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TWO-WEIGHTED INEQUALITIES FOR INTEGRAL
OPERATORS IN LORENTZ SPACES DEFINED ON

HOMOGENEOUS GROUPS

V. KOKILASHVILI AND A. MESKHI

Abstract. The optimal sufficient conditions are found for weights,
which guarantee the validity of two-weighted inequalities for singular
integrals in the Lorentz spaces defined on homogeneous groups. In
some particular case the found conditions are necessary for the cor-
responding inequalities to be valid. Also, the necessary and sufficient
conditions are found for pairs of weights, which provide the validity
of two-weighted inequalities for the generalized Hardy operator in the
Lorentz spaces defined on homogeneous groups.

Introduction

In this paper, the optimal sufficient conditions are found for pairs of
weights, which provide the validity of two-weighted inequalities for singular
integrals in the Lorentz spaces defined on homogeneous groups. In [1–7],
analogous problems were studied in the Lebesgue spaces for the Hilbert
transform and singular integrals, while in [8] the sufficient conditions are
found for pairs of weights, which guarantee the fulfilment of two-weighted
inequalities for singular integrals in the Lorentz spaces defined on Euclidean
spaces. In this paper, the necessary and sufficient conditions are also found
for pairs of weights, which provide the boundedness of the generalized Hardy
operators in the weighted Lorentz spaces. Analogous problems were consi-
dered in the Lebesgue spaces in [9–14] and in the Lorentz spaces in [8], [15]
and [16] (see also [17]).

Finally, we would like to note that most of the results obtained in this
paper are new for the classical singular integrals as well.
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Homogeneous Groups and the Spaces of Functions Defined on
Them. Some Known Results

In this section, we give the notion of homogeneous groups and define the
Lorentz spaces. Some known results on the Lorentz spaces and singular
integrals are also presented.

Definition 1 (see [18], p. 5). A homogeneous group is a connected,
simply connected nilpotent Lie group G on whose Lie algebra g a one-
parametric group of extensions δt = exp(A ln t), t > 0, is given, where A is
the diagonizable operator on g whose eigenvalues are positive.

For the homogeneous group G the mappings exp ◦δt ◦ exp−1, t > 0, are
the automorphisms on G which will again be denoted by δt.

The number Q = trA is called a homogeneous dimension of the group G.
Homogeneous groups can be exemplified by an n-dimensional Euclidean

space, Heisenberg groups and so on.
Onto the homogeneous group G we introduce a homogeneous norm, i.e.,

a continuous function r : G → [0,∞) which is smooth on G\{e} and satisfies
the following conditions:

1. r(x) = r(x−1) for any x ∈ G;
2. r(δtx) = tr(x) for arbitrary x ∈ G and t > 0;
3. r(x) = 0 ⇔ x = e;
4. there exists a constant c0 > 0 such that r(xy) ≤ c0(r(x) + r(y)) for

arbitrary x and y from G.
For x ∈ G and ρ > 0 we set B(x, ρ) = {y ∈ G : r(xy−1) < ρ}. Further,

let S(x, ρ) = {y ∈ G : r(xy−1) = ρ}. Note that δρB(e, 1) = B(e, ρ).
Onto the group G we fixed the normed Haar measure in such a manner

that the measure of the unit ball B(e, 1) be equal to 1. The Haar measure
of any measurable set E ⊂ G will be denoted by |E|, and the integral on E
with respect to this measure by

∫

E
f(x)dx.

It readily follows that

|δtE| = tQ|E|, d(δtx) = tQdx.

In particular, for arbitrary x ∈ G and ρ > 0 we have |B(e, ρ)| = ρQ.

Definition 2. An almost everywhere positive, locally integrable function
w : G → R1 will be called a weight.

In what follows, we shall denote by Lpq
w (G) the Lorentz space with weight

w which is a class of all measurable functions f : G → R1 for which

‖f‖Lpq
w (G) =

(

q

∞
∫

0

( ∫

{x∈G}:|f(x)|>λ}

w(x) dx
)

q
p

λq−1dλ
) 1

q

< ∞
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when 1 ≤ p ≤ ∞, 1 ≤ q < ∞, and

‖f‖Lp∞
w (G) = sup

λ>0
λ
( ∫

{x∈G:|f(x)|>λ}

w(x) dx
) 1

p

< ∞

when 1 ≤ p < ∞.
For p = q, Lpq

w (G) is the Lebesgue space which it is commonly accepted
to denote by Lp

w(G).

Theorem A (see [18], p. 14). Let G be a homogeneous group, SG =
{x ∈ G : r(x) = 1}. There exists a unique countably additive measure σ
defined on SG such that the equality

∫

G

f(x) dx =

∞
∫

0

tQ−1
( ∫

SG

f(δtξ) dσ(ξ)
)

dt

holds for any f ∈ L1(G).

