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SEVERAL COHOMOLOGY ALGEBRAS CONNECTED
WITH THE POISSON STRUCTURE

Z. GIUNASHVILI

Abstract. The structure of a Lie superalgebra is defined on the space
of multiderivations of a commutative algebra. This structure is used
to define some cohomology algebra of Poisson structure. It is shown
that when a commutative algebra is an algebra of C∞-functions on
the C∞-manifold, the cohomology algebra of Poisson structure is iso-
morphic to an algebra of vertical cohomologies of the foliation corre-
sponding to the Poisson structure.

§ 0. Introduction

0.1. Let M be a finite-dimensional C∞-manifold. We use the following
notation: ΩK(M), k = 1, 2, . . . , is the C∞(M)-module of differential k-
form on M ; V k(M), k = 1, 2, . . . , is the C∞(M)-module of contravariant
antisymmetric tensor fields of degree k on M ; S is some foliation on the
manifold M ; V k(M,S), k = 1, 2, . . . , is a submodule of V k(M) consisting
of the fields tangent to the leaves of the foliation S; Ωk(M, S), k = 1, 2, . . . ,
is the C∞(M)-module of homomorphisms from the module V k(M,S) into
C∞(M); Ωk

s(M), k = 1, 2, . . . , is a submodule of Ωk(M) consisting of k-
forms vanishing on V k(M,S). Also, we put

Ω0(M) = V 0(M) = Ω0(M, S) = V 0(M,S) = C∞(M);

Ω∗(M) =
∞
⊕

k=0
Ωk(M); V ∗(M) =

∞
⊕

k=0
V k(M);

Ω∗(M, S)=
∞
⊕

k=0
Ωk(M,S); V ∗(M,S)=

∞
⊕

k=0
V k(M, S); Ω∗s(M)=

∞
⊕

k=0
Ω∗s(M),

where Ω0
s(M) is a subalgebra of C∞(M) consisting of functions constant

along the leaves of the foliation S.
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0.2. The exterior derivation d : Ωk(M) → Ωk+1(M) carries Ωk
s(M) into

Ωk+1
s (M) and thus induces a differential ˜d : Ωk(M)/Ωk

s(M) → Ωk+1(M)/
Ωk+1

s (M).
A cohomology of the complex (Ω∗(M)/Ω∗s(M), ˜d) is called a relative coho-

mology of the foliated manifold (M,S). It is a generalization of cohomology
of the family of manifold defined in [1]. We denote the pth cohomology space

by Hp(M, S), and the cohomology algebra
∞
⊕

k=0
Hp(M, S) by H∗(M, S).

0.3. Let R : Ω∗(M) → Ω∗(M, S) be a restriction map. It is clear that
Kernel (R) = Ω∗s(M). If we denote by ds the operator of exterior derivation
on Ωk(M,S), then it can be said that the map R is a homomorphism of
the complex (Ω∗(M), d) into the complex (Ω∗(M, S), ds). In general, the
homomorphism R is not an epimorphism, and therefore, in general, the
induced homomorphism ˜R : (Ω∗(M)/Ω∗s(M), ˜d) → (Ω∗(M, S), ds) is not an
isomorphism.

If we denote the pth cohomology space of the complex (Ω∗(M, S), ds) by

Hp
s (M) and the cohomology algebra

∞
⊕

k=0
Hp

s (M) by H∗
s (M), we can say that,

in general, the algebras H∗(M, S) and H∗
s (M) are not isomorphic though

we have the natural homomorphism [R] :H∗(M, S)→H∗
s (M) induced by ˜R.

0.4. In the case where the manifold M is provided with a Riemannian
metric, we have the map of orthogonal projection π : V ′(M) → V ′(M, S).
The map π induces the endomorphism π∗ of the algebra Ω∗(M) defined as
(π∗w)(v1, . . . , vk) = w(πv1, . . . , πvk). It is clear that π∗ is the projection
π∗ ◦ π∗ = π∗. We denote the subalgebra Image(π∗) by Ω∗v(M) and call its
elements vertical differential forms on the foliated manifold (M,S) (see [2]).

