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CHARACTERIZATION OF A TWO-WEIGHTED
VECTOR-VALUED INEQUALITY FOR FRACTIONAL

MAXIMAL OPERATORS

Y. RAKOTONDRATSIMBA

Abstract. We give a characterization of the weights u(·) and v(·)
for which the fractional maximal operator Ms is bounded from the
weighted Lebesgue spaces Lp(lr, vdx) into Lq(lr, udx) whenever 0 ≤
s < n, 1 < p, r < ∞, and 1 ≤ q < ∞.

1. Introduction

The fractional maximal operator Ms of order s, 0 ≤ s < n, is defined by

(Msf)(x) = sup
{

|Q| s
n−1

∫

Q
|f(y)| dy; Q cube with Q 3 x

}

.

The cubes considered always have sides parallel to the coordinate axes. Here
M = M0 is the well-known Hardy–Littlewood maximal operator.

Our main purpose is to characterize the weights u(·) and v(·) for which
there is C > 0 such that

∥

∥

∥

∥

(
∑

k

(Msfk)r(·)
) 1

r

∥

∥

∥

∥

Lq
u

≤ C
∥

∥

∥

∥

(
∑

k

fr
k (·)

) 1
r

∥

∥

∥

∥

Lp
v

(1.1)

for all sequences of nonnegative functions (fk(·))k, with 1 < p, r < ∞ and
1 ≤ q < ∞. The quantity ‖f(·)‖Lt

w
is defined as (

∫

Rn |f(x)|tw(x) dx)
1
t . For

convenience, (1.1) will often be denoted by Ms : Lp
v(lr) → Lq

u(lr).
Such vector-valued inequalities are very important in many areas of ana-

lysis. For instance, they can be used to get weighted inequalities for other
operators [1], and they are also involved in the study of some functional
spaces [2].

Fefferman–Stein’s well-known inequality states that M : Lp
1(l

r)→ Lp
1(l

r)
for 1 < p, r < ∞. The one-weighted inequality M : Lp

w(lr) → Lp
w(lr) was
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solved by Andersen and John [3], and also independently by Kokilashvili [4].
In [5], a characterization of the two-weighted inequality M : Lp

v(lr) → Lp
u(lr)

is obtained by applying the extrapolation theory of J. Garcia-Cuerva and
Rubio de Francia and by adapting Sawyer’s method for the two-weighted
scalar inequality. For s > 0 it seems that only the boundedness Ms :
Lp

1(l
r) → Lq

u(lr), with p < q, was characterized by F. Ruiz and J. L. Torrea
[6].

Our necessary and sufficient condition for M : Lp
v(lr) → Lp

u(lr) is com-
pletely different from the one given in [5], since the approach is not based
on the extrapolation theory. We will use the atomic decomposition of tent
spaces introduced by Coifman, Meyer, and Stein [7]. Such a technique has
been introduced by the author in [8] to deal with

∥

∥(Msf)(·)
∥

∥

Lq
u
≤ C‖f(·)‖Lp

v
for all f(·) ≥ 0 (1.2)

which is a scalar version and particular case of inequality (1.1). For 1 <
p ≤ q < ∞, Sawyer [9] proved that (1.2) holds if and only if for some S > 0
∥

∥(Msv−
1

p−1 11Q)(·)11Q(·)
∥

∥

Lq
u
≤ S

∥

∥(v−
1

p−1 11Q)(·)
∥

∥

Lp
v

for all cubes Q. (1.3)

Here 11Q(·) denotes the characteristic function of the cube Q. In other words,
(1.2) is true if this inequality is satisfied only for all particular functions of
the form f(·) = v−

1
p−1 (·)11Q(·). So it can be expected that Ms : Lp

v(lr) →
Lq

u(lr) if and only if (1.1) is true for all sequences fk(·) = v−
1

p−1 (·)11Qk(·).
In this paper (see Theorem 1) we are able to derive such a boundedness if
(1.1) is true for all fk(·) = λkv−

1
p−1 (·)11Qk(·) with λk > 0.

Our results are presented in Section 2. The next Section 3 is devoted to
their proofs except Theorem 1 and Proposition 8 whose proofs are given in
Section 4. The proofs of the basic lemmas are given in Section 5.

2. Main Results

In this paper it is always assumed that 0 ≤ s < n, 1 < p, r < ∞,
1 ≤ q < ∞ with 1/p− 1/q ≤ s/n and u(·), v(·), σ(·) = v−

1
p−1 (·) are weight

functions.
Our main result, which can be seen as a generalization of Sawyer’s the-

orem quoted above, is

Theorem 1. Suppose that for some constant S > 0
∥

∥

∥

∥

(
∑

k

[

λk(Msv−
1

p−1 11Qk)(·)11Qk(·)
]r

) 1
r

∥

∥

∥

∥

Lq
u

≤

≤ S
∥

∥

∥

∥

(
∑

k

[

λk(v−
1

p−1 11Qk)(·)
]r

) 1
r

∥

∥

∥

∥

Lp
v

(2.1)
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for all λk and all cubes Qk; then Ms : Lp
v(lr) → Lq

u(lr). Conversely, this
boundedness implies condition (2.1).

For the boundedness M : Lp
v(lr) → Lp

u(lr), Theorem 1 is only interesting
when r < p. Indeed, by the interpolation theory for linearizable operators
[1], it is known that the vector-valued inequality M : Lp

v(lr) → Lp
u(lr)

becomes equivalent to the scalar inequality (1.2) (with p = q) when p ≤ r
(see [5] for details).

Next we apply Theorem 1 to treat some particular cases for which p = q.
These cases correspond to significant and critical (for s > 0) situations in
applications.

Corollary 2. Assume that w(·) is a weight function with w1−p(·) ∈
L1

loc(Rn, dx). Then Ms : Lp
w1−p(lr) → Lp

w(lr) if and only if for some con-
stant C > 0

∫

Q
w(y) dy ≤ C|Q|1− s

n for all cubes Q. (2.2)

Corollary 3. Suppose that for some constant C > 0

u(·)(Msv−
1

p−1 )p(·) ≤ Cv−
1

p−1 (·);

then Ms : Lp
v(lr) → Lp

u(lr). In particular, the boundedness

Ms : Lp
w(lr) → Lp

w1−p′

(Msw1−p′ )p

(lr)

holds for any weight w(·) with w1−p′(·) ∈ L1
loc(Rn, dx).

