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SUFFICIENT CONDITIONS FOR THE OSCILLATION OF
BOUNDED SOLUTIONS OF A CLASS OF IMPULSIVE
DIFFERENTIAL EQUATIONS OF SECOND ORDER WITH
A CONSTANT DELAY

D. D. BAINOV AND M. B. DIMITROVA

ABSTRACT. Sufficient conditions are found for oscillation of bounded
solutions of a class of impulsive differential equations of second order
with a constant delay. Some asymptotic properties are studied for
the bounded solutions.

1. INTRODUCTION

The last twenty years have seen a significant increase in the number
of papers devoted to the oscillation theory of differential equations with a
deviating argument. The main part of these investigations is given in the
monographs [1], [2], [3].

On the other hand, the last decade has been marked by a growing interest
in impulsive differential equations due to their various applications in science
and technology. In the monographs [4] and [5] numerous aspects of their
qualitative theory are studied. However, the oscillation theory of impulsive
differential equations has not yet been worked out.

In the present paper we obtain sufficient conditions for the oscillation of
bounded solutions of a class of impulsive differential equations of second
order with a constant delay and fixed moments of the impulse effect.

2. PRELIMINARY NOTES

We consider the impulsive differential equations of second order

(rt)y ) =D pit)y(t —hi) =0, t#m, keN,

Ay () = o/ (7 4 0) — ¢/ (7 — 0) = Buy(me),
Ay(r) = y(mx +0) — y(m — 0) = 0,

(1)
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under the initial conditions
y(t) = o(t), te[-h,0], h=max{h;: i€ N,},
y'(0) = ¢'(0) = ;-

Here N,, = {1,2,...,n}; {7}, is a monotone increasing unbounded
sequence of positive numbers; {8 }72 ; is a sequence of positive numbers; h;,
i € N, are positive constants, R, = [0, +00); Ry = (0,+00); ¢/ (7 — 0) =
Y (Tk)- _ _

We denote by PC(R.,R) the set of all functions u: Ry — R which are
continuous for t € Ry, t # 73, (k € N), continuous from the left for t € R
and having a discontinuity of first kind at the points 7, € Ry (k € N).

Let us introduce the following conditions:

H1. ¢ € C%([-h,0],R).

H2. pi € PC(E+,R+), 1€ Nn

H3. r € PC(Ry,Ry), r(1x +0) >0, k € N.

(2)

Definition 1. We shall call a solution of equation (1) with the initial
conditions (2) any function y: [—h,+00) — R for which the following con-
ditions are fulfilled:

1. If —h <t <0, y(t) = p(¥).

2. If 0 < t < 71, the solution y(¢) coincides with the solution of problem
(1), (2) without impulse effect.

3. If i, <t < 7py1, k €N, the solution of problem (1), (2) coincides with
the solution of the integro-differential equation

r(t)y () = (e + 0)y/ (7 + 0) + Z pi(8)y(s — hy) ds

T

with the initial conditions (2).

Definition 2. The solution y(t) of problem (1), (2) is said to be oscilla-
tory if for each a > 0 we have

{t: ylt)>0,t>a} #2 and {t: y(t) <0, t>a}+#02.

Otherwise, the solution y(t) is called nonoscillatory.

3. MAIN RESULTS

Theorem 1. Let the following conditions hold:

1. Conditions H1-H3 are fulfilled.
t

2. lim R(t) = 400, where R(t) :/

t——+oo

ds
r(s)

0
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3. /R(s) Zpi(s)ds = +00.

Then all bounded solutions of equation (1) either tend to zero ast — +0o0,
or oscillate.

Proof. Let y(t) be a positive bounded solution of equation (1) for ¢t > ¢; > 0.
It is clear that y(¢t — h;) > 0 for ¢ > to = t1 + h. This fact, (1) and condition
H2 imply that the function r(t)y'(t) increases in the set M = [ta,75) U
o0
[ U (Ti,TH_l)], where 751 < t2 < 75. On the other hand, r(7;)Ay'(1%) =
=8
Ber(mk)y(7x) > 0 for 7 > to and therefore r(¢)y’(t) is an increasing function
for t > to.
The following cases are possible:
Case 1. Let r(t)y'(t) > 0 for t > ty. Since r(¢)y’(t) is an increasing
function for ¢ > to, there exist a constant ¢ > 0 and a point t3 > t5 such
that

y'(t) = ( o b2t 3)
We integrate (3) from ¢35 to t (¢ > t3) and obtain
y(0) 2 ylts) + / s @

Now (4) and condition 2 of the theorem imply that . ligrn y(t) = +o0, which

contradicts the assumption that y(¢) is a bounded solution.