Let k : G → R1 be a measurable function such that:
(1) |k(x)| ≤ c

r(x)Q for an arbitrary element x 6= e;
(2) there exists a positive constant c1 such that for arbitrary x, y ∈ G

with the condition r(xy−1) < 1
2r(x) we have the inequality

∣

∣k(x)− k(y)
∣

∣ ≤ c1ω
(r(xy−1)

r(x)

) 1
r(x)Q ,

where ω : [0, 1] → R1 is a nondecreasing function such that ω(0) = 0,

ω(2t) ≤ c2ω(t) for any t > 0 and
1
∫

0

ω(t)
t dt < ∞.

It will be assumed that the kernel k together with the above-given con-
ditions satisfy the condition: the singular integral

Tf(x) = p.v.
∫

G

k(xy−1)f(y) dy def= lim
ε→0

∫

G\B(x,ε)

k(xy−1)f(y) dy

defines the bounded operator in the space L2(G).
The lemmas below are valid.

Lemma A ([19]). Let E ⊂ G be an arbitrary measurable set, w a weight
function on G and f , f1, f2 measurable functions on G. Then we have:

(1) ‖χE (·)‖Lpq
w (G) =

( ∫

E

w(x) dx
) 1

p

;

(2) ‖f‖Lpq1
w (G) ≤ ‖f‖Lpq2

w (G),

for fixed p and q2 ≤ q1;
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(3) ‖f1f2‖Lpq
w (G) ≤ c‖f1‖Lp1q1

w (G)‖f2‖Lp2q2
w (G),

where 1
p = 1

p1
+ 1

p2
, 1

q = 1
q1

+ 1
q2

.

Lemma B. Let Ek be measurable sets of the homogeneous group G such
that the inequality

∑

k
χEk

≤ cχ∪
k

Ek
with constant c is fulfilled. Then:

(1) for any f we have the inequality
∑

k

∥

∥f(·)χEk
(·)

∥

∥

λ
Lrs

w (G) ≤ c1
∥

∥f(·)χ∪
k

Ek
(·)

∥

∥

λ
Lrs

w (G),

where the constant c1 does not depend on f and max(r, s) ≤ λ;
(2) for any f we have the inequality

∥

∥

∥

∥

∑

k

f(·)χEk
(·)

∥

∥

∥

∥

γ

Lpq
w (G)

≤ c2

∑

k

∥

∥f(·)χEk
(·)

∥

∥

γ
Lpq

w (G),

where the constant c2 does not depend on f and 0 < γ ≤ min(p, q).

Lemma B is proved as Lemma 2 from [8]. For the case c = 1 analogous
result was obtained in [20], [15] (see also [16]).

Definition 3. A function v : G → R1
+ is called radial if there exists a

function β : R1
+ → R1

+ such that the equality v(x) = β(r(x)) holds for any
x ∈ G. In what follows, instead of β we shall use the notation v.

Definition 4. Let 1 < p < ∞. A weight function w belongs to Ap(G) if

sup
(

1
|B|

∫

B

w(x) dx
)(

1
|B|

∫

B

w1−p′(x) dx
)p−1

< ∞,

where the least upper bound is taken with respect to all balls B, B ⊂ G.

Theorem B ([21]). Let 1 < p < ∞, w ∈ Ap(G). Then the operator T
is bounded in Lp

w(G).

Theorem C (see [22], p. 207). Let 1 < p, q < ∞. If w ∈ Ap(G),
then the operator T is bounded in Lpq

w (G). If the Hilbert transform acts
continuously in Lpq

w (R), then w ∈ Ap(R).

We shall need
Lemma C ([4], [7]). Let 1 < p < ∞, ρ ∈ Ap(G), 0 ≤ c1 < c2 ≤ c3 <

c4 < ∞. Then there exists a positive constant c such that the inequality
∫

{x∈G:c3t<r(x)<c4t}

ρ(x) dx ≤ c
∫

{x∈G:c1t<r(x)<c2t}

ρ(x) dx

holds for any t, t > 0.
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1. Two-Weighted Inequalities for the Hardy Operator in the
Lorentz Spaces Defined on Homogeneous Groups

In this paragraph, the necessary and sufficient conditions are found for
the boundedness of the operators

Hf(x) = a(x)
∫

r(y)≤r(x)

b(y)f(y)w(y) dy,

H∗f(x) = b(x)
∫

r(y)≥r(x)

a(y)f(y)w(y) dy

from Lrs
w (G) into Lpq

v (G), where a, b, w and v are measurable non-negative
functions on G.

Theorem 1.1. Let r = s = 1 or r = s = ∞ or r ∈ (1,∞) and s ∈
(1,∞), p = q = 1 or p = q = ∞ or p ∈ (1,∞) and q ∈ (1,∞); max(r, s) ≤
min(p, q). For the inequality

‖Hf(·)‖Lpq
v (G) ≤ c‖f(·)‖Lrs

w (G), (1.1)

where the constant c does not depend on f , to be valid it is necessary and
sufficient that the condition

sup
t>0

∥

∥a(·)χ{r(y)>t}(·)
∥

∥

Lpq
v (G)

∥

∥b(·)χ{r(y)<t}(·)
∥

∥

Lr′s′
w (G)

< ∞ (1.2)

(r′ = r
r−1 , s′ = s

s−1 ) be fulfilled.