Proposition 4. Let r < p and 1 < t < ∞ with 0 ≤ s < min{n
r , n

pt}.
If for some constant C > 0 (Msptut)

1
t (·) ≤ Cv(·), then Ms : Lp

v(lr) →
Lp

u(lr). In particular, Ms : Lp

(Msptwt)
1
t
(lr) → Lp

w(lr) for any weight w(·)

with wt(·) ∈ L1
loc(Rn, dx).

The latter boundedness is a substitute for Fefferman–Stein’s well-known
inequality

∫

Rn
(Msf)r(x)w(x) dx ≤ C

∫

Rn
fr(x)(Msrw)(x) dx for all f(·) ≥ 0.

As proved in [5], it is possible to obtain a better estimate in the sense that
(Msptw)

1
t (·) can be replaced by a smaller operator. But we do not go in

this direction.
In general, a condition like (2.1) is difficult to check for given weights u(·)

and v(·). So our purpose is now to examine this condition more thoroughly
for the case r < p = q. A general condition which implies (2.1) can be
stated.
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Proposition 5. Let r < p and (p
r )′ = p

p−r . Then condition (2.1) is satis-

fied whenever, for a fixed constant C > 0 and for each g(·) ∈ L( p
r )′(Rn, dx),

one can find G(·) ∈ L( p
r )′(Rn, dx) such that

‖G(·)‖
L( p

r )′ (Rn,dx)
≤ ‖g(·)‖

L( p
r )′ (Rn,dx)

and
∫

Q
(Msσ11Q)r(x)u

r
p (x)g(x) dx≤C

∫

Q
σ

r
p (x)G(x) dx for all cubes Q. (2.3)

As mentioned above, C. Pérez [5] has recently proved that M : Lp
v(lr) →

Lp
u(lr) is equivalent to (2.3). For s > 0 it is also expected that (2.3) is

equivalent to our condition (2.1), but this fact is not needed for the sequel.
Proposition 5 was inspired by the results of [5].

Obviously, (2.1) implies Sawyer’s condition (1.3). As for (2.3), it is
strictly contained in (1.3), since, by duality,

( ∫

Q
(Msσ11Q)p(x)u(x) dx

) r
p

=
∫

Q
(Msσ11Q)r(x)u

r
p (x)g(x) dx

and
∫

Q
σ

r
p (x)G(x) dx ≤

( ∫

Q
σ(x) dx

) r
p

for some g(·) ∈ L( p
r )′(Rn, dx) with the unit norm.

However, to get the boundedness Ms : Lp
v(lr) → Lp

u(lr) it would be
desirable to have a sufficient condition whose form is closer to (1.3) rather
than to (2.3) and (2.1).

Proposition 6. Let r < p. Condition (2.3) or (2.1) is satisfied whenever
for some t > 1 and C > 0

(

1
|Q|

∫

Q
(Msσ11Q)tp(x)ut(x) dx

) 1
tp

≤ C
(

1
|Q|

∫

Q
σ

r
p (x) dx

) 1
r

(2.4)

for all cubes Q.

Clearly, by the Hölder inequality, (2.4) implies Sawyer’s condition (1.3).
Conditions like (2.4) or (1.3) are not useful for computations. Indeed, the
presence of the maximal operator Ms in the condition makes it difficult or
sometimes impossible to determine by computation whether Ms : Lp

v(lr) →
Lp

u(lr) for given weights u(·) and v(·). Therefore it would be more preferable
to have a sufficient condition for this boundeness without using Ms. We shall
give an example.
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Proposition 7. Let r < p. Condition (2.3) or (2.1) is satisfied if for
some t2 > t1 > 1, and C > 0

(

1
|Q|

∫

Q
(|x|sσ(x))pδdx

) 1
pδ

(

1
|Q|

∫

Q
ut2(x) dx

) 1
pt2

≤C
(

1
|Q|

∫

Q
σ

r
p (x)dx

) 1
r

(2.5)

for all cubes Q; here 1
δ = 1

t1
− 1

t2
.

By Proposition 7 the Muckenhoupt condition
(

1
|Q|

∫

Q
u(x) dx

) 1
p
(

1
|Q|

∫

Q
σ(x) dx

) 1
p′

≤ C for all cubes Q

characterizes the boundedness M : Lp
v(lr) → Lp

u(lr) whenever u(·), σ
r
p (·) ∈

RH∞. Also, for σ
r
p (·) ∈ RH∞ we have M : Lp

v(lr) → Lp
u(lr) if for some

C > 0 and t > 1
(

1
|Q|

∫

Q
ut(x) dx

) 1
tp

(

1
|Q|

∫

Q
σ(x) dx

) 1
p′

≤ C for all cubes Q.

Recall that w(·) ∈ RH∞ if supx∈Q w(x) ≤ C 1
|Q|

∫

Q w(y) dy for a fixed con-
stant C > 0 and all cubes Q. Other sufficient conditions for Ms : Lp

v(lr) →
Lq

u(lr) which do not involve the maximal operator Ms can be found in [10]
(see also [5] for p = q and s = 0). No more results in this direction are given
here, since our main purpose is to prove the characterization in Theorem 1.

We end with a necessary and sufficient condition for Ms : Lp
v(lr) → Lq

u(lr)
with special weights v(·). For this, recall that w(·) ∈ RDρ, ρ > 0, if for
some c > 0
∫

Q′
w(y) dy ≤ c

( |Q′|
|Q|

)ρ
∫

Q
w(y) dy for all cubes Q′, Q with Q′ ⊂ Q.

Any doubling weight w(·) (and, in particular, any A∞ weight) satisfies the
reverse doubling condition RDρ.

