(Km−2). Then rm(ϕ) = dm−1
F ϕ′′ and δ0ϕ′′ = 0.

Therefore ϕ′′ defines a global form ϕ̃′′ on Mn such that dm−1
F ϕ̃′′ = ϕ.

By analogy with de Rham’s theory Theorem 2.10 can be called the gen-
eralized Mayer–Vietoris principle.

From the lower row of the double complex K∗,∗ let us choose a subcom-
plex, namely, a kernel of the differential d0

F . We get a sequence

C0
F (U) δ0

−→ C1
F (U) δ1

−→ C2
F (U) δ2

−→ · · · , (2.10)

where Ci
F (U) ≡ ker d0

F ⊂
∏

α0<···<αi

Λ0
F (uα0···αi), and δ∗ is the difference

operator defined above. The cohomologies of complex (2.10) will be called
the Čech cohomologies of the foliation (Mn,F) for the covering U . They
are a purely combinatorial object and will be denoted by H∗

F (U). Let the
covering U = {uα}α∈A consist of foliated open sets such that all finite
nonempty intersections are contractible. Any manifold is known to have
such a covering. Then, in view of the fact that Poincaré’s lemma ([I]) is
valid for vertical cohomologies, we obtain

Lemma 2.11. The sequence

0 −→ Cp
F (U)

jp

−→
∏

α0<···<αp

Λ0
F (uα0···αp)

d0
F−−→

∏

α0<···<αp

Λ1(uα0···αp)
d1
F−−→ · · ·

is exact, p ≥ 0, where jp is the embedding.

By Lemma 2.11 and the same reasoning as we used in proving Theorem
2.10 we can prove

Theorem 2.12. The cochain mapping j∗ defines an isomorphism be-
tween the Čech cohomologies H∗

F (U) and cohomologies of the double complex
K∗,∗. Hence the Čech cohomologies and vertical ones are isomorphic:

H∗
F (U) ≈ H∗

F (Mn).



VERTICAL COHOMOLOGIES AND THEIR APPLICATION 493

Corollary 2.13. A zero-dimensional vertical cohomology H0
F (Mn) is

isomorphic to a group of smooth functions on the foliated manifold Mn,
which are constant on the leaves.

§ 3. Completely Integrable Hamiltonian Systems and Vertical
Cohomologies

3.1. Topology of Constant Energy Surfaces of Completely Inte-
grable Hamiltonian Systems. In this subsection we shall briefly recall
the basic facts from the topological theory of integrable Hamiltonian sys-
tems ([5]).

Let v = sgrad H be a Hamiltonian system on the symplectic manifold
(M2n, ω), where ω is a symplectic 2-form on Mn, and let v be integrable.
Thus there exist n independent (almost everywhere) smooth integrals f1 =
H, f2, . . . , fn in involution, i.e., {fi, fj} = 0, i, j = 1, n, where { , } is
the Poisson bracket. Let F : M2n → Rn be the moment mapping which
corresponds to these integrals, i.e., F (x) = (f1(x), . . . , fn(x)), x ∈ M2n.
Let N be the set of critical points of the moment mapping, and Σ = F (N)
be the set of all critical values which is called the bifurcation diagram.

Clearly, we have two cases: (a) dim Σ < n − 1 and (b) dim Σ = n − 1.
In the case (a) the set Σ does not separate the space Rn and therefore all
nonsingular leaves Ba = F−1(a) are diffeomorphic to one another (it is well
known that if they are compact, then they are diffeomorphic to the tori Tn,
and if they are noncompact, then they are diffeomorphic to the cylinders
T k × Rn−k). The case (b) is more difficult. Below we shall consider a
theorem from [5].

Suppose that the restriction f = f1|Xn+1 to a joint compact nonsingu-
lar surface of the level of the rest of the n − 1 integrals Xn+1 = {x ∈
M2n|fi(x) = ci, i = 2, n} is a Bott function, i.e., all critical points of this
restriction are organized into nondegenerate critical submanifolds (a critical
submanifold Lk ⊂ Xn+1 is nondegenerate if the restriction of the function
f to every normal plane Pn+1−k has a nondegenerate Morse singularity at
the point Pn+1−k ∩ Lk).