It is easy to check that the operator π∗ ◦ d ≡ dv : Ω∗v(M) → Ω∗v(M) is
a coboundary operator, and we call the cohomology algebra of the complex
(Ω∗v(M), dv) the algebra of vertical cohomologies of the foliation Si and
denote it by H∗

v (M) (see [2]).

0.5. If M is a Riemannian manifold, we can define the reverse map of ˜R
as follows: (R−1w)(v1, . . . , vk) = w(πv1, . . . , πvk), and ˜R−1(w) = [R−1w].
So, the complexes (Ω∗(M)/Ω∗s(M), ˜d), (Ω∗(M, S), ds), and (Ω∗v(M), ds) are
isomorphic.

For the foliated Riemannian manifold (M, S), three cohomology algebras
H∗(M, S), H∗

s (M), and H∗
v (M) are isomorphic.

0.6. The definition of the complexes (Ω∗(M)/Ω∗s(M), ˜d),
(

Ωk(M,S), ds
)

and
(

Ω∗v(M), dv
)

can be generalized as follows: Let L be a C∞(M)-submo-
dule of V ′(M), and also be a Lie subalgebra of V ′(M). Let us denote by
Ω∗L(M) a subalgebra of the exterior algebra Ω∗(M) consisting of the forms
w such that w(u1, . . . , un) = 0 for every system {u1, . . . , un} ⊂ L. Further,
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we denote by Ω∗(M, L) the algebra of C∞(M)-multilinear antisymmetric
maps from Lk into C∞(M).

The definition of derivations dL : Ω∗(M, L) → Ω∗(M, L) and ˜d :
Ω∗(M)/Ω∗L(M) → Ω∗(M)/Ω∗L(M) is clear.

Indeed, the cohomologies of the complex (Ω∗(M,L), dL) are the coho-
mologies of the Lie algebra L, with coefficients in C∞(M), denoted by
H∗(L,C∞(M)) (see [3]).

In the cases considered in 0.1 – 0.5, the submodule L is V ′(M, S).
If there is some projector π : V ′(M) → V ′(M) with Image (π) = L, then

the algebra of vertical cohomologies can be defined as in 0.4. The proof of
the fact that the cohomologies of the complexes

(Ω∗(M)/Ω∗L(M), ˜d),
(

Ω∗(M,L), dL
)

, and
(

Ω∗v(M), dv
)

are isomorphic is analogous to the proof of the thereom in 0.5.
We use the above-described generalization in §2 in considering a coho-

mology of the Poisson structure.
In §1 we introduce the notion of Poisson algebra and define its coho-

mologies. We also describe here some algebraic constructions which help
us to arrange a connection between the cohomologies defined in §0 and the
cohomologies of the Poisson structure.

§ 1. Lie Superalgebra Structure on the Space of
Multiderivations of a Commutative Algebra. The Poisson

Algebra

1.1. Let F be a real or complex vector space. For each positive integer k
we denote by Ak(F ) the space of multilinear antisymmetric maps from F k

into F . Also we put A0(F ) = F and A∗(F ) =
∞
⊕

k=0
Ak(F ).

1.2. There is a natural structure of the Lie subalgebra on A′(F ) defined by
the commutator. It might be defined as a structure of the Lie subalgebra
on A∗(F ). The supercommutator [α, β] ∈ Am+n−1(F ) of two elements
α ∈ Am(F ) and β ∈ An(F ) is defined as follows (see [4]):

[α, β](v1, . . . , vm+n−1) =

=
1

m! n!

∑

s

sgn(s)
(

(−1)mn+nα(β(vs(1), . . . , vs(n)), vs(n+1), . . .

. . . , vs(m+n−1)
)

+ (−1)mβ
(

α(vs(1), . . . , vs(n)), vs(n+1), . . . , vs(m+n−1))
)

;

also, for v, w∈A0(F )=F we put [α, v](v1,. . ., vm−1)=[v, α](v1, . . . , vm−1) =
α(v, v1, . . . , vm−1) and [v, w] = 0.
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1.3. It is easy to check that the bracket as defined above satisfies the
axioms of the Lie superalgebra: For α ∈ Am(F ), β ∈ An(F ) and γ ∈ Ak(F )
we have (a) [α, β] = (−1)mn[β, α]; (b) (−1)mk[[α, β], γ]+(−1)mn[[β, γ], α]+
(−1)nk[[γ, α], β] = 0.