Proposition 8. Suppose that for some constant A > 0

∥

∥

∥

∥

(

∑

k

[

λk|Qk|
s
n−1

(

∫

Qk

v−
1

p−1 (y) dy
)

11Qk(·)
]r) 1

r
∥

∥

∥

∥

Lq
u

≤

≤ A
∥

∥

∥

∥

(
∑

k

[

λk(v−
1

p−1 11Qk)(·)
]r

) 1
r

∥

∥

∥

∥

Lp
v

for all cubes Qk and λk > 0. (2.6)

Then Ms : Lp
v(lr) → Lq

u(lr) whenever v−
1

p−1 (·) ∈ RDρ with 1 − s
n ≤ ρ.

Conversely, the boundedness Ms : Lp
v(lr) → Lq

u(lr) implies condition (2.6).
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Therefore for r < p and σ(·) = v−
1

p−1 (·) ∈ RDρ with 1− s
n ≤ ρ we have

Ms : Lp
v(lr) → Lp

u(lr) whenever for some t > 1 and A > 0

|Q| s
n

(

1
|Q|

∫

Q
σ(y) dy

)(

1
|Q|

∫

Q
ut(y) dy

) 1
pt

≤

≤ A
(

1
|Q|

∫

Q
σ

r
p (y) dy

) 1
r

for all cubes Q. (2.7)

Theorem 1 can be seen as an extension of Sawyer’s result [9] for scalar
functions to vector functions. Note that, whenever s > 0 and 1 < p <
q < ∞, for the scalar inequality (1.2) a better criterion than (1.3) has been
established by Wheeden for the Euclidean space [11] and by Gogatishvili and
Kokilashvili in a more general case, namely, for homogeneous type spaces
[12]. For this range of s, p, and q it is interesting to find a criterion for
Ms : Lp

v(lr) → Lq
u(lr) which will replace condition (2.1).

3. Proofs of Corollaries 2, 3, and Propositions 6, 7

To get Ms : Lp
v(l

r) → Lp
u(lr), by Theorem 1 with p = q, it is sufficient to

estimate

S =
∥

∥

∥

∥

(
∑

k

[

λk(Msσ11Qk)(·)11Qk(·)
]r

) 1
r

∥

∥

∥

∥

Lp
u

(3.1)

by C‖(
∑

k[λk(σ(·)11Qk)(·)]r) 1
r ‖Lp

v
, for all sequences of nonnegative (λk)k

and all sequences of cubes (Qk)k. Here C > 0 is a constant which depends
only on s, n, p, q, u(·), and v(·).

Proof of Corollary 2. Suppose that Ms : Lp
v(lr) → Lp

u(lr). Take the sequence
of functions (fk(·))k defined as f0(·) = σ(·)11Q(·) and fk(·) = 0 for all
k 6= 0. Since v(·) = w1−p(·) and u(·) = σ(·) = w(·), condition (2.2) follows
immediately.

To prove the converse statement, with the above values of u(·) and v(·),
condition (2.2) implies that (Msσ)(·) ∈ L∞(Rn, dx) and thus

S≤C
∥

∥

∥

∥

(
∑

k

[

λk11Qk(·)
]r

) 1
r

∥

∥

∥

∥

Lp
u

=C
∥

∥

∥

∥

(
∑

k

[

λk11Qk(·)
]r

) 1
r

∥

∥

∥

∥

Lp
σ

(since u(·)=σ(·))

= C
∥

∥

∥

∥

(
∑

k

[

λkσ(·)11Qk(·)
]r) 1

r

∥

∥

∥

∥

Lp
v

(since σ(·) = σp(·)v(·)).



VECTOR-VALUED INEQUALITIES FOR MAXIMAL OPERATORS 589

Proof of Corollary 3. To get the first part of the corollary, we write (3.1) as

S ≤
∥

∥

∥

∥

(
∑

k

[

λk11Qk(·)
]r

) 1
r

∥

∥

∥

∥

Lp
u(·)(Msσ)p(·)

≤

≤ C
∥

∥

∥

∥

(
∑

k

[

λk11Qk(·)
]r

) 1
r

∥

∥

∥

∥

Lp
σ

= C
∥

∥

∥

∥

(
∑

k

[

λkσ(·)11Qk(·)
]r

) 1
r

∥

∥

∥

∥

Lp
v

.

The proof of the second part is trivial, since in that case v(·) = w(·) and
u(·) = σ(·)(Msσ)−p(·).

Proof of Proposition 4. The second part of the proposition is an immediate
consequence of the first one if we take u(·) = w(·) and v(·) = (Msptut)

1
t (·).

The first part is proved by assuming r < p, µ = p
r , µ′ = p

p−r and
again considering (3.1). By duality, there is a nonnegative function g(·) ∈
Lµ′(Rn, dx) with the unit norm such that

Sr =
∫

Rn

[
∑

k

λr
k(Msσ11Qk)r(x)11Qk(x)

]

u
r
p (x)g(x) dx =

=
∑

k

λr
k

∫

Qk

(Msσ11Qk)r(x)u
r
p (x)g(x) dx. (3.2)

The key to the proof is the existence of a constant C > 0 for which
∫

Q
(Msσ11Q)r(x)u

r
p (x)g(x) dx≤C

∫

Q
σr(x)(Msptut)

r
tp (x)(Mgν′)

1
ν′ (x) dx(3.3)

for all cubes Q. Here M = M0 is the Hardy–Littlewood maximal operator,
ν = tp

r (> 1), and ν′ = ν
ν−1 . By inequality (3.3) the rest of the estimate of

Sr is

Sr ≤ C
∑

k

λr
k

∫

Qk

σr(x)(Msptut)
r
tp (x)(Mgν′)

1
ν′ (x) dx = (by (3.3))

= C
∫

Rn

[
∑

k

λr
k11Qk(x)

]

σr(x)(Msptut)
r
tp (x)(Mgν′)

1
ν′ (x) dx =

= C
∫

Rn

[
∑

k

λr
k11Qk(x)

] [

σp(x)(Msptut)
1
t (x)

] r
p
(Mgν′)