Proof. Sufficiency. Assume that condition (1.2) is fulfilled. We take f≥0. If
∫

G
f(x)b(x)w(x) dx < ∞, then it belongs to the interval (2m, 2m+1] for some

integer m. By virtue of Theorem A we can choose a sequence {xk}m
k=−∞

such that

2k =
∫

r(y)≤xk

b(y)f(y)w(y) dy=
∫

xk<r(y)≤xk+1

b(y)f(y)w(y) dy for k ≤ m− 1 (1.3)

and

2m =
∫

r(y)≤xm

b(y)f(y)w(y) dy. (1.4)

Let Gk = {y : xk < r(y) ≤ xk+1}, k ≤ m and xm+1 = ∞. Then the sets
Gk do not intersect pairwise and, since we can assume that lim

k→−∞
xk = 0,

we obtain
⋃

k≤m
Gk = G \ {e}. (1.5)
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If
∫

G
b(y)f(y)w(y) dy = ∞, then we choose a sequence {xk}+∞k=−∞ such that

(1.3) is fulfilled for any integer k (in this case m = +∞). By (1.3) and (1.4)
we have

Hf(x) ≤ a(x) · 2k+1 for x ∈ Gk, k ≤ m. (1.6)

Choose a number σ such that max(r, s) ≤ σ ≤ min(p, q). Using (1.5),
Lemma B, (1.6), Hölder’s inequality, we obtain

‖Hf(·)‖σ
Lpq

v (G) =
∥

∥

∥

∥

∑

k≤m

(Hf)(·)χGk
(·)

∥

∥

∥

∥

σ

Lpq
v (G)

≤

≤
∑

k≤m

‖(Hf)(·)χGk
(·)‖σ

Lpq
v (G) ≤

≤
∑

k≤m

2σ(k+1)‖a(·)χGk
(·)‖σ

Lpq
v (G) = 22σ

∑

k≤m

2σ(k−1)‖a(·)χGk
(·)‖σ

Lpq
v (G) ≤

≤ 4σ
∑

k≤m

( ∫

xk−1<r(y)≤xk

b(y)f(y)w(y) dy
)σ

‖a(·)χ{r(y)>xk}
(·)‖σ

Lpq
v (G) ≤

≤ 4σ
∑

k≤m

‖f(·)χGk−1
(·)‖σ

Lrs
w (G)‖b(·)χ{r(y)<xk}

(·)‖σ
Lr′s′

w (G) ×

×‖a(·)χ{r(y)>xk}
(·)‖σ

Lpq
v (G) ≤ c‖f(·)‖σ

Lrs
w (G)

where the constant c does not depend on f .
Necessity. Let inequality (1.1) be fulfilled. If ‖f‖Lrs

w (G) ≤ 1 and t ∈
(0,∞), then we have

c ≥ c‖f‖Lrs
w (G) ≥ ‖Hf‖Lpq

v (G) ≥ ‖(Hf)(·)χ{r(y)>t}(·)‖Lpq
v (G) ≥

≥
∫

r(y)<t

b(y)f(y)w(y) dy ‖a(·)χ{r(y)>t}(·)‖Lpq
v (G).

Taking the least upper bound with respect to all such f and t, we obtain
condition (1.2).

If we apply the dual arguments (see also [8]), then we easily obtain

Theorem 1.2. Let the numbers r, s, p, q satisfy the conditions of Theo-
rem 1.1. For the inequality

‖H∗f(·)‖Lpq
v (G) ≤ c‖f(·)‖Lrs

w (G),

where the constant c does not depend on f , to be valid it is necessary and
sufficient that the condition

sup
t>0

∥

∥b(·)χ{r(y)<t}(·)
∥

∥

Lpq
v (G)

∥

∥a(·)χ{r(y)>t}(·)
∥

∥

Lr′s′
w (G)

< ∞



TWO-WEIGHTED INEQUALITIES FOR INTEGRAL OPERATORS 71

be fulfilled.

Analogous results for the operator Hf(x) = a(x)
x
∫

0
b(t)f(t)w(t) dt are

given in [16]. A certain analog in Rn was obtained in [8].

Corollary 1.1. Let 1 < r, s, p, q < ∞, max(r, s) ≤ min(p, q), γ < −Q
p ,

β = γr + Qr( 1
r′ + 1

p ). Then the inequality
∥

∥

∥

∥

r(·)γ
∫

r(y)≤r(·)

f(y) dy
∥

∥

∥

∥

Lpq(G)
≤ c‖f(·)‖Lrs

r(·)β (G)

holds, where the constant c does not depend on f .

2. Weighted Inequalities for Singular Integrals in the
Lorentz Spaces Defined on Homogeneous Groups

In this paragraph, the sufficient conditions are found for pairs of weights,
which provide the boundedness of a singular integral operator in the wei-
ghted Lorentz spaces defined on homogeneous groups.

First we investigate the existence of Tf(x).

