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ASYMPTOTIC EXPANSION OF SOLUTIONS OF
PARABOLIC EQUATIONS WITH A SMALL PARAMETER

A. GAGNIDZE

Abstract. The heat equation with a small parameter,

(1 + ε−mχ(x
ε ))ut = uxx,

is considered, where ε ∈ (0, 1), m < 1 and χ is a finite function. A
complete asymptotic expansion of the solution in powers ε is con-
structed.

In [1], [2] E. Sanchez-Palencia and H. Tchatat noted, for the first time,
problems in which a small parameter is contained not only in the equation
but also in the characteristics of the domain itself. In subsequent years such
problems were studied by O. A. Oleynik, S. A. Nazarov, Yu. D. Golovatii,
and G. S. Sobolev [3]–[5].

In this paper we consider a problem on heat conduction in a medium
whose density has a perturbation concentrated in a small neighborhood of
the origin.

In the domain Ω = (1, 1) × (0, T ) let us consider the initial boundary
value problem for a heat equation of the form

(

1 + ε−mχ
(x

ε

))∂u
∂t

=
∂2u
∂x2 (1)

with the boundary conditions

u(−1, t) = u(1, t) = 0 (2)

and the initial condition

u(x, 0) = u0(x), (3)

where ε ∈ (0, 1), m < 1 is some real number, and the function χ satisfies
the following conditions: χ(ξ) = 0 for |ξ| > 1, χ(ξ) > 0 for |ξ| < 1, and
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1
∫

−1
χ(ξ)dξ = M = const > 0. Assume that the initial function u0 is continu-

ous on [−1, 1], satisfies the condition u0(1) = u0(1) = 0, and is holomorphic
in the neigborhood of x = 0.

In that case it readily follows that

lim
ε→0

ε−m

ε
∫

−ε

χ
(x

ε

)

dx = 0

and therefore such a perturbation (m < 1) will be called “weak”.
By a solution of problem (1)–(3) we shall understand a function u which

satisfies equation (1) in Ω for x 6= ±ε, conditions (2) and (3), and at the dis-
continuity points x = ±ε of the function χ (there are no other discontinuity
points) satisfies the conditions of “continuous sewing”

u(ε + 0, t) = u(ε− 0, t),
∂u
∂x

(ε + 0, t) =
∂u
∂u

∂x(ε− 0, t),

u(−ε + 0, t) = u(−ε− 0, t),
∂u
∂x

(−ε + 0, t) =
∂u
∂u

∂x(−ε− 0, t).
(4)

According to O. A. Oleynik’s paper [6] problem (1)–(3) is uniquely solv-
able in the domain Ω.

Let m be a rational number and m = l
p , where p is a natural number

and ` < p is some integer number. We introduce the notation ξ = x
ε ,

Ωε
+ = (ε, 1) × (0, T ), Ωε

− = (−1,−ε) × (0, T ), Ω+ = (0, 1) × (0, T ), Ω− =
(−1, 0)× (0, T ).

Now we shall construct a complete asymptotic expansion of the solution
uε of problem (1)–(3) in powers of value δ = ε

1
p when ε → 0.

We shall seek for a solution of the form

uε(x, t) ∼















∞
∑

i=0
δiv±i (x, t), (x, t) ∈ Ωε

±,
∞
∑

i=0
δiwi(x

ε , t), (x, t) ∈ (−ε, ε)× (0, T ).
(5)

First we shall find out which conditions the functions v±i and wi must
satisfy when t = 0.

By virtue of expansion (5) and condition (3) we have

u0(x) ∼
∞
∑

i=0

δiv±i (x, 0), |x| > ε.

Hence it follows that

v±0 (x, 0) = u0(x), v±i (x, 0) = 0, i ≥ 1. (6)
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Using expansion (5) and condition (3), for the function wi we obtain

u0(x) ∼
∞
∑

i=0

δiwi(ξ, 0), |ξ| < 1,

which, after expanding u0 into a Taylor series, gives
∞
∑

i=0

δiwi(ξ, 0) ∼
∞
∑

i=0

δpi ξi

i!
di

dxi u0(0).