1
ν′ (x) dx ≤

≤ CC
r
p
1

∫

Rn

[
∑

k

λr
k11Qk(x)

]

σ
r
p (x)(Mgν′)

1
ν′ (x) dx ≤

(since (Msptut)
1
t (·) ≤ C1v(·))

≤ CC
r
p
1

(∫

Rn

[
∑

k

λr
k11Qk(x)

]
p
r
σ(x) dx

) r
p
( ∫

Rn
(Mgν′)

µ′
ν′ (x) dx

) 1
µ′

≤
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≤ CC
r
p
1 C2

(∫

Rn

[
∑

k

λr
k11Qk(x)

]
p
r
σ(x) dx

) r
p
( ∫

Rn
gµ′(x) dx

) 1
µ′

≤

(by the maximal inequality theorem and since 1 < µ′/ν′ or µ < ν)

≤ CC
r
p
1 C2

∥

∥

∥

∥

(
∑

k

[

λk(σ(·)11Qk)(·)
]r

) 1
r

∥

∥

∥

∥

r

Lp
v

(recall that ‖g‖Lµ′ (Rn,dx)=1).

To get (3.3) it is sufficient to use

(Msru
r
p g)(·) ≤ (Msptut)

r
tp (·)(Mgν′)

1
ν′ (·). (3.4)

Indeed, by Fefferman–Stein’s classical inequality and (3.4), we have
∫

Q
(Msσ11Q)r(x)u

r
p (x)g(x) dx ≤ C

∫

Q
σr(x)(Msru

r
p g)(x) dx ≤

≤ C
∫

Q
σr(x)(Msptut)

r
tp (x)(Mgν′)

1
ν′ (x) dx.

Inequality (3.4) is an immediate consequence of the Hölder inequality, since

|Q| sr
n

1
|Q|

∫

Q
φ(y)ψ(y) dy≤

(

|Q| srν
n

1
|Q|

∫

Q
φν(y) dy

) 1
ν
(

1
|Q|

∫

Q
ψν′(y) dy

) 1
ν′

for φ(·) = u
r
p (·), ψ(·) = g(·), ν = tp

r , and ν′ = ν
ν−1 .

Proof of Proposition 5. Suppose condition (2.3) is satisfied. To get (2.1),
it is sufficient to estimate Sr for r < p. Similarly to (3.2), consider a
nonnegative function g(·) ∈ Lµ′(Rn, dx) with the unit norm. Then

Sr =
∑

k

λr
k

∫

Qk

(Msσ11Qk)r(x)u
r
p (x)g(x) dx ≤ (by (3.2))

≤ C
∑

k

λr
k

∫

Qk

σ
r
p (x)G(x) dx = (by condition (2.3))

= C
∫

Rn

[
∑

k

λr
k11Qk(x)

]

σ
r
p (x)G(x) dx ≤

≤ C
(∫

Rn

[
∑

k

λr
k11Qk(x)

]
p
r
σ(x) dx

) r
p
( ∫

Rn
Gµ′(x) dx

) 1
µ′

≤

≤ C
( ∫

Rn

[
∑

k

λr
k11Qk(x)

]
p
r
σ(x) dx

) r
p
( ∫

Rn
gµ′(x) dx

) 1
µ′

≤ (by (2.3))

≤ C
∥

∥

∥

∥

(
∑

k

[

λk(σ(·)11Qk)(·)
]r

) 1
r

∥

∥

∥

∥

r

Lp
v

(recall that ‖g‖Lµ′ (Rn,dx) =1).
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Proof of Proposition 6. Assume condition (2.4) is satisfied for some con-
stant C > 0. To get (2.3), let g(·) ∈ Lµ′(Rn, dx). The above notation
(µ = p

r , ν = tp
r , . . . , etc.) is again used. Let C2 > 0 be a constant asso-

ciated with the boundedness of M : L
µ′
ν′ (Rn, dx) → L

µ′
ν′ (Rn, dx), and set

G(·) = C
− 1

ν′
2 (Mgν′)

1
ν′ (·). Clearly, ‖G(·)‖Lµ′ (Rn,dx) ≤ ‖g(·)‖Lµ′ (Rn,dx) and

we obtain (2.3), since

1
|Q|

∫

Q
(Msσ11Q)r(x)u

r
p (x)g(x) dx ≤

≤
(

1
|Q|

∫

Q
(Msσ11Q)tp(x)ut(x) dx

) r
tp

(

1
|Q|

∫

Q
gν′(y) dy

) 1
ν′

≤

≤ Cr
(

1
|Q|

∫

Q
σ

r
p (x)

[

1
|Q|

∫

Q
gν′(y) dy

] 1
ν′

dx
)

≤ (by (2.4))

≤ Cr
(

1
|Q|

∫

Q
σ

r
p (x)(Mgν′)

1
ν′ (x) dx = C

1
ν′
2 Cr 1

|Q|

∫

Q
σ

r
p (x)G(x) dx.

Proof of Proposition 7. Assume condition (2.5) is satisfied for some constant
C > 0. To get (2.3), let g(·) ∈ Lµ′(Rn, dx) with µ = p

r , and take ν = t1 p
r

with t1 > 1. Choose G(·) as in the proof of Proposition 6. Here we use
the fact that Ms : Lα(Rn, |x|sαdx) → Lα(Rn, dx) for all α > 1. Let t2, δ
with t1 < t2 and 1

δ = 1
t1
− 1

t2
. Then 1 = r

pδ + r
pt2

+ 1
ν′ , and by the Hölder

inequality we get the conclusion, since

1
|Q|

∫

Q
(Msσ11Q)r(x)u

r
p (x)g(x) dx ≤

≤
(

1
|Q|

∫

Q
(Msσ11Q)pδ(x) dx

) r
pδ

(

1
|Q|

∫

Q
ut2(x) dx

) r
pt2

(

1
|Q|

∫

Q
gν′(y) dy

) 1
ν′

≤

≤ c1

(

1
|Q|

∫

Q
(|x|sσ(x))pδ dx

) r
pδ

(

1
|Q|

∫

Q
ut2(x) dx

) r
pt2

(

1
|Q|

∫

Q
gν′(y) dy

) 1
ν′

≤

≤ c1C
r
p

(

1
|Q|

∫

Q
σ

r
p (x)

[

1
|Q|

∫

Q
gν′(y) dy

] 1
ν′

dx
)

≤ by (2.5)

≤ c1C
r
p

(

1
|Q|

∫

Q
σ

r
p (x)(Mgν′)

1
ν′ (x) dx

)

=C
1
ν′
2 Cr 1

|Q|

∫

Q
σ

r
p (x)G(x) dx.