1.4. One classical notion that can be translated into the language of the
bracket defined in A∗(F ) is the notion of “a Lie algebra structure on F”.
A structure of the Lie algebra on F is an element µ ∈ A2(F ) satisfying the
condition [µ, µ] = 0. The latter is equivalent to the Jacobi identity

µ
(

µ(a, b), c
)

+ µ
(

µ(b, c), d
)

+ µ
(

µ(c, a), b
)

.

We call such an element an involutive element.

1.5. An involutive element µ ∈ A2(F ) defines the linear operator µ̃ :
A∗(F ) → A∗(F ), µ̃(α) = [µ, α]. It is clear that if α ∈ Ak(F ), then µ̃(α) ∈
Ak+1(F ). Moreover, the property (b) in 1.3 implies µ̃2 = 0, i.e., µ̃ is a
coboundary operator and therefore defines some space of cohomologies. As
a matter of fact, it is the Chevalley–Eilenberg cohomology of the Lie algebra
F with coefficients in F (see [4]).

1.6. Further we shall consider only the case with F as a commutative
algebra over the field of real or complex numbers.

In that case, the space A∗(F ) has a structure of the anticommutative
(exterior) algebra defined by the classical formula: For α ∈ Am(F ), β ∈
An(F ), and a ∈ A0(F ) = F we have

(αβ)(v1, . . . , vm+n) =

=
1

m! n!

∑

s

sgn(s)α(vs(1), . . . , vs(m))β(vs(m+1), . . . , vs(m+n)),

and (aα)(v1, . . . , vm) = (αa)(v1, . . . , vm) = a · α(v1, . . . , vm).

1.7. Definition. For every positive integer k we denote by Derk(F )
the subspace of such elements α in Ak(F ) that α(a, a1, a2, . . . , ak) =
aα(a1, . . . , ak) + a1α(a, a1, a2, . . . , ak) for every system {a, a1, . . . , ak} ⊂ F .

Also, we put Der0(F ) = F and Der∗(F ) =
∞
⊕

k=0
Derk(F ).

We call elements of the space Derk(F ) k-derivations of the algebra F ,
and elements of Der∗(F ) multiderivations.
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1.8. It is easy to check that the subspace Der∗(F ) in A∗(F ) is closed un-
der the operation of exterior multiplication defined in 1.6 as well as under
the bracket defined in 1.2. In other words, Der∗(F ) is an anticommutative
algebra and a Lie superalgebra. Moreover, these two structures are con-
nected by the following property: For α ∈ Derm(F ), β ∈ Dern(F ), and
γ ∈ Der∗(F ) we have (c) [α, βγ] = [α, β] · γ + (−1)mn+nβ · [α, γ].

1.9. For k = 0, 1, 2, . . . let ∧k Der′(F ) be the subspace of Derk(F ) which
consists of elements of the form av1, . . . , vk, where a ∈ F and {v1, . . . , vk} ⊂
Der′(F ). The subalgebra ∧∗Der′(F ) =

∞
⊕

k=0
∧k Der′(F ) in Der∗(F ) is closed

under the bracket [ , ] which has a more explicit form on the elements of
the algebra

∧∗Der′(F ) : [α1, αm, β1, . . . , βn] =

=
∑

i,j

(−1)m+i+j−1[αi, βj ]α1 · · · α̂i · · ·αmβ1 · · · ̂βj · · ·βn,

where {α1, . . . , αm, β1, . . . , βn} ⊂ Der′(F ), and [αi, βj ] is the commutator
of αi and βj .

1.10. A Poisson structure on the commutative algebra F is an involutive
element (see 1.4) P ∈ Der2(F ). The pair (F, P ) is said to be a Poisson
algebra.

As mentioned in 1.5, an involutive element P ∈ Der2(F ) defines the
operator with a vanishing square ˜P : Der∗(F ) → Der∗(F ). By virtue of the
property (c) of the bracket in Der∗(F ) (see 1.8) it is easy to check that for
α ∈ Derm(F ) and β ∈ Dern(F ) we have ˜P (αβ) = ˜P (α)β + (−1)mα ˜P (β).
Such an operator is said to be an antiderivation of degree +1.