Having equated the coefficients at the same powers of δ, we obtain

wip(ξ, 0) =
ξi

i!
di

dxi u0(0), i = 0, 1, 2, . . . ,

wj(ξ, 0) = 0, j 6= pk, k = 0, 1, 2, . . . .
(7)

It is easy to verify that condition (2) implies

v±i (±1, t) = 0, i ≥ 0. (8)

By substituting the formal expansion (5) into equation (1) we obtain

∞
∑

i=0

δi
( ∂

∂t
v±i (x, t)− ∂2

∂x2 v±i (x, t)
)

∼ 0,

∞
∑

i=0

δi−2p
( ∂

∂t
wi−2p(ξ, t) + χ(ξ)

∂
∂t

wi−2p+`(ξ, t)−
∂2

∂ξ2 wi(ξ, t)
)

∼ 0,

which yields

∂
∂t

v±i (x, t)− ∂2

∂x2 v±i (x, t) = 0, |x| > ε, (9)

∂2

∂ξ2 wi(ξ, t) =
∂
∂t

wi−2p(ξ, t) + χ(ξ)
∂
∂t

wi−2p+`(ξ, t), |ξ| < 1, (10)

where there are no terms with negative indices.
In what follows we shall write vi instead of v±i , assuming that for x > ε

we mean v+
i , and for x < −ε we mean v−i . Let, in the neighborhood of the

point (0, 1), the functions vi be holomorphic with respect to x.
By the formal expansion (5) we obtain

uε(x, t) ∼
∞
∑

i=0

δi
∞
∑

s=0

xs

s!
∂s

∂xs vi(±0, t), |x| > ε,

∂uε

∂x
(x, t) ∼

∞
∑

i=0

δi
∞
∑

s=1

xs−1

(s− 1)!
∂s

∂xs vi(±0, t), |x| > ε,
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uε(x, t) ∼
∞
∑

i=0

δiwi(ξ, t), |ξ| < 1,

∂uε

∂x
(x, t) ∼

∞
∑

i=0

δi−p ∂wi

∂ξ
(ξ, t), |ξ| < 1.

But the solution uε must satisfy the condition of “continuous sewing” (4).
Therefore for x = ε and ξ = 1 we have

∞
∑

i=0

δi

[ i
p ]

∑

s=0

1
s!

∂s

∂xs vi−ps(+0, t) ∼
∞
∑

i=0

δiwi(1, t),

∞
∑

i=0

δi

[ i
p ]

∑

s=0

1
s!

∂s+1

∂xs+1 vi−ps(+0, t) ∼
∞
∑

i=0

δi ∂wi+p

∂ξ
(1, t).

(11)

Hence

wi(1, t) =
[ i

p ]
∑

s=0

1
s!

∂s

∂xs vi−ps(+0, t), i ≥ 0.

Therefore

wi(1, t)− vi(+0, t) =
[ i

p ]
∑

s=1

1
s!

∂s

∂xs vi−ps(+0, t).

Thus we obtain

wi(1, t)− vi(+0, t) = F+
i , i ≥ 0, (12)

where the value F+
i is defined by the values of vj(+0, t) for j ≤ i− p.

In the same manner we obtain

wi(−1, t)− vi(−0, t) = F−i , i ≥ 0, (13)

where F−i is defined by the values of vj(−0, t) for j ≤ i− p.
For the functions wi we obtain

∂wi

∂ξ
(1, t) = 0, i = 0, 1, . . . , (p− 1),

∂wi

∂ξ
(1, t) =

[ i
p ]−1
∑

s=0

1
s!

∂s+1

∂xs+1 vi−p−ps(+0, t), i ≥ p.