Lemma 1. Let 1 < s ≤ p < ∞, ρ ∈ Ap(G). If the weight functions w
and w1 satisfy the conditions:

(1) there exists a positive increasing on (0,∞) function σ such that for
almost all x ∈ G we have the inequality

σ
(

r(x)
)

ρ(x) ≤ bw(x)wp
1(x),

where the positive constant b does not depend on x;

(2)
∥

∥

∥

1
w(·)w1(·)

χ{r(y)<t}(·)
∥

∥

∥

Lp′s′
w (G)

< ∞ for any t > 0,

then for arbitrary ϕ with the condition ‖ϕ(·)w1(·)‖Lps
w (G) < ∞, Tϕ(x) exists

almost everywhere on G.

Proof. Fix the number α, α > 0, and let

Sα =
{

x ∈ G : r(x) >
α
2

}

.

Take a function ϕ with the condition ‖ϕ(·)w1(·)‖Lps
w (G) < ∞. We write φ

as
ϕ(x) = ϕ1(x) + ϕ2(x),

where ϕ1(x) = ϕ(x) · χSα
(x), ϕ2(x) = ϕ(x)− ϕ1(x).
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For ϕ1 we obtain
∫

G

|ϕ1(x)|pρ(x) dx =
σ(α

2 )
σ(α

2 )

∫

Sα

|ϕ(x)|pρ(x) dx ≤

≤ 1
σ(α

2 )

∫

Sα

|ϕ(x)|pρ(x)σ
(

r(x)
)

dx ≤ b
σ(α

2 )

∫

Sα

|ϕ(x)|pwp
1(x)w(x) dx ≤

≤ b
σ(α

2 )
‖ϕ(·)w1(·)‖p

Lp
w(G) ≤

b
σ(α

2 )
‖ϕ(·)w1(·)‖p

Lps
w (G).

We find by Theorem B that Tϕ1 ∈ Lp
ρ(G) and Tϕ1(x) exists almost every-

where on G.
Now we shall show that Tϕ2(x) converges absolutely for r(x) > αc0. Note

that when r(x) > αc0 and r(y) < α
2 , we have r(x) ≤ c0(r(xy−1) + r(y)) ≤

c0(r(xy−1) + α
2 ) ≤ c0(r(xy−1) + r(x)

2c0
) and α

2 < r(x)
2c0

≤ r(xy−1).
We obtain

|Tϕ2(x)| ≤ c1

∫

{y:r(y)< α
2 }

ϕ(y)
r(xy−1)Q dy ≤ c2

αQ

∫

{y:r(y)< α
2 }

|ϕ(y)| dy =

=
c2

αQ

∫

{y:r(y)< α
2 }

ϕ(y)
1

w1(y)w(y)
w1(y)w(y)dy ≤

≤ c2

αQ ‖ϕ(·)w1(·)‖Lps
w (G)

∥

∥

∥χ{y:r(y)< α
2 }

(·) 1
w1(·)w(·)

∥

∥

∥

Lp′s′
w (G)

< ∞.

Since we can take α arbitrarily small, Tϕ(x) exists almost everywhere on
G.

The next lemma is proved in a similar manner.

Lemma 2. Let 1 < p, s < ∞, s ≤ p, ρ ∈ Ap(G). If the weight functions
w and w1 satisfy the conditions:

(1) there exists a positive decreasing on (0,∞) function σ such that for
almost all x ∈ G we have the inequality

σ
(

r(x)
)

ρ(x) ≤ bw(x)wp
1(x),

where the positive constant b does not depend on x;

(2)
∥

∥

∥

r(·)−Q

w(·)w1(·)
χ{r(y)>t}(·)

∥

∥

∥

Lp′s′
w (G)

< ∞ for any t > 0,

then for arbitrary ϕ with the condition ‖ϕ(·)w1(·)‖Lps
w (G) < ∞, Tϕ(x) exists

almost everywhere on G.

Lemma 1 readily implies
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Lemma 3. Let 1 < p, s,< ∞, s ≤ p. If u and u1 are positive increasing
functions on (0,∞) and

∥

∥

∥

1
u1(r(·))u(r(·))

χ{r(y)<t}(·)
∥

∥

∥

Lp′s′
u(r(·))(G)

< ∞

for arbitrary t > 0, then for any ϕ with the condition ‖ϕ(·)u1(r(·))‖Lps
u(r(·))(G)

< ∞, Tϕ(x) exists almost everywhere on G.

Analogously, Lemma 2 implies

Lemma 4. Let 1 < p, s < ∞, s ≤ p. If u and u1 are positive decreasing
functions on (0,∞) and

∥

∥

∥

r(·)−Q

u(r(·))u1(r(·))
χ{r(y)>t}(·)

∥

∥

∥

Lp′s′
u(r(·))(G)

< ∞

for arbitrary t > 0, then for ϕ with the condition ϕ(·)u1(r(·)) ∈ Lps
u(r(·))(G)

< ∞, Tϕ(x) exists almost everywhere on G.

Now we shall formulate and prove our basic theorems.

Theorem 2.1. Let 1 < s ≤ p ≤ q < ∞, σ be a positive increasing
function on (0,∞), the function ρ ∈ Ap(G), w a weight function on G,
v(x) = σ(r(x))ρ(x). Let the following conditions be fullfilled:

(1) there exists a positive constant b such that almost for all x ∈ G

σ
(

2c0r(x)
)

ρ(x) ≤ bw(x);

(2) ‖r(·)−Qχ{r(y)>t}(·)‖Lpq
v (G)

∥

∥

∥

1
w(·)

χ{r(y)<t}(·)
∥

∥

∥

Lp′s′
w (G)

≤ c < ∞.