4. Proof of Theorem 1 and Proposition 8

Since Ms : Lp
v(lr) → Lq

u(lr) immediately implies condition (2.1), our
purpose in this section is to prove the converse. We shall state some basic
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lemmas and use them to derive the above boundedness.
As in the scalar case [9], the main problem is reduced to obtaining the

dyadic version of (1.1) denoted by Mdya
s : Lp

v(lr) → Lq
u(lr) and having the

form
∥

∥

∥

∥

(
∑

k

(Mdya
s fk)r(·)

) 1
r

∥

∥

∥

∥

Lq
u

≤ C
∥

∥

∥

∥

(
∑

k

fr
k (·)

) 1
r

∥

∥

∥

∥

Lp
v

(4.1)

for all sequences of nonnegative functions (fk(·))k. Here C = cS with c > 0
depending only on s, n, p, and q;

(Mdya
s f)(x) = sup

{

|Q| s
n−1

∫

Q
|f(y)| dy; Q dyadic cube with Q 3 x

}

.

To get Ms : Lp
v(lr) → Lq

u(lr) we need three basic lemmas.

Lemma 4.1. Suppose that for some constant S > 0
∥

∥

∥

∥

(
∑

k

[

λk
(

Mdya
s σ̃11Qk

)

(·)11Qk(·)
]r

) 1
r

∥

∥

∥

∥

Lq

ũ

≤ S
∥

∥

∥

∥

(
∑

k

[

λk(σ̃11Qk)(·)
]r

) 1
r

∥

∥

∥

∥

Lp

ṽ

for all sequences of nonnegative (λk)k and all sequences of dyadic cubes
(Qk)k, where σ̃(·) = ṽ−

1
p−1 (·). Then Mdya

s : Lp
ṽ
(lr) → Lq

ũ
(lr) or, more

precisely,
∥

∥

∥

∥

(
∑

k

(Mdya
s fk)r(·)

) 1
r

∥

∥

∥

∥

Lq

ũ

≤ cS
∥

∥

∥

∥

(
∑

k

fr
k (·)

) 1
r

∥

∥

∥

∥

Lp

ṽ

where c > 0 is a constant which depends only on s, n, p, q, and r but not
on the weights ṽ(·) and ũ(·).

This leads to

Lemma 4.2. Condition (2.1) implies that
∥

∥

∥

∥

(
∑

k

(zMsfk)r(·)
) 1

r

∥

∥

∥

∥

Lq
u

≤ cS
∥

∥

∥

∥

(
∑

k

fr
k (·)

) 1
r

∥

∥

∥

∥

Lp
v

(4.2)

for all z ∈ Rn and for all sequences of nonnegative functions (fk(·))k, where

(zMsf)(x) =

= sup
{

|Q| s
n−1

∫

Q
|f(y)| dy; Q 3 x and Q− z is a closed dyadic cubes

}

.

The constant c > 0 depends only on s, n, p, q, and r but not on the weights
v(·) and u(·). Here S is the constant appearing in condition (2.1).

This connection of this result with Ms : Lp
v(lr) → Lq

u(lr) is given by
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Lemma 4.3. For all r > 1 there is c > 0 such that

[
∑

k

(M2N

s fk)r(·)
] 1

r ≤ c
2n(N+3)

∫

[−2N+2,2N+2]n

[
∑

k

(zMsfk)r(·)
] 1

r
dz (4.3)

for all N ∈ Z and all sequences of nonnegative functions (fk(·))k. Here the
truncated maximal operator MR

s , R > 0, is defined by

(MR
s f)(x) = sup

{

|Q| s
n−1

∫

Q
|f(y)| dy; Q 3 x with |Q| 1n ≤ R

}

.

Now let us see how these lemmas imply Ms : Lp
v(lr) → Lq

u(lr). It is
sufficient to get MR

s : Lp
v(lr) → Lq

u(lr) uniformly for all R > 0, since the
conclusion appears after using the monotone convergence theorem. Thus
let R > 0 such that 2N−1 < R ≤ 2N for some integer N . Then

∥

∥

∥

∥

(
∑

k

(MR
s fk)r(·)

) 1
r

∥

∥

∥

∥

Lq
u

≤
∥

∥

∥

∥

(
∑

k

(M2N

s fk)r(·)
) 1

r

∥

∥

∥

∥

Lq
u

≤

≤ c
2n(N+3)

∥

∥

∥

∥

∫

[−2N+2,2N+2]n

[
∑

k

(zMsfk)r(·)
] 1

r
dz

∥

∥

∥

∥

Lq
u

≤ (by (4.3))

≤ c
2n(N+3)

∫

[−2N+2,2N+2]n

∥

∥

∥

∥

(
∑

k

(zMsfk)r(·)
) 1

r

∥

∥

∥

∥

Lq
u

dz ≤

(by the Minkowski inequality)

≤ c′S
∥

∥

∥

∥

(
∑

k

fr
k (·)

) 1
r

∥

∥

∥

∥

Lq
u

(by inequality (4.2)).

The latter inequality is obtained after using (4.2) for which the constant
cS does not depend on z. So the proof of Ms : Lp

v(lr) → Lq
u(lr) will be

completed after proving these basic lemmas, which will be done in the next
section.

Proof of Proposition 8. The first part of this result follows from Theorem 1,
since under the assumption on σ(·)

(Msσ11Q)(·)11Q(·) ≤ c
[

|Q| s
n−1

(
∫

Q
σ(y) dy

)

]

11Q(·)

for all cubes Q and for a fixed constant c > 0. The proof of this inequality
can be found in [8] (Proposition 2, p.93).