As a result, we have

∂wi

∂ξ
(1, t)− ∂

∂x
vi−p(+0, t) = Φ+

i , (14)

where Φ+
i depend on vj for j ≤ i− 2p.
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In the same manner we obtain

∂wi

∂ξ
(−1, t)− ∂

∂x
vi−p(−0, t) = Φ−i , (15)

where Φ−i depends on vj for j ≤ i− 2p.
It will be shown now how one can construct successively all the functions

vi and wi.
I. Step 1. By equation (10) we have ∂2wi

∂ξ2 (ξ, t) = 0, i = 0, 1, . . . , (p− 1).
Then ∂wi

∂ξ (ξ, t) = ai(t), i = 0, 1, . . . , (p − 1). But condition (14) implies
∂wi
∂ξ (±1, t) = 0, i=0, 1, . . . , (p−1). Then ∂wi

∂ξ (ξ, t) = 0 for i = 0, 1, . . . , (p−1).
Therefore wi(ξ, t) = Ci(t), i = 0, 1, . . . , (p−1). By equation (10) we obtain
∂2wp

∂ξ2 (ξ, t) = 0 and ∂wp

∂ξ (ξ, t) = ap(t). But (14) implies that ∂wp

∂ξ (±1, t) =
∂v0
∂x (±0, t). Then for the function v0 we obtain the condition ∂v0

∂x (+0, t) =
∂v0
∂x (−0, t). Condition (12) obviously implies v0(+0, t) = v0(−0, t). Thus to
define the function v0 we obtain the problem

∂v0

∂t
(x, t) =

∂2v0

∂x2 (x, t), x 6= 0,

v0(x, 0) = u0(x),

v0(−1, t) = v0(1, t) = 0,

v0(+0, t) = v0(−0, t),

∂v0

∂x
(+0, t) =

∂v0

∂x
(−0, t),

which, as follows from [6], is uniquely solvable. Moreover, the solution
coincides with the solution of the problem

∂v0

∂t
(x, t) =

∂2v0

∂x2 (x, t), x 6= 0,

v0(−1, t) = v0(1, t) = 0,

v0(x, 0) = u0(x).

Thus the function v0 is defined uniquely. But in that case the condition
w0(±1, t) = v0(±0, t) implies w0(ξ, t) = C0(t) = v0(0, t).

Therefore, by performing step 1, we uniquely define the functions v0 and
w0, while the functions w1, w2, . . . , wp are defined to within the functions
Ci depending only on t.

II. Step 2. By equation (10) we obtain

∂2wp+1

∂ξ2 (ξ, t) = χ(ξ)
∂w1+`−p

∂t
(ξ, t),

where ` < p and the right-hand part is absent if 1 + `− p < 0.
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Thus for wp+1 we obtain the equation

∂2wp+1

∂ξ2 (ξ, t) = f0(ξ, t),

where f0 is the known function. Hence it follows that

∂wp+1

∂ξ
(ξ, t) =

ξ
∫

ξ0

f0(s, t) ds + ap+1(t)

and ∂wp+1

∂ξ is defined to within a term of the form ap+1(t). In step 1 we have
defined w1 to within the term C1(t). By condition (12) we have

w1(±1, t)− v1(±0, t) = 0 if p > 1;

w1(±1, t)− v1(±0, t) =
∂
∂x

v0(±0, t) if p = 1.

In both cases it is easy to verify that v1(+0, t) − v1(−0, t) = h1(t), where
h1 is uniquely defined.

By condition (14) we have

∂wp+1

∂ξ
(±1, t) =

∂v1

∂x
(±0, t) if p > 1;

∂wp+1

∂ξ
(±1, t) =

∂v1

∂x
(±0, t) +

∂2v0

∂x2 (±0, t) if p = 1.