Then there exists a positive constant c such that the inequality

‖Tf(·)‖Lpq
v (G) ≤ c‖f(·)‖Lps

w (G) (2.1)

holds for any f ∈ Lps
w (G).

Proof. Without loss of generality we can write the function σ as

σ(t) = σ(0) +

t
∫

0

ϕ(τ) dτ,
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where σ(0) = lim
t→0

σ(t) and ϕ(τ) ≥ 0 on (0,∞). We have

‖Tf(·)‖Lpq
v (G) ≤ c1

(

q

∞
∫

0

λq−1
( ∫

{x:|Tf(x)|>λ}

ρ(x)σ(0) dx
)

q
p

dλ
) 1

q

+

+c1

(

q

∞
∫

0

λq−1
( ∫

{x:|Tf(x)|>λ}

ρ(x)
(

r(x)
∫

0

ϕ(t) dt
)

dx
)

q
p

dλ
) 1

q

=

= I1 + I2.

If σ(0) = 0, then I1 = 0, and if σ(0) 6= 0, then by Theorem C and Lemma
A we obtain

I1 = c1σ
1
p (0)‖Tf(·)‖Lpq

ρ (G) ≤ c2σ
1
p (0)‖f(·)‖Lpq

ρ (G) ≤

≤ c2σ
1
p (0)‖f(·)‖Lps

ρ (G) ≤ c3‖f(·)‖Lps
w (G).

Now we shall estimate I2. Let f1t(x) = f(x) · χ
{r(x)> t

2c0
}
(x), f2t(x) =

f(x)− f1t(x). We have

I2 = c1

(

q

∞
∫

0

λq−1
(

∞
∫

0

ϕ(t)
( ∫

{x:r(x)>t, |Tf(x)|>λ}

ρ(x) dx
)

dt
)

q
p

dλ
) 1

q

≤

≤c4

(

q

∞
∫

0

λq−1
(

∞
∫

0

ϕ(t)
( ∫

{x:r(x)>t}

χ
{

x : |Tf1t(x)| > λ
2

}

ρ(x)dx
)

dt
)

q
p

dλ
) 1

q

+

+c4

(

q

∞
∫

0

λq−1
(

∞
∫

0

ϕ(t)
( ∫

{x:r(x)>t}

χ
{

x : |Tf2t(x)| > λ
2

}

ρ(x)dx
)

dt
)

q
p

dλ
) 1

q

=

= I21 + I22.

Applying Minkowski’s inequality twice ( q
p ≥ 1, p

s ≥ 1) and Theorem C, we
obtain

I21 ≤ c5

(
∞
∫

0

ϕ(t)
(

∞
∫

0

λq−1
( ∫

{x:|Tf1t(x)|>λ}

ρ(x) dx
)

q
p

dλ
)

p
q

dt
) 1

p

≤

≤ c6

(
∞
∫

0

ϕ(t)‖f1t(·)‖p
Lpq

ρ (G)dt
) 1

p

≤ c6

(
∞
∫

0

ϕ(t)‖f1t(·)‖p
Lps

ρ (G)dt
) 1

p

≤
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≤ c6

(
∞
∫

0

λs−1
(

∞
∫

0

ϕ(t)
( ∫

{x:|f(x)|>λ}

ρ(x)χ
{r(y)> t

2c0
}
(x) dx

)

dt
) s

p

dλ
) 1

s

=

= c6

(
∞
∫

0

λs−1
( ∫

{x:|f(x)|>λ}

ρ(x)
(

2c0r(x)
∫

0

ϕ(t) dt
)

dx
) s

p

dλ
) 1

s

≤ c7‖f‖Lps
w (G).

Next, we shall estimate I22. Note that if r(x) > t and r(y) < t
2c0

, then
r(x) ≤ 2c0r(xy−1). By Theorem 1.1 we obtain

I22 = c4

(

q

∞
∫

0

λq−1
(

∞
∫

0

ϕ(t)
( ∫

{x: (2c0)Q

r(x)Q

∫

{y:r(y)<r(x)}

f(y)dy> λ
2 }

ρ(x)χ{r(y)>t}(x) dx
)

dt
)

q
p

dλ
) 1

q

≤

= c8

∥

∥

∥

∥

1
r(·)Q

∫

{r(y)<r(·)}

|f(y)| dy
∥

∥

∥

∥

Lpq
v (G)

≤ c9‖f(·)‖Lps
w (G).