Let c1 be a critical value of the function f on the surface Xn+1, and
let c = (c1, . . . , cn), i.e., c = (c1, c2, . . . , cn) ∈ Σ. Let Bc = F−1(c) be a
critical fiber of the moment mapping. Thus Bc = {f1 = c1} is a critical
level surface of f1 on Xn+1.

Theorem 3.1 (A. T. Fomenko). Each connected compact component
B0

c of the critical fiber Bc is homeomorphic to a set which is one of the
following four types: (1) a torus Tn; (2) the nonorientable manifolds Kn

0
and Kn

1 ; (3) a torus Tn−1; or (4) a cell complex Tn
1 ∪Tn

2 obtained by remov-
ing n− 1-dimensional tori Tn−1

1 from Tn
1 and Tn−1

2 from Tn
2 , which realize

nonzero generators of the homology groups Hn−1(Tn
1 ,Z) and Hn−1(Tn

2 ,Z),
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and glueing Tn
1 and Tn

2 together by identifying only the tori Tn−1
1 and Tn−1

2
(by means of a diffeomorphism). In cases (1)–(3) the critical fibers consist
entirely of critical points of the function f on which a maximum or a mini-
mum is attained. In case (4) the critical points of f in the critical fiber B0

c
forms a torus Tn−1 (the result of glueing together the tori Tn−1

1 and Tn−1
2 )

which is a “saddle” for the function f .

The manifolds Kn
1 and Kn

2 from Theorem 3.1 are the factor-sets of the
torus Tn generated by the action of some group on Tn without fixed points
([5]).

It is important to investigate a particular case of the integrable Hamil-
tonian system v = sgrad H on the four-dimensional symplectic manifold
(M4, ω). For mechanical and physical reasons, it is useful to study the inte-
grability effect on an individual isoenergetic surface Q3 ⊂ M4 given by the
equation H(x) = h, where h is a regular value of the Hamiltonian H. The
restriction of the system v on Q3 will be denoted by the same symbol v. In
what follows Q3 will be assumed to be the closed manifold. We also assume
that an additional integral f is the Bott function on Q3. Then to the critical
fibers from Theorem 3.1 there correspond the following manifolds:

(1) the torus T 2;
(2) Klein’s bottle K2;
(3) the circle S1;
(4) a piecewise smooth two-dimensional polyhedron with a singularity of

the type of ”a fourfold line” (a transversal intersection of two planes).
The Hamiltonian H is called the nonresonance one on Q3 if the set of

Liouville tori with irrational windings is everywhere dense in Q3.
We say that the Hamiltonian system v is integrable in the Bott sense if

among Bott functions there is an additional first integral of v.

Definition 3.2 ([6]). Two integrable, in the Bott sense, nonresonance
Hamiltonian systems v1, v2 on the oriented manifolds Q3

1, Q
3
2 are said to be

topologically equivalent if there exists an orientation preserving diffeomor-
phism g : Q3

1 → Q3
2 which transforms the Liouville tori of the system v1 to

those of the system v2 (critical tori are included in the number of Liouville
tori), and the isolated critical circles to the isolated critical circles with the
same orientation which is by the field v.

The partitioning of the manifold Q3 into Liouville tori and critical level
surfaces of the Bott integral f is called the Liouville foliation on Q3 (for a
given integrable nonresonance Hamiltonian system v). Obviously, the diffeo-
morphism g, appearing in Definition 3.2, is a leaf-to-leaf mapping between
Liouville foliated manifolds.

Note that the Liouville foliation defined above does not depend on a
choice of the Bott integral f .
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An analogous definition can be introduced for the multidimensional case
as well. Two completely integrable, in Bott sense, nonresonance Hamilto-
nian systems v1 and v2 on the nonsingular level surfaces Xn+1

1 and Xn+1
2

are said to be topologically equivalent if there exists a diffeomorphism
h : Xn+1

1 → Xn+1
2 which transforms the Liouville tori of the system v1

to those of the system v2 (critical tori Tn are included in the number of
Liouville tori), and critical fibers Bc of the system v1 to those of the system
v2.