In both cases this readily yields

∂v1

∂x
(+0, t)− ∂v1

∂x
(−0, t) =

∂wp+1

∂ξ
(+1, t)− ∂wp+1

∂ξ
(−1, t) + ˜h0(t),

where ˜h0 depends on v0. Therefore

∂v1

∂x
(+0, t)− ∂v1

∂x
(−0, t) = H1(t),

where H1 is uniquely defined.
Thus to define the function v1 we obtain the problem

∂v1

∂t
(x, t) =

∂2v1

∂x2 (x, t), x 6= 0,

v1(x, 0) = 0,

v1(−1, t) = v1(1, t) = 0,

v1(+0, t)− v1(−0, t) = h1(t),

∂v1

∂x
(+0, t)− ∂v1

∂x
(−0, t) = H1(t),
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where h1 and H1 are the known functions. This problem is uniquely solvable
according to [6].

Thus the function v1 is defined uniquely. Since the function w1(ξ, t) =
C1(t), by the condition w1(1, t)− v1(+0, t) = 0 for p > 1 and the condition
w1(1, t) − v1(−0, t) = ∂

∂xv0(+0, t) for p = 1 the function w1 is also defined
uniquely.

The function wp+1 can be represented by

∂wp+1

∂ξ
(ξ, t) =

ξ
∫

ξ0

f0(s, t) ds + ap+1(t).

Then, by the conditions

∂wp+1

∂ξ
(1, t) =

∂v1

∂x
(+0, t) for p > 1,

∂wp+1

∂ξ
(1, t) =

∂v1

∂x
(+0, t) +

∂2v0

∂x2 (+0, t) for p = 1,

the function ap+1 is uniquely defined. Therefore the function ∂wp+1

∂ξ is

uniquely defined and ∂wp+1

∂ξ (ξ, t) = f1(ξ, t). Hence we obtain

wp+1(ξ, t) =

ξ
∫

ξ0

f1(s, t) ds + Cp+1(t)

and the function wp+1 is defined to within the term Cp+1 depending on t.
Thus in step 2 we have defined the functions w1 and v1 uniquely, while

the function wp+1 was defined to within the function Cp+1 depending on t.
III. Step n + 1. Let the functions vi and wi be uniquely defined for all

i ≤ n, and the functions wn+1, . . . , wn+p be defined to within the terms
Cn+1, . . . , Cn+p depending on t.

Consider the equation for the function wn+p+1

∂2wn+p+1

∂ξ2 (ξ, t) =
∂wn+1−p

∂t
(ξ, t) + χ(ξ)

∂wn+1+`−p

∂t
(ξ, t),

where the right-hand part has no terms with negative indices. In any case
the right-hand part of the equation if defined uniquely since ` < p and p ≥ 1,
and therefore n + 1 − p ≤ n and n + 1 + ` − p ≤ n. As a result we obtain
the equation

∂2wn+p+1

∂ξ2 (ξ, t) = fn(ξ, t)
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which readily implies that

∂wn+p+1

∂ξ
(ξ, t) =

ξ
∫

ξ0

fn(s, t) ds + an+p+1(t)

and the function ∂wn+p+1

∂ξ is defined to within the term an+p+1 depending
only on t.

By condition (12) we have wn+1(±1, t) − vn+1(±0, t) = F±n+1, where
F±n+1 is defined by means of the functions vj for j ≤ n + 1 − p. But
n+1−p ≤ n and therefore the difference vn+1(+0, t)−vn+1(−0, t) is defined
by the difference wn+1(1, t)−wn+1(−1, t), which is uniquely defined. Thus
vn+1(+0, t)− vn+1(−0, t) = hn+1(t), where hn+1 is the known function.

By condition (14) we have

∂wn+1+p

∂ξ
(±1, t)− ∂vn+1

∂x
(±0, t) = Φ±n+p+1(t),

where Φ±n+p+1 is defined by means of the functions vj for j ≤ n+1−p. But
n + 1− p ≤ n and therefore the difference ∂

∂xvn+1(+0, t)− ∂
∂xvn+1(−0, t) is

defined by the difference

∂wn+p+1

∂ξ
(1, t)− ∂wn+p+1

∂ξ
(−1, t) =

1
∫

−1

fn(s, t) ds

and hence is defined uniquely. Thus

∂vn+1

∂x
(+0, t)− ∂vn+1

∂x
(−0, t) = Hn+1(t),

where Hn+1 is the known value.
Finally, to define the function vn+1 we obtain the problem

∂vn+1

∂t
(x, t) =

∂2vn+1

∂x2 (x, t), x 6= 0,

vn+1(x, 0) = 0,

vn+1(−1, t) = vn+1(1, t) = 0,

vn+1(+0, t)− vn+1(−0, t) = hn+1(t),

∂vn+1

∂x
(+0, t)− ∂vn+1

∂x
(−0, t) = Hn+1(t),

where hn+1 and Hn+1 are the known functions. This problem is uniquely
solvable according to [6].