If we write the function σ as

σ(t) = σ(+∞) +

∞
∫

t

ψ(τ)dτ, where σ(+∞) = lim
t→+∞

σ(t), ψ(τ) ≥ 0,

on (0,∞), again apply Theorem C, Lemma A and Theorem 1.2, then we
shall have

Theorem 2.2. Let 1 < s ≤ p ≤ q < ∞, σ be a positive decreasing func-
tion on (0,∞), w a weight function on G, ρ ∈ Ap(G), v(x) = σ(r(x))ρ(x).
Let the following conditions be fulfilled:

(1) there exists a positive constant b such that the inequality

ρ(x)σ
(r(x)

2c0

)

≤ bw(x)

holds for almost all x ∈ G;

(2) sup
t>0

‖χ{r(y)<t}(·)‖Lpq
v (G)

∥

∥

∥

r(·)−Q

w(·)
χ{r(y)>t}(·)

∥

∥

∥

Lp′s′
w (G)

< ∞.

Then inequality (2.1) is valid.

It is proved in [8] that if inequality (2.1) is fulfilled for the Hilbert trans-
form, then the inequality v(x) ≤ b1w(x) holds almost everywhere on R1.
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Corollary 2.1. Let 1 < s ≤ p ≤ q < ∞, σ1 and σ2 be positive increasing
functions on (0,∞), ρ ∈ Ap(G), v(x) = σ2(r(x))ρ(x), w(x) = σ1(r(x))ρ(x).
If the conditions

(1) there exists a positive constant b such that the inequality

σ2(2c0t) ≤ bσ1(t)

holds for any t > 0;

(2) sup
t>0

‖r(·)−Qχ{r(y)>t}(·)‖Lpq
v (G)

∥

∥

∥

1
w(·)

χ{r(y)<t}(·)
∥

∥

∥

Lp′s′
w (G)

< ∞

are fulfilled, then inequality (2.1) is valid.

Corollary 2.2. Let 1 < s ≤ p ≤ q < ∞, σ1 and σ2 be positive decreasing
functions on (0,∞), ρ ∈ Ap(G), v(x) = σ2(r(x))ρ(x), w(x) = σ1(r(x))ρ(x).
If the conditions

(1) σ2

( t
2c0

)

≤ bσ1(t) for any t > 0;

(2) sup
t>0

‖χ{r(y)<t}(·)‖Lpq
v (G)

∥

∥

∥

r(·)−Q

w(·)
χ{r(y)>t}(·)

∥

∥

∥

Lp′s′
w (G)

< ∞

are fulfilled, then inequality (2.1) is valid.

Theorem 2.3. Let 1 < p ≤ q < ∞, σ1 and σ2 be positive increasing
functions on (0,∞), ρ ∈ Ap(G), v(x) = σ2(r(x))ρ(x), w(x) = σ1(r(x))ρ(x).
If v and w satisfy the condition

sup
t>0

‖r(·)−Qχ{r(y)>t}(·)‖Lpq
v (G)

∥

∥

∥

1
w(·)

χ{r(y)<t}(·)
∥

∥

∥

Lp′
w (G)

< ∞

then the inequality

‖Tf(·)‖Lpq
v (G) ≤ c‖f(·)‖Lp

w(G)

holds, where the positive constant c does not depend on f .

Proof. By Corollary 2.1. it is sufficient to show that the inequality

σ2(2c0t) ≤ bσ1(t)

holds for any t > 0.
Using Hölder’s inequality and Lemma C (ρ1−p′ ∈ Ap′(G)), we obtain

σ2(2c0t)
σ1(t)

≤

≤ c1
σ2(2c0t)

σ1(t)
t−Qp

( ∫

{x:2c0t<r(x)<4c0t}

ρ(x) dx
)( ∫

{x:2c0t<r(x)<4c0t}

ρ1−p′(x) dx
)p−1

≤
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≤ c2
σ2(2c0t)

σ1(t)
t−Qp

( ∫

{x:2c0t<r(x)<4c0t}

ρ(x) dx
)( ∫

{x:r(x)<t}

ρ1−p′(x) dx
)p−1

≤

≤ c2t−Qp
( ∫

{x:2c0t<r(x)<4c0t}

v(x) dx
)( ∫

{x:r(x)<t}

w1−p′(x) dx
)p−1

=

= c2t−Qp‖χ{x:2c0t<r(x)<4c0t}(·)‖
p
Lpq

v (G)

∥

∥

∥

1
w(·)

χ{r(y)<t}(·)
∥

∥

∥

p

Lp′
w (G)

≤

≤ c3‖r(·)−Qχ{r(y)>t}(·)‖
p
Lpq

v (G)

∥

∥

∥

1
w(·)

χ{r(y)<t}(·)
∥

∥

∥

p

Lp′
w (G)

< ∞.

Theorem 2.4. Let 1 < s ≤ p ≤ q < ∞; σ1, σ2, u1 and u2 be weight
functions on G, ρ ∈ Ap(G), v = σ2ρ, w = σ1ρ. Let the following three
conditions be fulfilled:

(1) there exists a positive constant b such that for any t > 0 we have the
inequality

sup
Ft

σ
1
p
2 (x) sup

Ft

u2(x) ≤ b inf
Ft

σ
1
p
1 (x) inf

Ft
u2(x),

where Ft = {x ∈ G : t
c0

< r(x) < 8c0t};

(2) sup
t>0

‖u2(·)r(·)−Qχ{r(y)>t}(·)‖Lpq
v (G)

∥

∥

∥

1
u1(·)w(·)

χ{r(y)<t}(·)
∥

∥

∥

Lp′s′
w (G)

<∞;

(3) sup
t>0

‖u2(·)χ{r(y)<t}(·)‖Lpq
v (G)

∥

∥

∥

1
u1(·)w(·)

r(·)−Qχ{r(y)>t}(·)
∥

∥

∥

Lp′s′
w (G)

<∞.