The second part is a consequence of Proposition 6 and the above inequ-
ality.
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5. Proofs of Basic Lemmas 4.1, 4.2, 4.3

Proof of Lemma 4.3. Inequality (4.3) is based on

(M2N

s g)(·) ≤ c
2n(N+3)

∫

[−2N+2,2N+2]n

(zMsg)(·) dz for all g(·) ≥ 0, (5.1)

where c > 0 does not depend on N and g(·). This inequality was proved in
[9] (Lemma 2, p. 8). Consider a sequence of nonnegative scalars (αk)k with
(
∑

k αr′
k )

1
r′ = 1 and such that (

∑

k(M2N

s fk)r(x))
1
r =

∑

k(M2N

s fk)(x)αk.
Then inequality (4.3) appears after using (5.1), since

(
∑

k

(M2N

s fk)r(x)
) 1

r ≤ c
2n(N+3)

∫

[−2N+2,2N+2]n

[
∑

k

(zMsfk)(x)αk

]

dz ≤

≤
(

∑

k

αr′
k

) 1
r′ c

2n(N+3)

∫

[−2N+2,2N+2]n

[
∑

k

(zMsfk)r(x)
] 1

r
dz =

=
c

2n(N+3)

∫

[−2N+2,2N+2]n

[
∑

k

(zMsfk)r(x)
] 1

r
dz.

Proof of Lemma 4.2. The key to deriving inequality (4.2) is that for some
constant c > 0
∥

∥

∥

∥

(
∑

k

(Mdya
s gk)r(x)

) 1
r

∥

∥

∥

∥

Lq(u(x−z)dx)
≤ cS

∥

∥

∥

∥

(
∑

k

gr
k(x)

) 1
r

∥

∥

∥

∥

Lp(v(x−z)dx)
(5.2)

for all z ∈ Rn and all sequences of nonnegative functions (gk(·))k. Indeed,
with fk,z(y) = fk(y − z) we have that

∥

∥

∥

∥

(
∑

k

(zMsfk)r(x)
) 1

r

∥

∥

∥

∥

Lq(u(x)dx)
=

∥

∥

∥

∥

(
∑

k

(Mdya
s fk,z)r(x + z)

) 1
r

∥

∥

∥

∥

Lq(u(x)dx)
=

=
∥

∥

∥

∥

(
∑

k

(Mdya
s fk,z)r(x)

) 1
r

∥

∥

∥

∥

Lq(u(x−z)dx)
≤

≤ cS
∥

∥

∥

∥

(
∑

k

fr
k,z(x)

) 1
r

∥

∥

∥

∥

Lp(v(x−z)dx)
= (by (5.2))

= cS
∥

∥

∥

∥

(
∑

k

fr
k (x− z)

) 1
r

∥

∥

∥

∥

Lp(v(x−z)dx)
= cS

∥

∥

∥

∥

(
∑

k

fr
k (x)

) 1
r

∥

∥

∥

∥

Lp(v(x)dx)
.
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Now to get (5.2), by Lemma 4.1 with ũ(·) = u(· − z) and ṽ(·) = v(· − z), it
is sufficient to check that

∥

∥

∥

∥

(
∑

k

[

λk(Mdya
s σz11Qk)(x)11Qk(x)

]r
) 1

r

∥

∥

∥

∥

Lq(u(x−z)dx)
≤

≤ S
∥

∥

∥

∥

(
∑

k

[

λk(σz11Qk)(x)
]r

) 1
r

∥

∥

∥

∥

Lp(v(x−z)dx)
(5.3)

and all dyadic cubes (Qk)k; here σz(y) = σ(y − z) = v−
1

p−1 (y − z). To
obtain this test condition, observe that

∥

∥

∥

∥

(
∑

k

[

λk(σz11Qk)(x)
]r

) 1
r

∥

∥

∥

∥

Lp(v(x−z)dx)
=

=
∥

∥

∥

∥

(
∑

k

[

λk(σ11Qk−z)(x)
]r

) 1
r

∥

∥

∥

∥

Lp(v(x)dx)

and
∥

∥

∥

∥

(
∑

k

[

λk(Mdya
s σz11Qk)(x)11Qk(x)

]r
) 1

r

∥

∥

∥

∥

Lq(u(x−z)dx)
=

=
∥

∥

∥

∥

(
∑

k

[

λk(Mdya
s σz11Qk)(x + z)11Qk−z(x)

]r
) 1

r

∥

∥

∥

∥

Lq(u(x)dx)
≤

≤
∥

∥

∥

∥

(
∑

k

[

λk(Msσ11Qk−z)(x)11Qk−z(x)
]r

) 1
r

∥

∥

∥

∥

Lq(u(x)dx)
.

With these observations, condition (2.1) (for all cubes) clearly implies the
test condition (5.3) (for all dyadic cubes).

Proof of Lemma 4.1. It is sufficient to find a constant c > 0 such that
∥

∥

∥

∥

(
∑

k

(Mdya,R
s fk)r(·)

) 1
r
11]0,R[n(·)

∥

∥

∥

∥

Lq
u

≤ cS
∥

∥

∥

∥

(
∑

k

fr
k (·)

) 1
r

∥

∥

∥

∥

Lp
v

(5.4)

for all R > 0 and all nonnegative functions (fk(·))k. Here (Mdya,R
s f)(x) =

sup{|Q| s
n−1

∫

Q |f(y)| dy; Q is a dyadic cube with x ∈ Q ⊂ ]0, R[n}. In-
equality (5.4) is based on

Lemma 5.1. There is a constant c > 0 such that for all (fk(·))k ∈ Lp
v(lr)

one can find nonegative scalars (λjk)k,j , and dyadic cubes (Qjk)k,j satisfying

(Mdya,R
s fk)r(·)11]0,R[n(·) ≤

∑

j

λr
jk|Qjk|

− r
p

σ
(

Mdya
s σ11Qjk

)r
(·)11Qjk(·) (5.5)
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for all r > 0 and
∥

