
GEORGIAN MATHEMATICAL JOURNAL: Vol. 6, No. 1, 1999, 1-18

APPLICATION OF ANALOGUES OF GENERAL
KOLOSOV–MUSKHELISHVILI REPRESENTATIONS IN

THE THEORY OF ELASTIC MIXTURES

M. BASHELEISHVILI

Abstract. The existence and uniqueness of a solution of the first,
the second and the third plane boundary value problem are consid-
ered for the basic homogeneous equations of statics in the theory of
elastic mixtures. Applying the general Kolosov–Muskhelishvili rep-
resentations from [1], these problems can be splitted and reduced to
the first and the second boundary value problem for an elliptic equa-
tion which structurally coincides with the equation of statics of an
isotropic elastic body.

Introduction

Analogues of Kolosov–Muskhelishvili representation formulas were ob-
tained in [1] for equations of statics in the theory of elastic mixtures. These
formulas have various applications. In this paper they will be used to re-
duce the first, the second and the third boundary value problems of statics
in the theory of elastic mixtures [2] to the first and the second boundary
value problem for an elliptic equation which structurally coincides with an
equation of statics of an isotropic elastic body. It will be shown that the
theory and methods of solving the boundary value problems developed in
[3] can be extended to the plane boundary value problems of statics in the
theory of elastic mixtures.

§ 1. First Boundary Value Problem

As is known [2], the first boundary value problem is considered with a
displacement vector given on the boundary. To split this problem we have
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to use the general representations of displacement vector components [1]
having the form

u1 + iu2 =m1ϕ1(z) + m2ϕ2(z)+
z
2
[

l4ϕ′1(z) + l5ϕ′2(z)
]

+ ψ1(z),

u3 + iu4 =m2ϕ1(z) + m3ϕ2(z)+
z
2
[

l5ϕ′1(z) + l6ϕ′2(z)
]

+ ψ2(z),
(1.1)

where u = (u1, u2, u3, u4) is a four-dimensional displacement vector; ϕ1(z),
ϕ2(z), ψ1(z), ψ2(z) are arbitrary analytic functions, and

m1 = e1 +
l4
2

, m2 = e2 +
l5
2

, m3 = e3 +
l6
2

,

l1 =
a2

d2
, l2 = − c

d2
, l3 =

a1

d2
, d2 = a1a2 − c2 > 0,

l1 + l4 =
a2 + b2

d1
, l2 + l5 = −c + d

d1
, l3 + l6 =

a1 + b1

d1
,

d1 = (a1 + b1)(a2 + b2)− (c + d)2 > 0

(1.2)

the coefficients a1, b1, a2, b2, c, d are contained in the basic homogeneous
equations of statics in the theory of elastic mixtures which are written as [1]:

a1∆u′ + b1 grad θ′ + c∆u′′ + d grad θ′′ = 0,

c∆u′ + d grad θ′ + a2∆u′′ + b2 grad θ′′ = 0,
(1.3)

where u′ = (u1, u2), u′′ = (u3, u4) are partial displacements of an elastic
mixture and

θ′ = div u′, θ′′ = div u′′. (1.4)

To reduce the first boundary value problem of statics in the theory of
elastic mixtures to the first boundary value problem of statics of an isotropic
elastic body we rewrite (1.1) as

u1 + Xu3 + i(u2 + Xu4) = (m1 + Xm2)ϕ1(z) + (m2 + Xm3)ϕ2(z) +

+
z
2
[

(l4 + Xl5)ϕ′1(z) + (l5 + Xl6)ϕ′2(z)
]

+ ψ1(z) + Xψ2(z), (1.5)

where X is an arbitrary real constant. We define the unknown X by the
equation

m2 + Xm3

m1 + Xm2
=

l5 + Xl6
l4 + Xl5

. (1.6)
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Using the formulas [1,2]

2∆0ε1 = l5m2 − l4m3, 2∆0ε3 = l4m2 − l5m1,

2∆0ε2 = l6m2 − l5m3, 2∆0ε4 = l5m2 − l6m1, (1.7)

∆0 = m1m3 −m2
2 > 0

and their equivalent formulas

δ0ε1 = 2(a2b1 − cd) + b1b2 − d2, δ0ε3 = 2(da2 − cb2),

δ0ε2 = 2(da1 − cb1), δ0ε4 = 2(a1b2 − cd) + b1b2 − d2, (1.8)

δ0 = (2a1 + b1)(2a2 + b2)− (2c + d)2 = 4∆0d1d2 > 0,

by (1.6) we obtain the quadratic equation with respect to X

ε2X2 − (ε4 − ε1)X − ε3 = 0. (1.9)

Note that ε2 and ε3 do not vanish simultaneously. Indeed, if the equality
ε2 = ε3 = 0 is satisfied, then by virtue of (1.8) we obtain

b1

a1
=

d
c

=
b2

a2
= λ. (1.10)

The constant λ 6= 0, since for λ = 0 equality (1.10) implies b1 = d = b2 = 0
and (1.3) gives

a1∆u′ + c∆u′′ = 0, c∆u′ + a2∆u′′ = 0.