Therefore, on the space of cohomologies defined by ˜P , we can intro-
duce a structure of anticommutative algebra. This cohomology algebra
will be called the cohomology of Poisson structure (F, P ). We denote by
Hk(F, P ) the kth cohomology space, and by H∗(F, P ) the comology algebra
∞
⊕

k=0
Hk(F, P ).

§ 2. Various Cohomology Algebras of a Manifold with Poisson
Structure and Their Interconnections

2.1. As in Section 1, F is a commutative algebra over R or C.
The space of k-linear antisymmetric homomorphisms of F -modules from

(Der′(F ))k) into F is denoted by Ak(Der′(F ), F ), k = 1, 2, . . . . It is assumed
that A0(Der′(F ), F ) = F .

There is a classical operator of derivation on the exterior algebra
A∗(Der′(F ), F ) =

∞
⊕

k=0
Ak(Der′(F ), F ).
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2.2. Let P be a Poisson structure on the algebra F . For each k ∈ N, P
defines the homomorphism P k : Ak(Der′(F ), F ) → Derk(F ) as follows:

for a ∈ A0(Der′(F ), F ) = F we put P 0(a) = a;
for elements of the form da ∈ A′(Der′(F ), F ), where a ∈ F and (da)(X) =

X(a), we put p′(da)(b) = P (a, b), b ∈ F ;
next, for w ∈ Ak(Der′(F ), F ), k = 1, 2, . . . , we put (P kw)(a1, . . . , ak) =

(−1)kw(P ′(da1), . . . , P ′(dak)) with every system {a1, . . . , ak} ⊂ F .

2.3. Let us note some interesting properties of P k, k = 0, 1, . . . : The map
P ∗ =

∞
⊕

k=0
P ∗ : A∗(Der′(F ), F ) → Der′(F ) is a homomorphism of exterior

algebras;

Theorem. The composition map P ′ ◦ d : F → Der′(F ) is a homomor-
phism of Lie algebras.

Proof. We must prove the identity P ′(dP (a, b)) = [P ′(da), P ′(db)] for each
a, b ∈ F . By the definitions of P ′ and [ , ] we have P ′(dP (a, b))(c) =
(P ′(da))(P ′(db)c)− (P ′(db))(P ′(da)c) = P (a, P (b, c))−P (b, P (a, c))). Now
the identity we want to prove follows from the Jacobi identity for P .

2.4. Theorem. The map P ∗ is a homomorphism from the complex
(A∗(Der′(F ), F ), d) into the complex (Der∗(F ), ˜P ), where d is the classi-
cal derivation and ˜P is defined in 1.5 and 1.11.

Proof. We must prove the identity P ∗(dw) = [P, P ∗(w)] for every w ∈
A∗(Der′(F ), F ), n = 0, 1, . . . . By the definitions we have

Pn+1(dw)(a1, . . . , an+1) = (−1)n+1dw(P ′(da1), . . . , P ′(dan+1)) =

= (−1)n+1
(

∑

i

(−1)i−1(P ′(dai))w
(

P ′(da1), . . . , ̂P ′(dai), . . . , P ′(dan+1)
)

+

+
∑

i<j

(−1)i+jw
(

[P ′(dai), P ′(daj)], . . . , ̂P ′(dai), . . . , ̂P ′(daj), . . . )
)

)

=

= (−1)n+1
(

∑

i

(−1)i−1P
(

aiw
(

P ′(da1), . . . , ̂P ′(dai), . . . , P ′(dan+1)
))

+

+
∑

i<j

(−1)i+jw
(

[P ′(dai), P ′(daj)], . . . , ̂P ′(dai), . . . , ̂P ′(daj), . . .
)

)

.

On the other hand,

[P, Pn(w)](a1, . . . , an+1 =
∑

i

(−1)i−1P
(

Pn(w)(a1, . . . , âi, . . . , an+1), ai
)

+

+
∑

i<j

(−1)i+j−3(Pn(w))
(

P (aiaj), . . . , âi, . . . , âj , . . .
)

=
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= (−1)n+1
(

∑

i

(−1)i−1P
(

aiw
(

P ′(da1), . . . , ̂P ′(dai), . . . , P ′(dan+1)
))

+

=
∑

i<j

(−1)i+jw
(

P ′(dP (aiaj)), . . . , ̂P ′(dai), . . . , ̂P ′(daj), . . . )
)

.