Note that the Liouville foliation is not a foliation in the sense of §2.
Let v = sgrad H be a completely integrable, in the Bott sense, nonres-

onance Hamiltonian system on the isoenergetic surface Q3. As we already
know, this system defines the Liouville foliation on Q3. Denote it by F .

If from Q3 we remove all critical (i.e., maximal, minimal and ”saddle”-
type) circles S1, then on the resulting open manifold Q

′3 the foliation F
induces a true foliation F ′. Thus we have defined the vertical cohomology
groups Hi

F ′(Q
′3), i = 0, 1, 2. Similarly, one can derive the vertical cohomol-

ogy groups Hi
F ′(X

′n+1) in the multidimensional case, i = 0, 1, . . . ,m.
If now v1 and v2 are assumed to be the topologically equivalent systems

on the manifolds Q3
1 and Q3

2, respectively, then the diffeomorphism g :
Q3

1 → Q3
2 which preserves the Liouville foliation obviously induces the leaf-

to-leaf transforming diffeomorphism g′ : Q
′3
1 → Q

′3
2 . Therefore the following

theorem is valid.

Theorem 3.3. The cohomology groups Hi
F ′(Q

′3) are a topological in-
variant of completely integrable, in the Bott sense, nonresonance Hamilton-
ian systems v = sgrad H on the isoenergetic surface Q3.

Note that in the multi-dimensional case the groups Hi
F ′(X

′n+1), i = 0, n,
are also topological invariants.

Thus to determine a topological invariant we had to deal with the open
manifold Q

′3. To avoid this, we shall slightly modify the definition of coho-
mology groups.

The isoenergetic surface Q3 can be considered as the set of Liouville tori,
circles S1 (which are maximal, minimal and ”saddle”-type) and rings of the
type S1 × (0, 1) (which are obtained from a hyperbolic critical fiber of type
(4) (Theorem 3.1) by removing hyberbolic critical circles of the integral f).
We denote this partitioning of the manifold Q3 by P. By S(Q3) we denote
a Lie algebra of smooth vector fields on Q3 and by S(Q3) a Lie subalgebra
of the algebra S(Q3) consisting of smooth vector fields on Q3 tangent to
the manifolds of the partitioning P. The algebra C∞(Q3) is, obviously, a
module over S(Q3) with respect to the product x · g = xg, x ∈ S(Q3),
g ∈ C∞(Q3).
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By a k-dimensional cochain of the algebra S(Q3) with coefficients in
C∞(Q3) we shall mean an element of the space Ak(S(Q3)) which is a skew-
symmetric k-linear functional on S(Q3) with values in C∞(Q3). The differ-
ential dk : Ak(S(Q3)) → Ak+1(S(Q3)) is defined by the formula

dkα(X1, . . . , Xk+1) =
k+1
∑

i=1

(−1)i−1Xiα(X1, . . . , ̂Xi, Xi+1, . . . , Xk+1) +

+
∑

i<j

(−1)i+jα([Xi, Xj ], X1, . . . , ̂Xi, . . . , ̂Xj , . . . , Xk+1),

where α ∈ Ak(S(Q3)); X1, . . . , Xk+1 ∈ S(Q3).
It is easy to verify that dk ◦ dk−1 = 0. Thus (A∗(S(Q3)), d∗) is a cochain

complex. We denote the cohomologies of the complex (A∗(S(Q3)), d∗) by
H∗
P(Q3). Obviously, Hi