Hence, taking into account that d2 = a1a2 − c2 > 0 [2], we have

∆u′ = 0, ∆u′′ = 0.

Thus we have obtained a trivial case of an elastic mixture.
Now, substituting (1.10) into (1.3), we have

a1(∆u′ + λ grad θ′) + c(∆u′′ + λ grad θ′′) = 0,

c(∆u′ + λ grad θ′) + a2(∆u′′ + λ grad θ′′) = 0.

Hence, again taking into account that a1a2 − c2 > 0, we find

∆u′ + λ grad θ′ = 0, ∆u′′ + λ grad θ′′ = 0, (1.11)

i.e., we have splitted the first boundary value problem. For u′ and u′′

the splitted problems are investigated by the same technique as the first
boundary value problem of statics of an isotropic elastic body. Since 1+λ =
a1+b1

a1
= a2+b2

a2
> 0, equations (1.11) are elliptic.

Thus we have shown that ε2 and ε3 do not vanish simultaneously.
In what follows it will be assumed that ε2 6= 0. This assumption can be

made without loss of generality. Indeed, if ε3 6= 0 and ε2 = 0, then equation
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(1.9) has only one root, which is not sufficient for our further investigation.
So we have to combine (1.1) and (1.5) as follows:

u3 + Y u1 + i(u4 + Y u2).

By repeating the above arguments we obtain the quadratic equation

ε3Y 2 − (ε4 − ε1)Y = 0,

which yields

Y1 = 0, Y2 =
ε4 − ε1

ε3
.

Thus we have derived two roots, which enables us to accomplish our task.
It is important that the roots of equation (1.9) be real values. The

discriminant of equation (1.9) can be written as

(ε4−ε1)2+4ε2ε3 =
4

δ2
0a1a2

{

[a2(da1−cb1)+a1(da2−cb2)]2+d2(a1b2−a2b1)2
}

.

The latter expression vanishes only if conditions (1.10) are fulfilled. In what
follows this trivial case will be omitted.

Thus equation (1.9) has two different real roots:

X1 =
ε4 − ε1 +

√

(ε4 − ε1)2 + 4ε2ε3

2ε2
,

X2 =
ε4 − ε1 −

√

(ε4 − ε1)2 + 4ε2ε3

2ε2
.

(1.12)

Rewriting condition (1.5) for X1 and X2 separately, we have

u1 + X1u3 + i(u2 + X1u4) = (m1 + X1m2)ϕ1(z) +

+ (m2 + X1m3)ϕ2(z)− k1z
[

(m1 + X1m2)ϕ′1(z) +

+ (m2 + X1m3)ϕ′2(z)
]

+ ψ1(z) + X1ψ2(z),

u1 + X2u3 + i(u2 + X2u4) = (m1 + X2m2)ϕ1(z) +

+ (m2 + X2m3)ϕ2(z)− k2z
[

(m1 + X2m2)ϕ′1(z) +

+ (m2 + X2m3)ϕ′2(z)
]

+ ψ1(z) + X2ψ2(z),

(1.13)

where we have introduced the notation

kj = − l4 + Xj l5
2(m1 + Xjm2)

, j = 1, 2. (1.14)

By virtue of (1.7) and (1.9) we readily obtain

kj = ε1 + Xjε2, j = 1, 2.
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Therefore k1 and k2 have the form

2k1 = ε1 + ε4 +
√

(ε4 − ε1)2 + 4ε2ε3,

2k2 = ε1 + ε4 −
√

(ε4 − ε1)2 + 4ε2ε3.
(1.15)

Introducing the notation

u1 + Xju3 = v(j)
1 , u2 + Xju4 = v(j)

2 , (1.16)

(m1 + Xjm2)ϕ1(z) + (m2 + Xjm3)ϕ2(z) = Φj(z),

ψ1(z) + Xjψ2(z) = Ψj(z), j = 1, 2,
(1.17)

we can rewrite (1.13) as

v(j)
1 + iv(j)

2 = Φj(z)− kjzΦ′j(z) + Ψj(z), j = 1, 2, (1.18)

where Φ1(z), Φ2(z), Ψ1(z), Ψ2(z) are new analytic functions.
Note that structurally (1.18) coincides with the general Kolosov–Mus-

khelishvili representation for displacement vector components.
It is obvious by (1.16) that if u1, u2, u3, u4 are given, this will mean that

v(j)
1 and v(j)

2 , j = 1, 2, are given, too. It is likewise obvious that if v(j)
1 and

v(j)
2 , j = 1, 2, are found, then

u1 =
−X2v

(1)
1 + X1v

(2)
1

X1 −X2
, u2 =

−X2v
(1)
2 + X1v

(2)
2

X1 −X2

u3 =
v(1)
1 − v(2)

1

X1 −X2
, u4 =

v(1)
2 − v(2)

2

X1 −X2
.

(1.19)

(1.17) immediately implies that when Φj(z) and Ψj(z), j = 1, 2, are known,
we can define ϕ1(z), ϕ2(z), ψ1(z), ψ2(z) uniquely and write them as

ϕ1(z) =
−(m2 + X2m3)Φ1(z) + (m2 + X1m3)Φ2(z)

(X1 −X2)∆0
,

ϕ2(z) =
(m1 + X2m2)Φ1(z)− (m1 + X1m2)Φ2(z)

(X1 −X2)∆0
,

ψ1(z) =
−X2Ψ1 + X1Ψ2

X1 −X2
, ψ2(z) =

Ψ1 −Ψ2

X1 −X2
.

