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ASYMPTOTIC EXPANSION OF SOLUTIONS OF
PARABOLIC EQUATIONS WITH A SMALL PARAMETER

A. GAGNIDZE

ABSTRACT. The heat equation with a small parameter,
(1 +e™™x(%))ut = uga,

is considered, where € € (0,1), m < 1 and x is a finite function. A
complete asymptotic expansion of the solution in powers ¢ is con-
structed.

In [1], [2] E. Sanchez-Palencia and H. Tchatat noted, for the first time,
problems in which a small parameter is contained not only in the equation
but also in the characteristics of the domain itself. In subsequent years such
problems were studied by O. A. Oleynik, S. A. Nazarov, Yu. D. Golovatii,
and G. S. Sobolev [3]-[5].

In this paper we consider a problem on heat conduction in a medium
whose density has a perturbation concentrated in a small neighborhood of
the origin.

In the domain ©Q = (1,1) x (0,T") let us consider the initial boundary
value problem for a heat equation of the form

. [T\ Ou  O%u
(1+ex(2)) 5 = 5 0
with the boundary conditions
u(=1,t) =u(l,t) =0 (2)

and the initial condition

u(xz,0) = up(x), (3)

where ¢ € (0,1), m < 1 is some real number, and the function y satisfies
the following conditions: x(&) = 0 for || > 1, x(&) > 0 for |¢| < 1, and
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1
J x(&)d¢ = M = const > 0. Assume that the initial function ug is continu-
1

ous on [—1, 1], satisfies the condition ug(1) = ug(1) = 0, and is holomorphic
in the neigborhood of x = 0.
In that case it readily follows that

€

te [ x(3)de=o0

—€

and therefore such a perturbation (m < 1) will be called “weak”.

By a solution of problem (1)—(3) we shall understand a function « which
satisfies equation (1) in  for x # +e, conditions (2) and (3), and at the dis-
continuity points = +¢ of the function y (there are no other discontinuity
points) satisfies the conditions of “continuous sewing”

we+0.8) = ule —0,), 2e+0,0) = Loae—0,0),
ou ou
u(—e+0,t) = u(—e — 0,1), %(75 +0,t) = %5%(75 —0,1).

According to O. A. Oleynik’s paper [6] problem (1)—(3) is uniquely solv-
able in the domain .

Let m be a rational number and m = %, where p is a natural number
and ¢ < p is some integer number. We introduce the notation { = £,
05 = (e,1) x (0,7), Q= = (—1,—¢) x (0,7), Q4 = (0,1) x (0,7), Q_ =
(—=1,0) x (0, 7).

Now we shall construct a complete asymptotic expansion of the solution
ue of problem (1)—(3) in powers of value 6 = ¢» when ¢ — 0.

We shall seek for a solution of the form

S ok (), (w,1) € 05,

ue(w,t) ~ X0 (5)
Z 5Zwi(§at)7 (l‘,t) € (7575) X (OvT)
i=0

First we shall find out which conditions the functions v and w; must

satisfy when t = 0.
By virtue of expansion (5) and condition (3) we have

ug(x) ~ Z(Sivij[(gc,O)7 |z] > €.
i=0

Hence it follows that

vE(2,0) = up(z), v (z,0)=0, i>1. (6)
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Using expansion (5) and condition (3), for the function w; we obtain
l’) ~ Zélwl(§,0)7 |£| < 17
i=0

which, after expanding wug into a Taylor series, gives

E i ~ E pi S
v 0 wz(é-? 0) d il dxt uO(O)

=0

Having equated the coefficients at the same powers of d, we obtain

| _&d .
wzp(é-)()) - F dt UO(O), 2_071727"' ) (7)
wi(£,0)=0, j#pk, k=012, ...
It is easy to verify that condition (2) implies
vE(£1,t) =0, > 0. (8)
By substituting the formal expansion (5) into equation (1) we obtain
% 62 +
2‘5 (815 o @t) = g i) ~ 0,
G 0 0 0?
—2p( = — an. — s ~
; 6 (at wl*2p(€’ t) + X(é-) at wl*2p+f(£a t) 352 w; (6) t)) O
which yields
0 ot 0? | B
at Ui (:L' t) ?vi (xat) =0, |QZ‘ > &, (9)
2 0 0
5 (53 ) - wz 2;0(5 )+ X(f) awi—Qp—i-l(fat)a |£| < ]-, (10)

where there are no terms with negative indices.

In what follows we shall write v; instead of vz?t, assuming that for z > ¢
we mean v;r , and for x < —¢ we mean v; . Let, in the neighborhood of the
point (0, 1), the functions v; be holomorphic with respect to z.