P(Q3) = 0, i > 2.
We have also defined the cohomology groups H∗

P(Xn+1) for the multidi-
mensional case. Note that here Hi

P(Xn+1) = 0, i > n.
Obviously, A∗(S(Q3)) is a graduated ring, and the differential d is the

antidifferentiation. Hence the cohomologies H∗
P(Q3) also acquire a ring

structure.
If now v1 and v2 are, as above, the topologically equivalent systems on the

manifolds Q3
1 and Q3

2, respectively, then the diffeomorphism g : Q3
1 → Q3

2
defines an isomorphism between the differential complexes (A∗(S(Q3

1)), d
∗)

and (Ak(S(Q3
2)), d

∗). Therefore we have

Theorem 3.4. Let v = sgrad H be an integrable, in the Bott sense, non-
resonance Hamiltonian system on the isoenergetic surface Q3, and let P be
the partitioning of the manifold Q3 into Liouville tori, critical circles of the
additional Bott integral f , and rings of the type S1 × (0, 1). Then the co-
homology groups H∗

P(Q3) are topological invariants of the system v, i.e., to
the topologically equivalent systems there correspond the isomorphic groups.

An analogous theorem holds in the multidimensional case as well. Here
the partitioning P consists of Liouville tori Tn, (n − 1)-dimensional tori
Tn−1, and rings of the type Tn−1 × (0, 1).

Since A0(S(Xn+1)) = C∞(Xn+1), we have

H0
P(Xn+1) = ker(d0 : C∞(Xn+1) → A1(S(Xn+1)) =

=
{

g ∈ C∞(Xn+1) |Xg = 0, ∀X ∈ S(Xn+1} = InvS C∞(Xn+1),

where InvS C∞(Xn+1) denotes the set of smooth functions on Xn+1 whose
restrictions are constant functions on the elements of the partitioning P.

Denote by G the factor set of the space Xn+1 with respect to Liouville
tori Tn and the connected components of critical fibers of the integral f . If
we introduce the factor topology on G, then H0

P(Xn+1) will coincide with



VERTICAL COHOMOLOGIES AND THEIR APPLICATION 497

the set of continuous functions on G whose liftings to Xn+1 by the natural
projection Xn+1 → G are smooth functions.

Remark 3.5. For the four-dimensional case, a complete topological invari-
ant was introduced in [6]. This is the so-called labelled molecule consisting
of a graph with edges to which are attached rational numbers from [0, 1)
or ∞. Note that in the four-dimensional case the above-mentioned G co-
incides with the graph-molecule from [6]. Therefore the zero-dimensional
groups H0

P(Xn+1) already pick up “nonzero” information on the topological
equivalence of integrable Hamiltonian systems.

§ 4. The Case of a Spherical Pendulum

For a spherical pendulum the phase space is a cotangent bundle to the
two-dimensional sphere T ∗S2, where S2 = {x ∈ R3 : x2

1 + x2
2 + x2

3 = 1}.
Using the Riemannian metric on S2, we can identify T ∗S2 with the tangent
bundle TS2 and define the Hamiltonian of the system by the energy function

E(x, v) =
1
2
〈v, v〉+ x3, x ∈ S2, v ∈ TxS2. (4.1)

A kinetic moment with respect to the x3-axis has the form

I(x, v) = x1v2 − v1x2. (4.2)

The critical points of the moment mapping F = (E, I) : TS2 → R2

are the points x = ±(0, 0, 1), v = 0 and v = α(−x2, x1, 0), 1 + α2x3 = 0,
x3 6= ±1. The corresponding singular values of the moment mapping are

F = (±1, 0) and F =
(1

2
α2 − 3

2
α−2, α− α−3

)

, where |α| > 1. (4.3)

When α tends to ±1, the point of the curve defined by formula (4.3) tends
to (−1, 0). For I 6= 0, i.e., for x 6= ±(0, 0, 1), we can introduce the polar
coordinates

x1 = sin ϕ cos θ, x2 = sin ϕ sin θ, x3 = cos ϕ,

where θ ∈ [0.2π], ϕ ∈]0, π[.
The functions E and I in terms of these coordinates are written as

E =
1
2

ϕ̇2 + VI(ϕ), I = (sin2 ϕ)θ̇, (4.4)

where VI(ϕ) = 1
2 (sin2 ϕ)θ̇2 + cos ϕ is the effective potential, and (ϕ, θ, ϕ̇, θ̇)

define the local coordinate system on TS2. The image F is given by the
relation I = α − α−3, E ≥ 1

2α2 − 3
2α−2, |α| ≥ 1. For regular values of the

mapping F we have E > 1
2α2 − 3

2α−2; the point (0, 1) should be discarded
(see Fig. 1).
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Fig. 1

Let us consider the function I on the isoenergetic surface Q3 = {E = 1
2}.