(1.20)

Next, we shall show which equation is satisfied by the vector v(j) =
(v(j)

1 , v(j)
2 ), j = 1, 2. Let this equation have the form

∆v(j) + Mj grad div v(j) = 0, j = 1, 2, (1.21)

and define Mj depending on kj .
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By simple calculations we find from (1.18) that

div vj) =2(1− kj)ReΦ′j(z), ∆v(j)
1 =−4kj ReΦ′′j (z), ∆v(j)

2 =4kj ImΦ′′j (z).

After substituting the latter expression into (1.21) we obtain

Mj =
2kj

1− kj
, j = 1, 2. (1.22)

Therefore we have proved that the vector v(j) = (v(j)
1 , v(j)

2 ) defined by
(1.18) satisfies equation (1.21) if Mj is given by (1.22). It will be shown
below that |kj | < 1, 1+Mj > 0, j = 1, 2. The latter inequality is a sufficient
condition for system (1.21) to be elliptic.

Thus in the theory of elastic mixtures the first boundary value problem
for an equation of statics is splitted, in the general case, into two problems
for equation (1.21) which structurally coincides with an equation of statics
of an isotropic elastic body.

Similarly to the first boundary value problem for an equation of statics
of an isotropic elastic body [3] we can derive here an integral Fredholm
equation of second order for equation (1.21) using the boundary conditions

v(j)
1 + iv(j)

2 = Fj(t), t ∈ S, j = 1, 2. (1.23)

Indeed, if we define the functions Φj(z) and Ψj(z), j = 1, 2, from (1.18) by
means of the potentials

Φj(z) =
1

2πi

∫

S
gj(ζ)

∂ ln σ
∂s(y)

ds,

Ψj(z) =
1

2πi

∫

S
gj(ζ)

∂ ln σ
∂s(y)

ds− kj

2πi

∫

S
gj(ζ)

∂
∂s(y)

ζ
σ

ds,
(1.24)

then

Φ′j(z) = − 1
2πi

∫

S
gj(ζ)

∂
∂s(y)

1
σ

ds

and

v(j)
1 +iv(j)

2 =
1

2πi

∫

S
gj(ζ)

∂
∂s(y)

ln
σ
σ

ds+
kj

2πi

∫

S
gj(ζ)

∂
∂s(y)

σ
σ

ds. (1.25)

In (1.24) and (1.25) gj(ζ) are the desired functions of the point ζ =
y1 + iy2, where y1 and y2 are the coordinates of the point y ∈ s, σ = z − ζ,
σ = z − ζ, z = x1 + ix2, and

∂
∂s(y)

= n1(y)
∂

∂y2
− n2(y)

∂
∂y1

, (1.26)

where n = (n1(y), n2(y)) is the external (with respect to the finite domain
D+) normal unit vector at the point y, while s is the Lyapunov curve.
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Passing to the limit as z → t ∈ s, externally or internally, to define gj we
obtain the integral Fredholm equation of second kind

±gj(t) +
1

2πi

∫

S
gj(ζ)

∂
∂s(y)

ln
t− ζ
t− ζ

ds +

+
kj

2πi

∫

S
gj(ζ)

∂
∂s(y)

t− ζ
t− ζ

ds = Fj(t), (1.27)

where

Fj(t) = f1 + Xjf3 + i(f2 + Xjf4), j = 1, 2, (1.28)

and fk(t) = (uk)±, k = 1, 4.
Equations (1.27) have a simple form and are very helpful both for theoret-

ical investigations and for an effective solution of the first boundary value
problem. These equations actually coincide with the Sherman–Lauricella
equation [3].

Let us investigate the parameters k1 and k2 in (1.27) which are defined
by (1.15).

Formula (1.15) gives rise to

k1 + k2 = ε1 + ε4, k1k2 = ε1ε4 − ε2ε3, (1.29)

which implies

1− k1 + 1− k2 = 2− ε1 − ε4,

(1− k1)(1− k2) = 1− ε1 − ε4 + ε1ε4 − ε2ε3.
(1.30)

By easy calculations it follows from (1.8) that

δ0(ε1 + ε4) = 2(a1b2 + a2b1 − 2cd + b1b2 − d2),

δ0(ε1ε4 − ε2ε3) = b1b2 − d2.
(1.31)

Substituting the latter expression into (1.30) and performing some simple
transformations, we obtain

1− k1 + 1− k2 =
2
δ0

{

4∆1 − 3λ5(µ1 + µ2 + 2µ3) +

+
1

a1(b2 − λ5)
[

a1(b2 − λ5)− c(d + λ3)]2 +

+
d2(b1 − λ5)(b2 − λ5) + c2[(b1 − λ5)(b2 − λ5)− (d + λ5)2]

a1(b2 − λ5)

}

,

(1− k1)(1− k2)=1− 2(a1b2+a2b1−2cd+b1b2−d2)
δ0

+

+
b1b2 − d2

δ0
=

4d2

δ0
.