As in the proof of Theorem 2.3, we obtain [P ′(dai), P ′(daj)]=P ′(dP (ai, aj)),
which completes the proof of the theorem.

As a consequence, P ∗ defines a homomorphism from the cohomology of
the Lie algebra Der′(F ) with coefficients in the algebra F into the cohomol-
ogy of Poisson structure H∗(F, P ).

2.5. Further, we consider the case with F = C∞(M), where M is a finite-
dimensional C∞-manifold. Then Derk(F ) is the space of contravariant anti-
symmetric tensor fields of degree k on the manifold M and Ak(Der′(F ), F )
is the space of differential k-forms on M . These spaces are denoted by
V k(M) and Ωk(M) , respectively.

The Poisson structure P on M is a contravariant antisymmetric involu-
tive tensor field of degree 2.

P induces a homomorphism P : T ∗(M) → T (M) from the cotangent
bundle of M into the tangent bundle of M . Let β(P ∗x (α)) = (α∧β)(Px) for
x ∈ M and α, β ∈ T ∗x (M).

The set of subspaces {Image(P x ⊂ Tx(M) : x ∈ M} is an integrable
distribution (see [5]). Integral manifolds are called symplectic leaves of the
Poisson structure P (see [5], [6]).

Thus we have a foliation Fp with different-dimensional leaves induced by
the Poisson structure P . Now we use the generalization of the cohomology
from in 0.6, associated with a submodule on the Lie subalgebra L ⊂ V ′(M).

Let L be the set of vector fields on the manifold M , tangent to the leaves
of the foliation Fp.

Since L is a submodule of V ′(M) generated by elements of the form
P ′(dϕ), where ϕ ∈ C∞(M), it is clear that w is an element of Ωk

L(M) if
and only if w(P ′(dϕ1), . . . , P ′(dϕk)) = 0 for every system {ϕ1, . . . , ϕk} ⊂
C∞(M); this is the same as P k(w) = 0. So we have Ω∗L(M) = Kernel(P ∗).

The consequence of the above result can be formulated as

Theorem. The cohomology algebra of the complex (Ω∗(M)/Ω∗L(M), ˜d)
(relative cohomologies) is isomorphic to the cohomology algebra of the com-
plex (Im P ∗, ˜P ).

2.6. The homomorphism of bundles P : T ∗(M) → T (M) induces homo-
morphisms of the associated bundles ∧kP : ∧kT ∗(M) → ∧kT (M), k =
1, 2, . . . . We denote by V k(M, P ) the subspace of V k(M) consisting of
such elements v that vx ∈ Image (∧kP

∗
x) for every x ∈ M . The subalgebra



520 Z. GIUNASHVILI

V ∗(M,P ) =
∞
⊕

k=0
V k(M, P ) is invariant under the action of th e operator ˜P

(see [7]). Hence we have a complex (V ∗(M,P ), ˜P ) and the corresponding
cohomology algebra denoted by h∗(M,P ) (see [7]).

Theorem. The cohomology of the Lie algebra L with coefficients in
C∞(M) (in other words, the cohomology of the complex (Ω∗(M, L), dL) (see
0.6)) is isomorphic to h∗(M, P ).

Proof. We construct a homomorphism P k
L : Ωk(M, L) → V k(M,P ) for each

k = 0, 1, . . . , analogously to the homomorphisms P k : Ωk(M) → V k(M)
defined in 2.2. To prove that it is an isomorphism, it is sufficient to show
that it is a monomorphism: P k

L(w) = 0 ⇒ (P k
L(w))(ϕ1, . . . , ϕk) = 0 for

every {ϕ1, . . . , ϕk} ⊂ C∞(M) ⇒ w(P ′L(dϕ1), . . . , P ′L(dϕk)) = 0. Since L
is a module generated by elements of the form P ′L(dϕ), ϕ ∈ C∞(M), the
above identity is equivalent to the identity w = 0.
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