Case 2. Let r(t)y'(t) < 0 for t > 5. Therefore y'(t) < 0, t > t5. On the
other hand, y(t) > 0 for ¢ > t5. Then it follows that there exists a finite
limit tl}m}O y(t) > 0. The assumption that r(¢)y’(¢t) < 0 and the fact that

r(t)y’(t) is an increasing function for ¢ > t5 lead to the existence of a finite
limit . ligl r(t)y'(t) <0.
— 100

Suppose that , ligl r(t)y'(t) = ¢1 < 0, i.e., there exists a point ¢ > to
— 100
such that for ¢t > ¢ we have

y'(t) < (5)

2r(t)

Integrating (5) from ¢ to ¢ (¢t > ¢ ), we obtain
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Thus (6) and condition 2 of the theorem yield lim;_, 1 o, y(t) = —o0, which
contradicts the assumption that y(t) is a positive solution of equation (1).
Therefore

lim r(t)y'(t) = 0. (7)

t——+oo

We integrate (1) from ¢ to t and arrive at
t n
r(t)y'(t) = r(t2)y' (t2) + Z Bir(7:)y(Ti) + /Zpi(s)y(s —h;)ds. (8)
to<T; <t to =1
Passing to the limit in (8) as ¢ — +oo and bearing in mind (7), we obtain
r(t2)y — Y Bir(my(n) - /Zpi(é’)y(s — hi)ds.  (9)
to<T; <00 to =1

We divide (8) by r(¢) > 0, integrate the equality obtained from ¢s to ¢
and obtain

y(t) = y(tz) + r(t2)y' (t2) [R(t) — R(t2)] +

+/ Zpl ) ds +

to

t

/ Z ﬁz ’7—1 z (10)
ts t<‘r,<5

It follows from (9) and (10) that

y(t) = y(t2) — [R(t) — R(t2) {Z/pz ) ds +

zlt

+ Y 5¢T(Tz‘)y(ﬁ)} / > Bir(m)y(r)ds +

to<T; <00 t <rmi<s

t

+ / [R(t) — R(s)] Zpi(s)y(s — h;) ds. (11)

to
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Hence

y(t) < y(tz) — [R(t) — R(tz)]{ Z Bir(Ti)y(Ti) +

ta<T; <00

+/Zpi(5)y(3hi)d5}[R(t)R(t2)] > Bir(my(n) +
io i=1

ta<7; <00

The latter inequality implies the relation

t

) < olta) + [ [Rlta) - ROV piCsluls — o ds -

ta

~ [R(t) - R(ts)] / > pils)yls — o) ds +

t i=1

i=1

=y(t2) + / [R(t2) — R(s)] Zpi(s)y(s — hi)ds —

— [R(t) - R(t)] / > pils)yls — i) ds,

t =1

ie.,

(t) < ylte) + R(t2) [ S piohuls — o) ds

t

- /R(s) Zpl(s)y(s — h;)ds. (12)

to

It follows from (8) and (12) that

y(t) < y(t2) + R(t2)r()y'(t) — Rlt2)r(t2)y'(t2) —
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) > Bir(n)y / sz ;) ds.

to<T;i <t

Therefore
t

t) < ylta) = R(t)r(t2)y' (1) — [ Rl ~R) Y- pils)ds, (13)

ta

where h = min{h; : i € N,}.
Now, from y(t) > 0 for t > t5 and from the fact that y(t) is a decreasing

function in [tg, +00) we have i[nf ]y(s —h) = y(t—h). Thus (13) yields the
s€(ta,t

inequality
y(t) < ylta) — R(t2)r(t)y' (t2) — y(t — R /R

If we suppose that , ligl y(t) = ¢ > 0, then the latter inequality gives
— 100
lim y(t) = —oo as t — 400, which contradicts the fact that y(t) is a

t——+oo

bounded positive solution of equation (1). Therefore . lir+n y(t)=0. O

Theorem 2. Let the following conditions hold:
1. Conditions H1-H3 are fulfilled.

) 7df_+
. T(t)_ 0.
0

1
3. limsupﬁ/ —t+h) Zpl )ds > 1,

t—too T
t—h

where h = min{h; : i € N, }.

Then all bounded nontrivial solutions of equation (1) are oscillatory.

Proof. Let y(t) be a bounded nonoscillatory solution of equation (1). With-
out loss of generality we may assume y(t) > 0 for ¢ > t; > 0. Then
y(t — h;) > 0 for t > tg + h = t;. Analogously to the proof of Theorem
1 we arrive at r(¢)y'(t) <0, t > 1.

Integrate (1) from s to t (¢ > s > t1) and obtain

r(t)y (t) = + > Bir(r)y(m) / sz hi)do. (14)

s<T; <t
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Now we integrate (14) from t — h to t, t > t; + h, and derive

t
r@)y' (t)h= [ r(s) Z Bir(1:)y(r;) ds +
t—/h t—/h s<T; <t
t
+/a—t—|—h Zp, i) do. (15)
—h

y(o —h), o €[t —h,t] and inf, ;. o, y(oc —h)=y(t—h).
Then (16) implies

Since y(t) is a nonincreasing function in [t1,4+00), we have y(o — h;) >

0> r(t)yt) — rt)y(t —h) +y(t —h) / o—t+h] sz ydo. (17)
t—h
Divide (17) by r(t)y(t — h) > 0 and obtain

t

y(i](t)m * Hﬁ) J o=t h Lo - 1} ="

t—h

The latter inequality contradicts condition 3 of Theorem 2. [J
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