Then the inequality

‖u2(·)Tf(·)‖Lpq
v (G) ≤ c‖u1(·)f(·)‖Lps

w (G) (2.2)

is valid, where the positive constant c does not depend on f .

Proof. Let Ek = {x ∈ G : 2k < r(x) ≤ 2k+1}, Gk1 = {x ∈ G : r(x) ≤ 2k−1

c0
},

Gk2 = {x ∈ G : 2k−1

c0
< r(x) ≤ c02k+2}, Gk3 = {x ∈ G : r(x) > c02k+2}.

We estimate the left-hand side of inequality (2.2) as follows:

‖u2(·)Tf(·)‖p
Lpq

v (G) =
∥

∥

∥

∥

∑

k∈Z
Tf(·)u2(·)χEk

(·)
∥

∥

∥

∥

p

Lpq
v (G)

≤

≤ c1

∥

∥

∥

∥

∑

k∈Z
u2(·)T (f · χGk1

)(·)χEk
(·)

∥

∥

∥

∥

p

Lpq
v (G)

+

+c1

∥

∥

∥

∥

∑

k∈Z
u2(·)T (f · χGk2

)(·)χEk
(·)

∥

∥

∥

∥

p

Lpq
v (G)

+
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+c1

∥

∥

∥

∥

∑

k∈Z
u2(·)T (f · χGk3

)(·)χEk
(·)

∥

∥

∥

∥

p

Lpq
v (G)

= c1(S
p
1 + Sp

2 + Sp
3 ).

Next, we shall estimate Sp
1 . Note that for x ∈ Ek and y ∈ Gk1 we have

r(y) ≤ 2k−1

c0
= 2k

2c0
≤ r(x)

2c0
< r(x). Moreover, r(xy−1) ≥ r(x)

2c0
and we obtain

|T (f · χGk1
)(x)| =

∣

∣

∣

∣

∫

G

k(xy−1)f(y)χGk1
(y) dy

∣

∣

∣

∣

≤

≤ c2

∫

G

|f(y)|χGk1
(y)

r(xy−1)Q dy ≤ c3
1

r(x)Q

∫

r(y)<r(x)

|f(y)| dy

for any x ∈ Ek. By Theorem 1.1 we find that

Sp
1 ≤ cp

3

∥

∥

∥

∥

u2(·)r(·)−Q
( ∫

{r(y)≤r(x)}

f(y) dy
)∥

∥

∥

∥

p

Lpq
v (G)

≤ c4‖u1(·)f(·)‖p
Lps

w (G).

Let us estimate Sp
3 . As is easy to verify, for x ∈ Ek and y ∈ Gk3 we have

r(y) ≥ r(x) and r(xy−1) ≥ r(y)
2c0

. For x ∈ Ek we obtain

|T (f · χGk3
)(x)| ≤ c5

∫

{r(y)≥r(x)}

|f(y)|
r(y)Q dy.

By Theorem 1.2 we find that

Sp
3 ≤ cp

5

∥

∥

∥

∥

u2(·)
∫

{r(y)≥r(x)}

f(y)
r(y)Q dy

∥

∥

∥

∥

p

Lpq
v (G)

≤ c6‖u1(·)f(·)‖p
Lps

w (G).

Now we shall estimate Sp
2 . By Lemma B (second part) we obtain

Sp
2 ≤

∑

k∈Z
‖u2(·)T (f · χGk2

)(·)χEk
(·)‖p

Lpq
v (G) =

∑

k

Sp
k2.

Introducing the notation u2k = sup
x∈Ek

u2(x), σ2k = sup
x∈Ek

σ2(x), u1k =

inf
x∈Ek

u1(x), σ1k = inf
x∈Ek

σ1(x), by Lemma A and Theorem C we obtain

Sk2 ≤ u2kσ
1
p
2k‖T (f · χGk2

)(·)‖Lpq
ρ (G) ≤ c7u2kσ

1
p
2k‖f(·)χGk2

(·)‖Lpq
ρ (G) ≤

≤ c7u2kσ
1
p
2k‖f(·)χGk2

(·)‖Lps
ρ (G) ≤ c8u1kσ

1
p
1k‖f(·)χGk2

(·)‖Lps
ρ (G) ≤

≤ c9

[

∑

j

2js
( ∫

Gk2∩{|f |>2j}

up
1kσ1kρ(x) dx

) s
p
] 1

s

≤
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≤c9

[

∑

j

(u1k2j)s
( ∫

Gk2∩{u1f>u1k2j}

w(x) dx
) s

p
] 1

s

≤c10‖u1(·)f(·)χGk2
(·)‖Lps

w (G).

By Lemma B (first part) we have

Sp
2 ≤ c11‖u1(·)f(·)‖p

Lps
w (G).