∥

∥

∥

(
∑

k

∑

j

λr
jk|Qjk|

− r
p

σ 11Qjk(·)
) 1

r

∥

∥

∥

∥

Lp
σ

≤ c
∥

∥

∥

∥

(
∑

k

fr
k (·)

) 1
r

∥

∥

∥

∥

Lp
v

. (5.6)

It is for the proof of such results that the atomic decomposition of tent
spaces is useful. Assuming Lemma 5.1 to be true, inequality (5.4) can be
derived as follows:
∥

∥

∥

∥

(
∑

k

(Mdya,R
s fk)r(·)11]0,R[n(·)

) 1
r

∥

∥

∥

∥

r

Lq
u

=
∥

∥

∥

∑

k

(Mdya,R
s fk)r(·)11]0,R[n(·)

∥

∥

∥

L
q
r
u

≤

≤
∥

∥

∥

∑

k

∑

j

λr
jk|Qjk|

− r
p

σ (Mdya
s σ11Qjk)r(·)11Qjk(·)

∥

∥

∥

L
q
r
u

≤ (by (5.5))

≤ Sr
∥

∥

∥

∥

(
∑

k

∑

j

λr
jk|Qjk|

− r
p

σ σ(·)11Qjk(·)
) 1

r

∥

∥

∥

∥

r

Lp
v

= (by condition (2.1))

= Sr
∥

∥

∥

∥

(
∑

k

∑

j

λr
jk|Qjk|

− r
p

σ 11Qjk(·)
) 1

r

∥

∥

∥

∥

r

Lp
σ

≤ (since σp(·)v(·) = σ(·))

≤ cSr
∥

∥

∥

∥

(
∑

k

fr
k (·)

) 1
r

∥

∥

∥

∥

r

Lp
σ

(by (5.6)).

Here c > 0 does not depend on R.
We are going to introduce the notions of tent spaces needed for our pur-

pose as in [8]. Our definitions will be slightly different from those introduced
in Coifman, Meyer, and Stein in [7], since we use the dyadic versions of the
spaces they defined.

Let X =]0,∞[n−{(2−lkj)j} ((kj)j ∈ Nn), and ˜X = X × 2Z. For each
couple (x,w) ∈ ˜X there is a unique (open) dyadic cube Q = Qyw containing
y and having the side length w = 2−l. Let

(y, w) ∈ ˜Γ(x) if and only if x ∈ Qyw. (5.7)

Also define

̂Ω =
(

⋃
{

˜Γ(x); x ∈ Ωc}
)c

(5.8)

for each measurable set Ω ⊂]0,∞[n. Thus

(y, w) ∈ ̂Ω if and only if Qyw ⊂ Ω. (5.9)

Finally, define the functional A∞ acting on each measurable function ˜f on
˜X by

(A∞ ˜f)(x) = sup
{

| ˜f(y, w)|; (y, w) ∈ ˜Γ(x)
}

. (5.10)
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The following atomic decomposition Lemma was proved in [8] (Lemma 2,
p. 96).

Lemma 5.2. Let 0 < p < ∞. There is C > 0 such that for all functions
g̃(y, w = 2−l) with a support contained in Q̂[0, R] and ‖(A∞g̃)(·)‖Lp

v
< ∞,

one can find scalars λj > 0, dyadic cubes Qj, and functions ãj(y, w) which
satisfy the following conditions:

supp ãj are disjoint and |ãj(y, w)| ≤ |Qj |
− 1

p
σ ˜11

Q̂j
(y, w); (5.11)

g̃(y, w) =
∑

j

λj ãj(y, w) a.e.; (5.12)

∑

j

λr
j |Qj |

− r
p

σ 11Qj (·) ≤ Cr(A∞g̃)r(·) for all r > 0. (5.13)

Here Q[0, R] denotes the cube ]0, R[n, R > 0. Contrary to λj , Qj , and
ãj(y, w)’s, the constant C > 0 does not depend on R > 0 and the function
g̃(y, w).

A fundamental observation is that

(Mdya,R
s f)(x) =

= sup
{

|Qyw|
s
n−1

∫

Qyw

|f(y)| dy; Qyw 3 x and Qyw ⊂ (]0, R[)n
}

=

= sup{ω̃(y, w)g̃(y, w); Qyw 3 x and Qyw ⊂ (]0, R[)n},

where ω̃(y, w) = |Qyw|
s
n−1|Qyw|σ = |Qyw|

s
n−1

∫

Qyw
σ(z) dz and

g̃(y, w) =

{

|Qyw|−1
σ

∫

Qyw
g(z)σ(z) dz if (y, w) ∈ Q̂[0, R]

0 else

and g(·) = σ−1(·)f(·). Moreover,

(A∞g̃)(·) ≤ (Nσg)(·) (5.14)

with (Nσg)(x) = sup{|Q|−1
σ

∫

Q |g(y)|σ(y) dy; Q dyadic with Q 3 x}. Con-
sequently, for 1 < p < ∞,

‖(A∞g̃)(·)‖Lp
σ
≤ ‖(Nσg)(·)‖Lp

σ
≤ c(n, p)‖σ−1(·)f(·)‖Lp

σ
=

= c(n, p)‖f(·)‖Lp
v
. (5.15)

The latter inequality can be obtained by interpolation, that is, by prov-
ing with the aid of the classical arguments that Nσ : L1(Rn, σ(x)dx) →
L1,∞(Rn, σ(x)dx) and Nσ : L∞(Rn, σ(x)dx) → L∞(Rn, σ(x)dx).