By the formal expansion (5) we obtain

Zazz T O 0,0, o> e

oo o0 Sl
ERCED MDD
0

1= s=1

v (£0,t), |z| > ¢,
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=0

ou = dw;
€ -~ i—p i

But the solution u. must satisfy the condition of “continuous sewing” (4).
Therefore for x = ¢ and £ = 1 we have

S

Z Z —vL —ps(+0,t) ~ Z(Slwi(l,t),
i—0  s=0° i=0

- (1)
— z 1 o5t 18w1+p
36 Y a0 ~ Y )
i=0  s=0
Hence _
] 0° .
wz(Lt) = s g % Ui,ps(—f—o,t), 7> 0.
Therefore v
(7] Pe
wz(l, t) — 'Ui("’O, t) = 2 a % Ui—ps(+07 t)
Thus we obtain
wz(la t) - Uz(+07t) = Fi+7 { Z Oa (12)
where the value F;" is defined by the values of v;(+0,t) for j <1i — p.
In the same manner we obtain
’U}Z(—l,t) - vi(—O,t) = Fii, 7 2 0, (13)
where F; is defined by the values of v;(—0,t) for j <i—p.
For the functions w; we obtain
6wi
1,t)=0, i=0,1,... -1
ag ( ) ) ) 1 ) ) 7(p )7
[£]-1
8wi e 1 85“ .
¢ (1,t) = ;) 5 3ot Viepopa(10,8), i >p.
As a result, we have
ow; 0
th_iif 02‘,‘:(1)+ 14
ag(’) 6$U P(+5) 70 ()

where ®; depend on v; for j < i — 2p.
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In the same manner we obtain

awi 8 _ E—
8{ (_17t) - % Uifp(_oat) - CI)Z ) (15)

where ®; depends on v; for j < i — 2p.
It will be shown now how one can construct successively all the functions
v; and w;.

I. Step 1. By equation (10) we have ‘9625“;" &t)=0,:=0,1,...,(p—1).
Then aw ¢ (& 1) = ai(t), i = 0,1,...,(p — 1). But condition (14) implies
8521 (il,t) =0,i=0,1,...,(p-1). Then 2% E(&t)=0fori=0,1,...,(p—1).
Therefore w;(§,t) = C;(t), i=0,1,.. ( 1). By equation (10) we obtain
aagép (&,t) = 0 and 8“’" (£,t) = ap(t). But (14) implies that w” (£1,t) =
61;0 (0,t). Then for the function vy we obtain the condition 8’;0 (+0,t) =

%(—O,t). Condition (12) obviously implies vg(+40,t) = vo(—0,t). Thus to
define the function vy we obtain the problem

8’1)0 o 821)0
B D= e
vo(z,0) = up(x),
U0(717t) = UO(lat) = Ov

z,t), x#0,

1}0(+O,t) = Uo(—o,t),
8110 (91)0

which, as follows from [6], is uniquely solvable. Moreover, the solution
coincides with the solution of the problem

8’[10 o 821)0

g(:ﬂ,t) - O12 (l‘,t), x 7£ 07
UO(_Lt) = UO(lat) = 07

vo(x,0) = ug(x).

Thus the function vg is defined uniquely. But in that case the condition
wo(£1,t) = vo(£0,¢) implies wy(&,t) = Co(t) = vo(0, 7).

Therefore, by performing step 1, we uniquely define the functions vg and
wp, while the functions wy,ws,...,w, are defined to within the functions
C; depending only on t.

II. Step 2. By equation (10) we obtain

82wp+1
g2
where ¢ < p and the right-hand part is absent if 1 +/¢ — p < 0.

(€1) = x(6) 22 ),
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Thus for wy,11 we obtain the equation

2
0 Wp+1

o¢2 (€7t) = f0(§7t);

where fy is the known function. Hence it follows that

Owp 11

¢
L) = [ folst)ds + apia(t)
o

and 6%”5“ is defined to within a term of the form a,1(¢). In step 1 we have

defined w; to within the term C;(¢). By condition (12) we have

wy (£1,t) — v (£0,¢) =0 if p>1;
wy (£1,¢) — v1(20,¢) = gvg(:le,t) if p=1.
x
In both cases it is easy to verify that v;(40,t) — v1(—0,t) = hy(t), where

h1 is uniquely defined.
By condition (14) we have

a%’?(ﬂ,t) = %(io,t) if p>1;
811)1;4,_1 o oy 821}0 : _
In both cases this readily yields
801 81}1 - 8wp+1 8w,,+1 -~
where EO depends on vy. Therefore
0 0
S (H0,0) = SE(=0,1) = Hy(0),

where H; is uniquely defined.
Thus to define the function v; we obtain the problem

8111 o 82’01
E(mat)_ o2 (xvt)7 :1;7503
vy (z,0) =0,

Ul(—l,t) = Ul(l7t) = 0,
v1(+0,t) — vi1(=0,8) = ha (),
8?]1 (9’()1

87(+07t) — %(—O,t) = Hi(1),
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where hy and H; are the known functions. This problem is uniquely solvable
according to [6].