(1.32)
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Since the potential energy of an elastic mixture is positive definite [2],
we have

∆1 = µ1µ2 − µ2
3 > 0, λ5 < 0, µ1 + µ2 + 2µ3 > 0,

d2 = a1a2 − c2 = ∆1 − λ5(µ1 + µ2 + 2µ3) > 0, (1.33)

a1 > 0, b2 − λ5 > 0, (b1 − λ5)(b2 − λ5)− (d + λ5)2 > 0.

With (1.33) taken into account, (1.32) implies that the sum and the product
of two values 1 − k1 and 1 − k2 are greater than zero. Hence we conclude
that each value is positive.

Therefore

k1 < 1, k2 < 1. (1.34)

In quite a similar manner, with (1.15) taken into account, we obtain

1 + k1 + 1 + k2 = 2 + ε1 + ε4,

(1 + k1)(1 + k2) = 1 + ε1 + ε4 + ε1ε4 − ε2ε3.

Now using (1.31) and performing cumbersome calculations, we derive

1 + k1 + 1 + k2 =
2
δ0

{

4∆1 − λ5(µ1 + µ2 + 2µ3) +

+2
[

(b1 − λ5)(b2 − λ5)− (d + λ5)2
]

+

+
1

(3µ1 − λ5)(b2 − λ5)
[

(3µ1 − λ5)(b2 − λ5)− (3µ3 + λ5)(d + λ5)
]2

+

+
[(b1 − λ5)(b2 − λ5)− (d + λ5)2](3µ1 − λ5)(3µ2 − λ5)

(3µ1 − λ5)(b2 − λ5)
+

+3(d + λ5)2
[

3∆1 − λ5(µ1 + µ2 + 2µ3)
]

}

,

(1 + k1)(1 + k2) =
4

δ0µ1

{

(a1 + b1)∆1 +
µ1(b2 − λ5) + µ2

3

b2 − λ5
×

×
[

(b1 − λ5)(b2 − λ5)− (d + λ3)2
]

+
1

b2 − λ5

[

µ1(b2 − λ5)− µ3(d + λ5)
]2

}

.

Hence, as above, we conclude that 1 + k1 and 1 + k2 are greater than
zero, i. e., which together with (1.34) leads to

−1 < kj < 1, j = 1, 2. (1.35)

It is interesting to note that for the parameter k1 one can obtain a more
narrow change interval. Indeed, by virtue of (1.32) formula (1.22) for j = 1
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can be rewritten as

M1 =
2k1(1− k2)δ0

4d2
.

By virtue of (1.15) and (1.31) the latter formula takes the form

M1 =
a1b2 + a2b1 − 2cd

2d2
+

δ0

4d2

√

(ε4 − ε1)2 + 4ε2ε3,

which implies

M1 +
1
2

=
a1(b2 − λ5) + a2(b1 − λ5)− 2c(d + λ5)∆1

2d2
+

+
δ0

4d2

√

(ε4 − ε1)2 + 4ε2ε3 > 0.

Thus we have obtained

M1 > −1
2
. (1.36)

Using now (1.22), it is easy to establish that k1 > − 1
3 and thus we obtain

the interval

k1 ∈
]

− 1
3
, 1

[

. (1.37)

Note that though inequality (1.36) does not hold for M2, we can rewrite
M2 similarly to M1 as follows:

M2 =
a1b2 + a2b1 − 2cd

2d2
− δ0

4d2

√

(ε4 − ε1)2 + 4ε2ε3.

Applying (1.35), we find from (1.22) that

1 + Mj =
1 + kj

1− kj
> 0, j = 1, 2.

Therefore equation (1.21) is elliptic.
Let us now rewrite (1.21) as

∆v + M grad div v = 0. (1.38)

where v = v(j), j = 1, 2, when M = Mj .
For equation (1.38) we introduce the generalized stress vector [2]:

κ
Tv = (1 + κ)

∂v
∂n

+ (M − κ)n div v + κs
( ∂v2

∂x1
− ∂v1

∂x2

)

,

where n = (n1, n2) is an arbitrary unit vector, s = −(n2, n1), and κ an
arbitrary constant.

For the generalized stress vector we choose a particular case with κ =
M

M+2 .
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Then
κ
T ≡ N and the Green formula for the finite domain D+ and the

infinite domain D− will respectively have the form
∫

D+
N(v, v)dy1dy2 =

∫

S
vNv ds, (1.39)

∫

D−
N(v, v)dy1dy2 = −

∫

S
vNv ds, (1.40)

where

N(v, v) =
(1 + M)2

M + 2

(∂v1

∂y1
+

∂v2

∂y2

)2
+

1
M + 2

(∂v2

∂y1
− ∂v1

∂y2

)2
+

+
M + 1
M + 2

[(∂v1

∂y2
+

∂v2

∂y1

)2
+

(∂v1

∂y1
− ∂v2

∂y2

)2]

. (1.41)

For equation (1.38) 1 + M > 0, which means that N(v, v) defined by
(1.41) is positive definite.