Thus the function vn+1 has been defined uniquely. Since the func-
tion wn+1 has been defined to within the term Cn+1 depending only on



PARABOLIC EQUATIONS WITH A SMALL PARAMETER 509

t, the function wn+1 is defined uniquely by the condition wn+1(1, t) −
vn+1(+0, t) = F+

n+1(t).
The function wn+p+1 can be represented as

∂wn+p+1

∂ξ
(ξ, t) =

ξ
∫

ξ0

fn(s, t) ds + an+p+1(t).

Then the function an+p+1 is defined uniquely by the condition

∂wn+p+1

∂ξ
(1, t)− ∂vn+1

∂x
= Φ+

n+p+1(t).

Therefore
∂wn+p+1

∂ξ
(ξ, t) = fn+1(ξ, t)

and wn+p+1 is defined by the formula

wn+p+1(ξ, t) =

ξ
∫

ξ0

fn+1(s, t) ds + Cn+p+1(t)

to within the term Cn+p+1.
Therefore, if it is assumed that the functions vi and wi have the known

exact values for all i ≤ n, and the fucntions wn+1, . . . , wn+p are known to
within the terms Cn+1, . . . , Cn+p depending only on the variable t, then
we shall define the functions vn+1 and wn+1 uniquely, while the function
wn+1+p will be defined to within the term Cn+p+1 depending only on t.

Thus, using the arguments of I, II, and III, we conclude by induction
that the functions vi and wi can be defined uniquely for arbitrary i. We
have therefore formally constructed the asymptotic series (5).

Consider a partial sum of series (5)

uN (x, t) =















N
∑

i=0
δiv±i (x, t), |x| > ε,

N
∑

i=0
δiwi(x

ε , t), |x| < ε,
(16)

and evaluate the difference uN (ε + 0, t)− uN (ε− 0, t).
We readily obtain

uN (ε− 0, t) =
N

∑

i=0

δiwi(1, t);

uN (ε + 0, t) =
N

∑

i=0

δi

[ i
p ]

∑

s=0

1
s!

∂s

∂xs vi−sp(+0, t) + O(δN+1).
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But then conditions (11) imply that uN (ε + 0, t)− uN (ε− 0, t) = O(δN+1).
In the same manner we find that

uN (−ε + 0, t)− uN (−ε− 0, t) = O(δN+1);

∂uN

∂x
(ε + 0, t)− ∂uN

∂x
(ε− 0, t) = O(δN );

∂uN

∂x
(−ε + 0, t)− ∂uN

∂x
(−ε− 0, t) = O(δN ).

Thus the function uN has discontinuities at the points x = ±ε. Let us cor-
rect this function at the points of discontinuity. We introduce the notation

C1 = uN (ε + 0, t)− uN (ε− 0, t),

C2 = uN (−ε + 0, t)− uN (−ε− 0, t),

B1 =
∂uN

∂x
(ε + 0, t)− ∂uN

∂x
(ε− 0, t),

B2 =
∂uN

∂x
(−ε + 0, t)− ∂uN

∂x
(−ε− 0, t).

Let ϕ be a smooth function, ϕ(x) ≡ 1 for |x| ≤ 1
2 , and ϕ(−1) = ϕ(1) = 0.