Thus the function v; is defined uniquely. Since the function wi(&,t) =
C4(t), by the condition wq(1,t) — v1(+0,t) = 0 for p > 1 and the condition
wi(1,t) —v1(=0,t) = Zvg(+0,¢) for p = 1 the function w; is also defined
uniquely.

The function wy41 can be represented by

£
0
2 (60) = [ s, 0)ds + apia )
o
Then, by the conditions
6'wp+1 _ 31)1
o (1,¢t) = o (+0,t) for p>1,
6wp+1 o ovy 821’0 _
Tf(Lt) - o (+Ovt) + 8{,172 (+Oat) for b= 17

the function apy; is uniquely defined. Therefore the function is

uniquely defined and a%"gl (&,t) = f1(&,t). Hence we obtain

Owp41
¢

3
wpa(6t) = [ Ails.0)ds + Cpralt)
&o

and the function wy1 is defined to within the term Cp41 depending on ¢.
Thus in step 2 we have defined the functions w; and v; uniquely, while
the function wp41 was defined to within the function Cpy; depending on ¢.
ITI. Step n+ 1. Let the functions v; and w; be uniquely defined for all
i < n, and the functions wy41,...,Wn4p be defined to within the terms
Cnt1, - .., Chqp depending on t.
Consider the equation for the function wy4p41

82wn+ +1 _ awn—i—l—p 8u’n-{-l-{-é—
TR (6, ) = TER (6, 1) 4 x(6) T ),

where the right-hand part has no terms with negative indices. In any case
the right-hand part of the equation if defined uniquely since £ < pand p > 1,
and therefore n+1—p<nandn+1+4+£¢—p <n. As a result we obtain
the equation

82wn+ +1 o
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which readily implies that

awrggﬂrl &, t) /fn 5,1) d3+an+p+1< )

and the function aw"ai?“ is defined to within the term a,4p+1 depending
only on t.

By condition (12) we have wy41(£1,t) — vo41(£0,1) = F;, where
F;Ltﬂ is defined by means of the functions v; for j < n+4+ 1 —p. But
n+1—p < n and therefore the difference vy 41 (40, t) —vp41(—0,%) is defined
by the difference wy41(1,t) — wp41(—1,t), which is uniquely defined. Thus
Un41(4+0,t) — vy11(—=0,t) = hpy1(t), where hyyq is the known function.

By condition (14) we have

8wn+1+ a’Un+1 +
Tp(i17t) - ox (io?t) ®n+p+l( )

where @f_‘_p“ is defined by means of the functions v; for j < n+1—p. But

n+1—p < n and therefore the difference -2 B2 Un+1(+0,1) — 5 9 ppi1(—0,1) is
defined by the difference

owy, owy,

Wn4p+1 (1,0) — Wn4p+1 (—1,1) = /fn(s,t) s
23

and hence is defined uniquely. Thus

a'Un-',-l

ox

8U?’L—i— 1
ox

where H,, 41 is the known value.
Finally, to define the function v,11 we obtain the problem

(+O t) (_07t> = Hn+1(t)a

2
Dontt (z,0) = T2 2,1), w0,

’Un-‘rl(xa O) = 07
Un1(—1, t) = Un+1<1at) =0,
vn+1(+07t) - Un+1(_07t) = hn+1(t)7

Ovnt1 %(—O,t) — Hy(0),

ox

where h,4+1 and H, 1 are the known functions. This problem is uniquely
solvable according to [6].

Thus the function v,1; has been defined uniquely. Since the func-
tion w,4+1 has been defined to within the term C),4; depending only on

———(40,t) —
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t, the function wy41 is defined uniquely by the condition wy,41(1,¢t) —

Un1(+0,8) = F1 4 (1),
The function wy,4p+1 can be represented as

3w752p+1 &, t) /fn $,t) ds + anypi1(t).

Then the function ay,4p41 is defined uniquely by the condition

aU/n—i-p-‘,-l _ 8Un-‘,—l  F 4
(L) (t

or - Tntp+l

Therefore

3“’”*;“ (66) = Fura(6,1)

and Wy p41 is defined by the formula

Wn+p+1 57 /fn—H s t) d5+cn+19+1( )
o

to within the term Cp4py1.

Therefore, if it is assumed that the functions v; and w; have the known
exact values for all ¢ < n, and the fucntions wyy1,...,wp4p are known to
within the terms Cyy1,...,Cph4p depending only on the variable ¢, then
we shall define the functions v,41 and wy,41 uniquely, while the function
Wy +14p Will be defined to within the term C),4,11 depending only on ¢.