Formulae (1.39) and (1.40) hold when v is a regular vector [2]. Moreover,
for the infinite domain D− the vector v satisfies the conditions

v = O(1),
∂v
∂yk

= O(R−2), k = 1, 2,

where R2 = y2
1 + y2

2 .
The operator N plays an important role in the investigation of the first

boundary value problem.
Our further discussion and effective solution of the first boundary value

problem proceed exactly in the same way as for an equation of statics of an
isotropic elastic body.

§ 2. Second Boundary Value Problem

The second boundary value problem is investigated with the vector Tu
given on the boundary. The projections of this vector are defined as fol-
lows [1]:

(Tu)2 − i(Tu)1 =
∂

∂s(x)

{

(A1 − 2)ϕ1(z) + A2ϕ2(z) +

+ z
[

B1ϕ′1(z) + B2ϕ′2(z)
]

+ 2µ1ψ1(z) + 2µ3ψ2(z)
}

,

(Tu)4 − i(Tu)3 =
∂

∂s(x)

{

A3ϕ1(z) + (A4 − 2)ϕ2(z) +

+ z
[

B3ϕ′1(z) + B4ϕ′2(z)
]

+ 2µ3ψ1(z) + 2µ2ψ2(z)
}

,

(2.1)
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where ϕk(z) and ψk(z) (k = 1, 2) are arbitrary analytic functions; the con-
stants Ak and Bk (k = 1, 4) have the values:

A1 = 2(µ1m1 + µ3m2) = 2 + B1 + 2λ5
a2 + c

d2
, B1 = µ1l4 + µ3l5,

A2 = 2(µ1m2 + µ3m3) = B2 − 2λ5
a1 + c

d2
, B2 = µ1l5 + µ3l6,

A3 = 2(µ3m1 + µ2m2) = B3 − 2λ5
a2 + c

d2
, B3 = µ3l4 + µ2l5,

A4 = 2(µ3m2 + µ2m3) = 2 + B4 + 2λ5
a1 + c

d2
, B4 = µ3l5 + µ2l6,

(2.2)

the operator ∂
∂s(x) is defined by (1.26).

Representations (2.1) can be rewritten equivalently as

F2 − iF1 + c1 = (A1 − 2)ϕ1(z) + A2ϕ2(z) +

+ z
[

B1ϕ′1(z) + B2ϕ′2(z)
]

+ 2µ1ψ1(z) + 2µ3ψ2(z),

F4 − iF3 + c2 = A3ϕ1(z) + (A4 − 2)ϕ2(z) +

+ z
[

B3ϕ′1(z) + B4ϕ′2(z)
]

+ 2µ3ψ1(z) + 2µ2ψ2(z),

(2.3)

where c1 and c2 are arbitrary constants and

Fk =
∫ S(x)

0
(Tu)kds, k = 1, 4. (2.4)

Now we combine (2.3) as follows:

F2 + XF4 − i(F1 + XF3) + c1 + Xc2 = (A1 − 2 + XA3)ϕ1(z) +

+[A2 + X(A4 − 2)]ϕ2(z) + z
[

(B1 + XB3)ϕ′1(z) +

+(B2 + XB4)ϕ′2(z)
]

+ 2(µ1 + Xµ3)ψ1(z) + 2(µ3 + Xµ2)ψ2(z), (2.5)

where X is the unknown constant value.
Define X by the equation

B2 + XB4

B1 + XB3
=

A2 + X(A4 − 2)
A1 − 2 + XA3

. (2.6)

Using the notation [2]

H1 = B1(2−A4) + B2A3, H2 = B1A2 + B2(2−A1),

H3 = B3(2−A4) + B4A3, H4 = B3A2 + B4(2−A1),
(2.7)

we can rewrite (2.6) as

H3X2 − (H4 −H1)X −H2 = 0. (2.8)
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By substituting the coefficients from (2.2) and (1.2) into (2.7) we obtain,
for Hk (k = 1, 4), the new expressions

H1 = −∆2 +
2λ5

d2

[

(a1 + c)A3 + (a2 + c)(A4 − 2)
]

,

H2 =
2λ5

d2

[

(a1 + c)(2−A1)− (a2 + c)A2
]

,

H3 =
2λ5

d2

[

(a2 + c)(2−A4)− (a1 + c)A3
]

,

H4 = −∆2 −
2λ5

d2

[

(a1 + c)(2−A1)− (a2 + c)A2
]

,

(2.9)

where

∆2 = (2−A1)(2−A4)−A2A3,

H1 + H3 = −∆2, H2 + H4 = −∆2.
(2.10)

We shall show that the condition ∆2 6= 0 is fulfilled. To this end, using
(2.2), we rewrite ∆2 as

∆2 =
(

B1 + 2λ5
a2 + c

d2

)(

B4 + 2λ5
a1 + c

d2

)

−

−
(

B2 − 2λ5
a1 + c

d2

)(

B3 − 2λ5
a2 + c

d2

)

=

=B1B4−B2B3+
2λ5

d2

[

(a1+c)(B1+B3)+(a2+c)(B2+B4)
]

. (2.11)