Now we are ready to give



598 Y. RAKOTONDRATSIMBA

Proof of Lemma 5.1. This result is essentially based on Lemma 5.2. Indeed,
if (fk(·))k is a sequence of nonnegative functions with ‖(

∑

k fr
k (·)) 1

r ‖Lp
v

< ∞,
then, in particular, fk(·) ∈ Lp

v for each k. So by (5.15) the associated
function g̃k(y, w) defined as above satisfies ‖(A∞g̃k)(·)‖Lp

v
< ∞. Hence by

Lemma 5.2 one can find scalars λjk > 0, dyadic cubes Qjk, and functions
ãjk(y, w = 2−l) satisfying the following conditions:

supp ãjk are disjoint and |ãjk(y, w)| ≤ |Qjk|
− 1

p
σ ˜11

Q̂jk
(y, w); (5.16)

g̃k(y, w) =
∑

j

λjkãjk(y, w) a.e.; (5.17)

∑

j

λr
jk|Qjk|

− r
p

σ 11Qjk(·) ≤ Cr(A∞g̃k)r(·) for all r > 0. (5.18)

Let us check inequality (5.5). Since

(Mdya,R
s fk)r(x)=sup{ω̃r(y, w)g̃k

r(y, w); Qyw3x and Qyw⊂(]0, R[)n},

for all (y, w) with x ∈ Qyw ⊂ Q[0, R] we have

ω̃r(y, w)g̃r
k(y, w) ≤ ω̃r(y, w)

∑

j

λr
jk|ãr

jk(y, w)| ≤ (supp ãj are disjoint)

≤
∑

j

λr
jk|Qjk|

− r
p

σ
[

|Qyw|
s
n−1|Qyw|σ˜11

Q̂j
(y, w)

]r ≤

(by the definition of ω̃(y, w) and (5.16))

≤
∑

j

λr
jk|Qjk|

− r
p

σ
[

|Qyw|
s
n−1|Qyw ∩Qjk|σ˜11

Q̂jk
(y, w)

]r
=

(since by (5.9) : Qyw ⊂ Qjk)

=
∑

j

λr
jk|Qjk|

− r
p

σ

[

(

|Qyw|
s
n−1

∫

Qyw

σ(z)11Qjk(z) dz
)

˜11
Q̂jk

(y, w)
]r

≤

≤
∑

j

λr
jk|Qjk|

− r
p

σ (Mdya
s σ11Qjk)r(x)11Qjk(x) recall that x ∈ Qyw ⊂ Qjk.

In checking inequality (5.6) the main key is

∥

∥

∥

∥

(
∑

k

(Nσgk)r(·)
) 1

r

∥

∥

∥

∥

Lp
σ

≤ c
∥

∥

∥

∥

(
∑

k

gr
k(·)

) 1
r

∥

∥

∥

∥

Lp
σ

, (5.19)

where c > 0 does not depend on the sequence (gk(·))k. Indeed, using (5.18),
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(5.14), and the above inequality, we obtain
∥

∥

∥

∥

(
∑

k

∑

j

λr
jk|Qjk|

− r
p

σ 11Qjk(·)
) 1

r

∥

∥

∥

∥

Lp
σ

=
∥

∥

∥

∑

k

∑

j

λr
jk|Qjk|

− r
p

σ 11Qjk(·)
∥

∥

∥

L
p
r
σ

≤

≤ Cr
∥

∥

∥

∑

k

(A∞g̃k)r(·)
∥

∥

∥

L
p
r
σ

= Cr
∥

∥

∥

∥

(
∑

k

(A∞g̃k)r(·)
) 1

r

∥

∥

∥

∥

r

Lp
σ

≤

≤ Cr
∥

∥

∥

∥

(
∑

k

(Nσgk)r(·)
) 1

r

∥

∥

∥

∥

r

Lp
σ

≤(cC)r
∥

∥

∥

∥

(
∑

k

gr
k(·)

) 1
r

∥

∥

∥

∥

r

Lp
σ

=

= (cC)r
∥

∥

∥

∥

(
∑

k

fr
k (·)

) 1
r

∥

∥

∥

∥

r

Lp
v

,

since gk(·) = σ−1(·)fk(·) and σ1−p(·) = v(·).
The boundedness (5.19) can be obtained by using the same classical

arguments [1] as for M0 : Lp
1(l

r) → Lp
1(l

r). Indeed the main points are
(5.15) and Fefferman–Stein’s inequality
∫

Rn
(Nσf)r(x)g(x)σ(x) dx≤c

∫

Rn
fr(x)(Nσg)(x)σ(x) dx, 1 < r < ∞, (5.20)

where c > 0 is a constant which does not depend on the nonnegative func-
tions f(·), g(·). Similarly to (5.15), inequality (5.20) can be obtained by
interpolation, since Nσ : L∞[Rn, (Nσg)(x)σ(x)dx] → L∞[Rn, g(x)σ(x)dx]
and Nσ : L1[Rn, (Nσg)(x)σ(x)dx] → L1∞[Rn, g(x)σ(x)dx]. In this last
boundedness no doubling condition σ(·) is needed, since we work with
dyadic cubes. By (5.15) it is clear that Nσ : Lp

σ(lp) → Lp
σ(lp). And since

Nσ : Lp
σ(l∞) → Lp

σ(l∞), by interpolation [1] we get inequality (5.19) for
p ≤ r < ∞. The corresponding result for 1 < r < p can be obtained by
duality using inequality (5.20) (see also [1] for details with the nonweighted
case M0 : Lp

1(l
r) → Lp

1(l
r)).
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I would like to thank C. Pérez for the helpful discussion we had on vector-
valued inequalities and for communicating his paper [5]. I also thank to the
referee for his comments and suggestions about this paper.

References

1. J. Garcia Cuerva and J. L. Rubio de Francia, Weighted norm inequal-
ities and related topics. North Holland Math. Stud. 116, Notes Mat. 104,
North Holland Publishing Co., Amsterdam–N. Y., 1985.



600 Y. RAKOTONDRATSIMBA

2. H. P. Heiniga and R. Johnson, Weighted norm inequalities for Lr-
valued integral operators and applications. Math. Nachr. 107(1982), 161–
174.

3. K. Andersen and R. John, Weighted inequalities for vector-valued
maximal functions and singular integrals. Studia Math. 49(1980), 19–31.

4. V. M. Kokilashvili, Maximal inequalities and multipliers in weighted
Lizorkin–Triebel spaces. Soviet. Math. Dokl. 19(2)(1978), 272–276.
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