Thus, using the arguments of I, II, and III, we conclude by induction
that the functions v; and w; can be defined uniquely for arbitrary i. We
have therefore formally constructed the asymptotic series (5).

Consider a partial sum of series (5)

N
3 St i(a: t), |x|>e,
uylat) = {0 (16)
Z(szwi(gat)7 |l“ <g,
=0

and evaluate the difference u, (e + 0,¢) — u, (¢ — 0,¢).
We readily obtain

N
uy(e=0,t) =Y 'wi(1,1);
=0

(3]

yv(E+0,1) Z&Z; ;sw sp(+0,1) + OGN Th).
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But then conditions (11) imply that u, (e +0,t) — u, (e — 0,¢) = O(§V+1).
In the same manner we find that

Uy (—e +0,t) —uy(—e —0,t) = O(6N ),

Ou Ou Ny
P (e 40,8 = T~ 0,0) = O(5™);
Ou duy B N
P (0,0~ (e —0,0) = O,

Thus the function u, has discontinuities at the points = 4¢. Let us cor-
rect this function at the points of discontinuity. We introduce the notation

Cy =uy(e+0,t) —uy(e —0,1),
Cy=uy(—e+0,t) —uy(——0,1),

_ Ouy Ju
B = — — N —
1 g —(e+0,1) Ee N (e —0,t),
_ Ouy Ou, o
Bz—iax (—E—I—O,t)——agc (—e —0,1).

Let ¢ be a smooth function, ¢(z) = 1 for |z < 3, and p(—1) = ¢(1) = 0.
Assume that ¢, (z,t) for |z| < e, ¢, (z,t) = (B1(x —¢) +C1)p(x) for z > ¢,
and ¢, (z,t) = (B2(x +¢) + C2)p(z) for & < —e. Consider the function V,,
defined by the formula V, (z,t) = u, (z,t) — ¢, (x,t). It is easy to obtain

(T + (D) g3) =06,
Vy(x,0) = up(z) + OV +).

Now for the function v = u. — V,, we obtain a problem of the form

érJr X()@*&—Fa,

ot ot Ox?
B(—1,) =o(1,) = 0, (17)
v(z,0) = ¢s,

where Fs(x,t) = O(6V 1) and ¢s(z) = O(6V ).
By multiplying the equation by v and integrating the resulting equality
over the domain [—1,1] x [0, 79], where 79 € (0, 7], we obtain

1

1 70
m v 52 0%v
//<(1+5 ))at o >dxdt //Fgo:tvdmdt
-1 0

—-10
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Hence, after integration by parts, we have

1 1 TO
1 - o 2
§/m1+€ vdm+//KaﬁcMﬁf
—1 -1 0

17’0

1
/ 1 +e My x))(p% (z) dx + / Fs(x,t)v(x,t) dx dt,
1 210

l\D\»—~

which implies
1 1 5
/EQxTO / x)dr + e~ m/x(%)gpg(a:)daﬂ—
—1 —1 —&

70

+4//gmmm@mm+

Taking into account the estimates of the functions s and F, and using
the known inequality 2ab < ca? + ébz, we obtain

1 T
//thMﬁ<CWN”
-1 0

where C' does not depend on § and N. B
Thus we have established that [|ue — V. [|p,q) < C6™*~! for any Nj.

Let Ny = N +2. Then [Juc + Vy . [l1,0) < CS§N*L. On the other hand,
Vaie = Uninllia@) < C6N*2. Hence it follows that |ju. — Uy o llLa0) <

C16NF1. This immediately implies [|ue —uy ||, 0) < MSN+L. Thus we have
proved

Theorem. Let u. be the solution of problem (1)—~(3) and u, be a partial
sum of the formal asymptotic series (5) defined by formula (16) Then the
inequality ||ue — uy || n, ) < M&N* holds, where the constant M does not
depend on 6 and N.

The construction of the functions v; and w; enables us to make several
conclusions. In particular, let m; = % and mg = %7 where £; < l5. It is
easy to see that in both cases the functions vy and wg are defined in the
same manner. Moreover, the functions v; and w; are also defined in the
same manner if j < p — 1 — 5. Thus for such m; and msy the asymptotic
expansions coincide in the first several terms.

The theorem and the above remarks give rise to
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Corollary. Let m < 1 be a real number. Then the limit function uw =
lir% Ue, where ue is the solution of problem (1)—(3), is the solution of the
E—

problem

ou 0%*u
a(xat) = @(%t)v r € (=1,1),

u(—1,t) =u(l,t) =0,
u(x,0) = ug(x).

Remark. The corollary can also be proved without using asymptotic ex-
pansions. We intend to do this in future papers.
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