Note that, by virtue of (1.2), from (2.2) we readily obtain

B1B4 −B2B3 = ∆1
b1b2 − d2

d1d2
, (2.12)

B1 + B3 = − 1
d1

(b1b2 − d2 + a2b1 − cd + da2 − cb2),

B2 + B4 = − 1
d1

(b1b2 − d2 + a1b2 − cd + da1 − cb1).
(2.13)

Using the identity

(a1+c)(a2b1−cd+da2−cb2)+(a2+c)(a1b2−cd+da1−cb1) = d2(b1+b2+2d),

which is easy to prove, and taking into account (2.12) and (2.13), expression
(2.11) can be rewritten as

∆2d1d2 =
[

∆1 − 2λ5(a1 + a2 + 2c)
]

(b1b2 − d2)− 2λ5d2(b1 + b2 + 2d) =

=
[

∆1 − 2λ5(a1 + a2 + 2c)
][

(b1 − λ5)(b2 − λ5)− (d + λ5)2
]

−
−λ5(b1 + b2 + 2d)∆1. (2.14)
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Since d1 > 0, d2 > 0, λ5 < 0, a1 + a2 + 2c ≡ µ1 + µ2 + 2µ3 > 0,
(b1−λ5)(b2−λ5)−(d+λ5)2 > 0 and b1+b2+2d ≡ b1−λ5+b2−λ5+2(d+λ5) >
0, we have ∆2 > 0.

Now we shall show that H2 and H3 do not vanish simultaneously. Indeed,
if it is assumed that H2 and H3 vanish simultaneously, then for λ5 6= 0 and
d2 6= 0 (2.9) will imply (a1 + c)(2−A1)− (a2 + c)A2 = 0, (a2 + c)(2−A4)−
(a1 + c)A3 = 0, i. e.,

a2 + c
a1 + c

=
2−A1

A2
=

A3

2−A4
.

Hence we conclude that ∆2 = 0, which is impossible.
Without loss of generality we can take H3 6= 0. This can be shown in the

same manner as a similar statement in §1.
By solving equation (2.8) we obtain

X1 = 1, X2 = −H2

H3
= H0. (2.15)

Rewriting now (2.5) for X1 and X2 separately, we have

F2+F4−i(F1+F3)+c1+c2 =Φ(z)+zΦ′(z)+Ψ(z), (2.16)

F2+H0F4−i(F1+H0F3)+c1+H0c2 =Φ0(z)+k0zΦ′0(z)+Ψ0(z), (2.17)

where

k0 =
B1 + H0B3

A1 − 2 + H0A3
, (2.18)

and the functions Φ(z), Ψ(z), Φ0(z), Ψ0(z) are defined as

Φ(z) = (B1 + B3)ϕ1(z) + (B2 + B4)ϕ2(z),

Φ0(z)=(A1−2+H0A3)ϕ1(z)+(A2+H0A4−2H0)ϕ2(z),
(2.19)

Ψ(z) = 2(µ1 + µ3)ψ1(z) + 2(µ3 + µ2)ψ2(z),

Ψ0(z) = 2(µ1 + H0µ3)ψ1(z) + 2(µ3 + H0µ2)ψ2(z).
(2.20)

We next substitute the value of H0 from (2.15) and the values of H2 and
H3 from (2.7) into (2.18). After performing some simple transformations
we obtain

k0 =
∆1(b1b2 − d2)

∆2d1d2
. (2.21)

Let us show that the value of k0 lies in the interval ]−1, 1[. Indeed, using
(2.14), from (2.21) we have

1− k0 =
∆2d1d2 −∆1(b1b2 − d2)

∆2d1d2
=
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=−2λ5
(b1+b2+2d)∆1+(a1+a2+2c)[(b1−λ5)(b2−λ5)−(d+λ5)2]

∆2d1d2
>0.

Hence k0 < 1. (2.21) now readily implies

1 + k0 =
2

∆2d1

[

(b1 − λ5)(b2 − λ5)− (d + λ5)2
]

.

Thus we have found that

−1 < k0 < 1. (2.22)

Note that H0 6= 1. Indeed, if H0 = 1, then (2.18) implies k0 = 1, which
is impossible because (2.22) holds.

After Φ(z), Φ0(z), Ψ(z) and Ψ0(z) are found, using (2.19) and (2.20) we
define ϕk(z) and ψk(z), k = 1, 2, uniquely, since the determinants of the
respective transformations are equal to (H0 − 1)∆2 and (H0 − 1)∆1.

Applying arguments similar to those used for representation (1.18), the
desired functions Φ(z), Ψ(z), Φ0(z) and Ψ0(z) from (2.16) and (2.17) must
be sought for in the form

Φ(z) =
1

2πi

∫

S
g(ζ)

∂ ln σ
∂s(y)

ds,

Ψ(z) =
1

2πi

∫

S
g(ζ)

∂ ln σ
∂s(y)

ds +
1

2πi

∫

S
g(ζ)

∂
∂s(y)

ζ
σ

ds,

Φ0(z) =
1

2πi

∫

S
g0(ζ)

∂ ln σ
∂s(y)

ds,

Ψ0(z) =
1

2πi

∫

S
g0(ζ)

∂ lnσ
∂s(y)

ds +
k0

2πi

∫

S
g0(ζ)

∂
∂s(y)

ζ
σ

ds.