In [8] (see also [1], [4]) it is shown that for the Hilbert transform conditions
(2) and (3) of Theorem 2.4 are necessary for inequality (2.2) to be fulfilled.

Remark 1. One can easily verify that Theorem 2.4 remains in force when
condition (1) is replaced by the condition

(1′) sup
r(x)
4c0

<r(y)≤4c0r(x)

(

σ2(y)up
2(y)

)

≤ b1σ1(x)up
1(x) for a.a. x ∈ G.

Now let us consider the case with radial weight functions.

Corollary 2.3. Let 1 < s ≤ p ≤ q < ∞; u1, u2 and v be positive
increasing functions on (0,∞) which satisfy the condition

sup
t>0

‖u2(·)r(·)−Qχ{r(y)>t}(·)‖Lpq
v(r(·))(G)

∥

∥

∥

1
u1(r(·))

χ{r(y)<t}(·)
∥

∥

∥

Lp′s′ (G)
=

= sup
t>0

B(t) < ∞.

Then the inequality

‖Tf(·)u2(r(·))‖Lpq
v(r(·))(G) ≤ c‖f(·)u1(r(·))‖Lps(G) (2.3)

holds, where the positive constant c does not depend on f .

Proof. First we shall show that the inequality

u2(8c0t)v
1
p (8c0t) ≤ bu1

( t
c0

)

holds, where the positive constant b does not depend on t. Indeed, using
Lemma A and Theorem A, we obtain

B(t) ≥ ‖u2(r(·))r(·)−Qχ{t<r(y)<2t}(·)‖Lpq
v(r(·))(G) ×

×
∥

∥

∥

1
u1(r(·))

χ
{r(y)< t

8c2
0
}

∥

∥

∥

Lp′s′ (G)
≥ c1t−Qu2(t)

(
2t

∫

t

v(τ)τQ−1dτ
) 1

p

×

× 1
u1( t

8c2
0
)

∣

∣

∣

{

y : r(y) <
t

8c2
0

}∣

∣

∣

1
p′ ≥ c2u2(t)v

1
p (t)

1
u1( t

8c2
0
)
.

Moreover,

B1(t) = ‖u2(r(·))χ{r(y)<t}(·)‖Lpq
v(r(·))(G) ×
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×
∥

∥

∥

1
u1(r(·))

r(·)−Qχ{r(y)>t}

∥

∥

∥

Lp′s′ (G)
≤

≤ c3u2(t)v
1
p (t)t

Q
p

1
u1( t

8c2
0
)
‖r(·)−Qχ

{r(y)> t
8c2

0
}
(·)‖Lp′s′ (G).

It is easy to verify that

‖r(·)−Qχ
{r(y)> t

8c2
0
}
(·)‖Lp′s′ (G) ≤ c4t−

Q
p ,

where c4 does not depend on t > 0. We have sup
t>0

B1(t) ≤ c5. Using

Theorem 2.4, we obtain inequality (2.3).

An analogous reasoning is used to prove

Corollary 2.4. Let 1 < s ≤ p ≤ q < ∞; u1, u2 and v be positive
decreasing functions on (0,∞) and

sup
t>0

‖u2(r(·))χ{r(y)<t}(·)‖Lpq
v(r(·))(G)

∥

∥

∥

1
u1(r(·))

r(·)−Qχ{r(y)>t}(·)
∥

∥

∥

Lp′s′ (G)
< ∞.

Then inequality (2.3) holds.

Now we shall give examples illustrating pairs of weights.

Example 1. Let 1 < p < q < ∞, v(t) = tp−1, w(t) = tp−1 lnγ 2π
t , where

p−1 < γ < p and γ = p
q +p−1. Then the pair (v, w) satisfies the condition

sup
0<t<π

‖| · |−1χ{t<|y|<π}(·)‖Lpq
v(|·|)

∥

∥

∥

1

w
1
p (| · |)

χ{|y|<t}(·)
∥

∥

∥

Lp′
< ∞

and therefore the inequality

‖ ˜f(·)‖Lpq
v(|·|)

≤ c‖f(·)‖Lp
w(|·|)

holds, where ˜f is the conjugate function and the constant c does not depend
on f .

Example 2. Let 1 < s ≤ p < ∞, p
s′ ≤ γ < p, s = p

p+1−γ (γ = p
s′ + 1).

Then the inequality

‖ ˜f(·)| · |
p−1

p ‖Lp ≤ c
∥

∥

∥f(·)| · |
p−1

p ln
γ
p

2π
| · |

∥

∥

∥

Lps

holds, where the positive constant c does not depend on f .
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Example 3. Let 1 < s ≤ p ≤ q < ∞, γ = p( 1
q + 1 − 1

s ). Then the
inequality

‖ ˜f(·)| · |
p−1

p ‖Lpq ≤ c
∥

∥

∥f(·)| · |
p−1

p ln
γ
p

2π
| · |

∥

∥

∥

Lps
(2.4)

holds, where the constant c > 0 does not depend on f . Inequality (2.4)
remains in force for γ > p(1

q + 1− 1
s ) too.
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