If (ϕ, θ, ϕ̇, θ̇) is a critical point of the function I on Q3, then at that point
grad E and grad I are collinear. Hence we obtain ϕ0 = arccos( 1−

√
13

6 ),

θ̇1 =
√√

13+1
2 , θ̇2 = −

√√
13+1
2 . Thus gives us two isolated critical circles

S1 = {(ϕ0, θ, ϕ̇ = 0, θ̇1)|θ ∈ [0, 2π]} and S2 = {(ϕ0, θ, ϕ̇ = 0, θ̇2)|θ ∈ [0, 2π]}.
Using the method of constant Lagrange multipliers, we can conclude that
S1 is the maximal critical circle, and S2 is the minimal one.

By Morse’s lemma it follows that the compact isoenergetic surface cor-
responding to the values of energy E close to −1 is the three-dimensional
sphere S3. Therefore Q3 is also diffeomorphic to S3, since the points ±1
are critical values of the integral E. The isoenergetic surface Q3 can be
represented as two solid tori S1

1 ×D2 and S1
2 ×D2 glued together along the

boundary tori by means of a diffeomorphism which transforms the parallel
to the meridian, and vice versa (here D2 is a two-dimensional disk, and
the central circles of the solid tori S1

1 × {0} and S1
2 × {0} coincide with the

critical circles of the integral I); the tori S1
i × Sr, r ∈ (0, 1], i = 1, 2, where

Sr = {x ∈ D2 | ‖x‖ = r}, are the usual Liouville tori of the Hamiltonian
system v = s gradE. In that case, using the notation from [6], the labelled
molecule has the form

A •————
r=0

•A,

and the factor set G coincides with the segment.
Now consider the function I on the isoenergetic surface Q3 = {E = α >

1}. A direct calculation shows that, as in the preceding case, for the integral
I we have two isolated critical circles S1 = {(ϕ0, θ, 0, θ̇1) | θ ∈ [0, 2π]} and
S2 = {(ϕ0, θ, 0, θ̇2) | θ ∈ [0, 2π]}, where ϕ0 = arccos α−

√
α2+12
3 and θ̇1 =

−
√

3√
α2+12−α

, θ̇2 =
√

3√
α2+12−α

.
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In terms of the coordinates (ϕ, θ, ϕ̇, θ̇) the Euclidean metric is written as
ds2 = dϕ2 + sin2 ϕdθ2 so that the the equation E = α takes the form

‖ξ‖2 + 2 cos ϕ = 2α,

where ξ = (ϕ̇, θ̇) is the tangent vector at the point (ϕ, θ) ∈ S2, and ‖ξ‖
denotes the norm of ξ. Hence it follows that the norm of the vector ξ is
a function of ϕ, and ‖ξ‖ 6= 0. Therefore Q3 is diffeomorphic to the space
T1S2, where T1S2 = {(a, ξ) |x ∈ S2, ‖ξ‖ = 1}. As is wellknown, T1S2 is
diffeomorphic to the three-dimensional projective space RP 3 so that Q3 ≈
RP 3. As above, Q3 can be represented as two solid tori S1

1×D2 and S1
2×D2

glued together along the boundary tori by means of the diffeomorphism
h whose corresponding induced mapping h∗ : H1(T 2;Z) → H1(T 2;Z) is

given by the matrix
(

1 2
1 1

)

. Thus for the integrable Hamiltonian system

v = sgrad E on Q3 the labelled molecule has the form

A •————
r= 1

2

•A,

and the factor set again coincides with the segment. This example shows
that vertical cohomologies are not a complete topological invariant of inte-
grable Hamiltonian systems.
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