In that case (2.16) and (2.17) can be rewritten as

F2 + F4 − i(F1 + F3) + c1 + c2 =
1

2πi

∫

S
g(ζ)

∂
∂s(y)

ln
σ
σ

ds−

− 1
2πi

∫

S
g(ζ)

∂
∂s(y)

σ
σ

ds,

F2 + H0F4 − i(F1 + H0F3) + c1 + H0c2 =

=
1

2πi

∫

S
g0(ζ)

∂
∂s(y)

ln
σ
σ

ds− k0

2πi

∫

S
g0(ζ)

∂
∂s(y)

σ
σ

ds.

(2.23)

Now passing to the limit in (2.23) as z → t ∈ s, internally or externally,
to define g and g0 we obtain the integral Fredholm equations of second
order:

±g(t) +
1

2πi

∫

S
g(ζ)

∂
∂s(y)

ln
t− ζ
t− ζ

ds−
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− 1
2πi

∫

S
g(ζ)

∂
∂s(y)

t− ζ
t− ζ

ds = f(t), (2.24)

±g0(t) +
1

2πi

∫

S
g0(ζ)

∂
∂s(y)

ln
t− ζ
t− ζ

ds−

− k0

2πi

∫

S
g0(ζ)

∂
∂s(y)

t− ζ
t− ζ

ds = F (t), (2.25)

where

f(t) =
[

F2 + F4 − i(F1 + F3)
]±

+ c1 + c2,

F (t) =
[

F2 + H0F4 − i(F1 + H0F3)
]±

+ c1 + H0c2.

One can investigate equations (2.24) and (2.25) in the same manner as
the equation of the basic biharmonic problem and the first boundary value
problem of statics of an isotropic elastic body [3].

Thus the second boundary value problem of statics in the theory of elas-
tic mixtures is reduced to the second and the first plane boundary value
problem of statics of an isotropic elastic body.

§ 3. Third Boundary Value Problem

As is known [2], the third boundary value problem is considered with the
values u3 − u1, u4 − u2, F1 + F3 + c1, F1 + F4 + c2, given on the boundary,
where c1 and c2 are arbitrary constants; u1, u2, u3, u4 are the projections
of the four-dimensional vector u, and Fk(x) (k = 1, 4) is defined by (2.4).

By virtue of (1.1), (2.2) and (2.3) the conditions of the third boundary
value problem can be written as follows:

u3 − u1 + i(u4 − u2) = (m2 −m1)ϕ1(z) + (m3 −m2)ϕ2(z) +

+
z
2
[

(l5 − l4)ϕ′1(z) + (l6 − l5)ϕ′2(z)
]

+ ψ2(z)− ψ1(z),

F2 + F4 − i(F1 + F3) + c1 + c2 = (B1 + B3)ϕ1(z) + (3.1)

+ (B2 + B4)ϕ2(z) + z
[

(B1 + B3)ϕ′1(z) +

+ (B2 + B4)ϕ′2(z)
]

+ 2(µ1 + µ3)ψ1(z) + 2(µ2 + µ3)ψ2(z).

Introducing the notattion

(m2 −m1)ϕ1(z) + (m3 −m2)ϕ2(z) = Φ3(z),

ψ2(z)− ψ1(z) = Ψ3(z),

(B1 + B3)ϕ1(z) + (B2 + B4)ϕ2(z) = Φ(z),

2(µ1 + µ3)ψ1(z) + 2(µ2 + µ3)ψ2(z) = Ψ(z),

(3.2)



16 M. BASHELEISHVILI

we obtain

ϕ1(z) =
(B2 + B4)Φ3 + (m2 −m3)Φ

∆3
,

ϕ2(z) =
−(B1 + B3)Φ3 + (m2 −m1)Φ

∆3
,

ψ1(z) = −µ2 + µ3

β
Ψ3 +

1
2β

Ψ, ψ2(z) =
µ1 + µ3

β
Ψ3 +

1
2β

Ψ,

(3.3)

where

∆3 = 2∆0(α− β), α =
m1 + m3 − 2m2

∆0
, β = µ1 + µ2 + 2µ3, (3.4)

and ∆0 > 0 is given by (1.7)
Since ∆0 > 0 and ∆1 = µ1µ2−µ2

3 > 0, the constants α and β are greater
than zero. We shall show that ∆3 > 0. For this it is sufficient to prove that
α− β > 0. By virtue of (3.4) and (1.2) we have

α− β =
a1 + a2 + 2c

2∆0d2
+

a1 + a2 + 2c + b1 + b2 + 2d
2∆0d1

− (a1 + a2 + 2c) =

=
1
δ0

[

2(a1 + a2 + 2c)(d1 + d2) + 2(b1 + b2 + 2d)d2 − δ(a1 + a2 + 2c)
]

,

where δ0 is defined by formula (1.8) which can be rewritten as

δ0 = d1 + d2 + a2(a1 + b1) + a1(a2 + b2)− 2c(c + d).