Assume that ϕN (x, t) for |x| < ε, ϕN (x, t) = (B1(x−ε)+C1)ϕ(x) for x ≥ ε,
and ϕN (x, t) = (B2(x + ε) + C2)ϕ(x) for x < −ε. Consider the function VN

defined by the formula VN (x, t) = uN (x, t)− ϕN (x, t). It is easy to obtain

(∂VN

∂t
+ ε−mχ

(x
ε

) ∂VN

∂x2

)

= O(δN−1),

VN (x, 0) = u0(x) + O(δN+1).

Now for the function v = uε − VN we obtain a problem of the form

∂v
∂t

+ ε−mχ
(x

ε

) ∂v
∂t
− ∂2v

∂x2 = Fδ,

v(−1, t) = v(1, t) = 0,

v(x, 0) = ϕδ,

(17)

where Fδ(x, t) = O(δN−1) and ϕδ(x) = O(δN+1).
By multiplying the equation by v and integrating the resulting equality

over the domain [−1, 1]× [0, τ0], where τ0 ∈ (0, T ], we obtain

1
∫

−1

τ0
∫

0

(

(

1 + ε−mχ
(x

ε

))∂v
∂t

v2 − ∂2v
∂x2 v

)

dx dt =

1
∫

−1

τ0
∫

0

Fδ(x, t)v dx dt.
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Hence, after integration by parts, we have

1
2

1
∫

−1

(

1 + ε−mχ
(x

ε

))

v2 dx +

1
∫

−1

τ0
∫

0

(∂v
∂x

)2
dx dt =

=
1
2

1
∫

−1

(

1 + ε−mχ
(x

ε

))

ϕ2
δ(x) dx +

1
∫

−1

τ0
∫

0

Fδ(x, t)v(x, t) dx dt,

which implies

1
∫

−1

v2(x, τ0) dx ≤
1

∫

−1

ϕ2
δ(x) dx + ε−m

ε
∫

−ε

χ
(x

ε

)

ϕ2
δ(x) dx +

+ 2
∣

∣

∣

∣

1
∫

−1

τ0
∫

0

Fδ(x, t)v(x, t) dx dt
∣

∣

∣

∣

.

Taking into account the estimates of the functions ϕδ and Fϕ and using
the known inequality 2ab ≤ εa2 + 1

ε b2, we obtain

1
∫

−1

T
∫

0

v2(x, t) dx dt ≤ ˜Cδ2(N−1),

where ˜C does not depend on δ and N .
Thus we have established that ‖uε − VN1

‖L2(Ω) ≤ ˜CδN1−1 for any N1.
Let N1 = N + 2. Then ‖uε + VN+2‖L2(Ω) ≤ ˜CδN+1. On the other hand,

‖VN+2 − uN+2‖L2(Ω) ≤ CδN+2. Hence it follows that ‖uε − uN+2‖L2(Ω) ≤
C1δN+1. This immediately implies ‖uε−uN ‖L2(Ω) ≤ ˜MδN+1. Thus we have
proved

Theorem. Let uε be the solution of problem (1)–(3) and uN be a partial
sum of the formal asymptotic series (5) defined by formula (16). Then the
inequality ‖uε − uN ‖L2(Ω) ≤ ˜MδN+1 holds, where the constant ˜M does not
depend on δ and N .

The construction of the functions vj and wj enables us to make several
conclusions. In particular, let m1 = `1

p and m2 = `2
p , where `1 < `2. It is

easy to see that in both cases the functions v0 and w0 are defined in the
same manner. Moreover, the functions vj and wj are also defined in the
same manner if j < p − 1 − `2. Thus for such m1 and m2 the asymptotic
expansions coincide in the first several terms.

The theorem and the above remarks give rise to
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Corollary. Let m < 1 be a real number. Then the limit function u =
lim
ε→0

uε, where uε is the solution of problem (1)–(3), is the solution of the

problem

∂u
∂t

(x, t) =
∂2u
∂x2 (x, t), x ∈ (−1, 1),

u(−1, t) = u(1, t) = 0,

u(x, 0) = u0(x).

Remark. The corollary can also be proved without using asymptotic ex-
pansions. We intend to do this in future papers.
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