Substituting this value of δ0 into the preceding formula, we obtain

α− β =
1
δ0

[

2(b1 + b2 + 2d)d2 + (a1 + a2 + 2c)(b1b2 − d2)
]

.

Hence, after some simple transformations, we readily have

α− β =
1
δ0

{

(a1 + a2 + 2c)
[

(b1 − λ5)(b2 − λ5)− (d + λ5)2
]

+

+ (b1 + b2 + 2d)
[

2∆1 − λ5(a1 + a2 + 2c)
]}

.

Thus we have shown that ∆3 > 0.
Now, using (3.3), (1.7) and (2.2), we obtain

(l5 − l4)ϕ′1(z) + (l6 − l5)ϕ′2(z) = −2k3Φ′3(z)−

−2∆0

∆3
(ε1 + ε3 − ε2 − ε4)Φ′(z), (3.5)

where

k3 =
β(b1b2 − d2)

2∆3d1d2
. (3.6)
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Let us show that the parameter k3 changes in the interval ]−1, 1[. Taking
into account the fact that the inequality ∆3 > 0 holds, performing some
obvious transformations and applying the formulae

1− k3 =
b1 + b2 + 2d

∆3d1
=

(b1 + d)2 + (b1 − λ5)(b2 − λ5)− (d + λ5)2

(b1 − λ5)∆3d1
> 0,

1 + k3 =
β[(b1 − λ5)(b2 − λ5)− (d + λ5)2] + (b1 + b2 + 2d)∆1

∆3d1d2
> 0,

we conclude that −1 < k3 < 1.
Taking into account (3.5) and substituting (3.2) into (3.1) we obtain

u3 − u1 + i(u4 − u2) = Φ3(z)− k3zΦ′3(z) + Ψ3(z)−

− ∆0

∆3
(ε1 + ε3 − ε2 − ε4)zΦ′(z),

F2 + F4 − i(F1 + F3) + c1 + c2 = Φ(z) + zΦ′(z) + Ψ(z).

(3.7)

Applying the arguments of the preceding paragraphs, we must seek for
the desired functions having the form

Φ(z) =
1

2πi

∫

S
g(ζ)

∂ ln σ
∂s(y)

ds,

Ψ(z) =
1

2πi

∫

S
g(ζ)

∂ ln σ
∂s(y)

ds +
1

2πi

∫

S
g(ζ)

∂
∂s(y)

ζ
σ

ds,

Φ3(z) =
1

2πi

∫

S
g3(ζ)

∂ ln σ
∂s(y)

ds, (3.8)

Ψ3(z) =
1

2πi

∫

S
g3(ζ)

∂ ln σ
∂s(y)

ds +
k3

2πi

∫

S
g3(ζ)

∂
∂s(y)

ζ
σ

ds,

+
∆0

2πi∆3
(ε1 + ε3 − ε2 − ε4)

∫

S
g(ζ)

∂
∂s(y)

ζ
σ

ds.

After substituting (3.8) into (3.7) and performing some simple transforma-
tions we obtain

u3 − u1 + i(u4 − u2)=
1

2πi

∫

S
g3(ζ)

∂
∂s(y)

ln
σ
σ

ds+
k3

2πi

∫

S
g3(ζ)

∂
∂s(y)

σ
σ

ds+

+
∆0

2πi∆3
(ε1 + ε3 − ε2 − ε4)

∫

S
g(ζ)

∂
∂s(y)

σ
σ

ds,

F2 + F4 − i(F1 + F3) + c1 + c2 =
1

2πi

∫

S
g(ζ)

∂
∂s(y)

ln
σ
σ

ds−

− 1
2πi

∫

S
g(ζ)

∂
∂s(y)

σ
σ

ds.
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Passing to the limit in this formula as z → t ∈ s, internally or externally,
to define g3 and g we obtain the integral Fredholm equations of second order

±g3(t) +
1

2πi

∫

S
g3(ζ)

∂
∂s(y)

ln
t− ζ
t− ζ

ds +
k3

2πi

∫

S
g3(ζ)

∂
∂s(y)

t− ζ
t− ζ

ds +

+
∆0

2πi∆3
(ε1+ε3−ε2−ε4)

∫

S
g(ζ)

∂
∂s(y)

t− ζ
t−ζ

ds=f(t), (3.9)

±g(t) +
1

2πi

∫

S
g(ζ)

∂
∂s(y)

ln
t− ζ
t− ζ

ds−

− 1
2πi

∫

S
g(ζ)

∂
∂s(y)

t− ζ
t− ζ

ds = F (t), (3.10)

where

f(t)=
[

u3−u1+i(u4 − u2)
]±

, F (t)=
[

F2+F4−i(F1+F3)
]±

+c1+c2.

Equation (3.10) is the integral Fredholm equation of the basic biharmonic
problem. By solving this equation and substituting the found value of g
into (3.9) we obtain the integral Fredholm equation with respect to the
desired function g3. This equation is investigated as the equation of the
first boundary value problem of statics of an isotropic elastic body.

Thus in the theory of elastic mixtures the third boundary value problem
of statics is splitted into two boundary value problems, of which one is the
basic biharmonic problem and the other is the first boundary value problem
of statics of an isotropic elastic body.
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