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ASYMPTOTIC DISTRIBUTION OF EIGENFUNCTIONS
AND EIGENVALUES OF THE BASIC
BOUNDARY-CONTACT OSCILLATION PROBLEMS OF
THE CLASSICAL THEORY OF ELASTICITY

T. BURCHULADZE AND R. RUKHADZE

ABSTRACT. The basic boundary-contact oscillation problems are con-
sidered for a three-dimensional piecewise-homogeneous isotropic elas-
tic medium bounded by several closed surfaces. Using Carleman’s
method, the asymptotic formulas for the distribution of eigenfunc-
tions and eigenvalues are obtained.

1. After the remarkable papers of T. Carleman [1-2] the method based
on the asymptotic investigation of the resolvent kernel (or of any other
function of the considered operator) with a subsequenet use of Tauberian
theorems has become quite popular. By generalizing Carleman’s method
(and combining it with the variational one) A. Plejel [3] derived the asymp-
totic formulas for the distribution of eigenfunctions and eigenvalues of the
boundary value oscillation problems of classical elasticity. Mention should
also be made of T. Burchuladze’s papers [4-5], where the asymptotic formu-
las for the distribution of eigenfunctions of the boundary value oscillation
problems are obtained for isotropic and anisotropic elastic bodies using in-
tegral equations and Carleman’s method. Further progress in this direction
was made by R. Dikhamindzhia [6]. He obtained the asymptotic formulas
for the distribution of eigenfunctions and eigenvalues for two- and three-
dimensional boundary value oscillation problems of couple-stress elasticity
which generalize analogous formulas of classical elasticity. In his recent work
M. Svanadze [7] derived the asymptotic formulas for oscillation boundary
value problems of the linear theory of mixtures of two homogeneous isotropic
elastic materials.
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2. Throughout the paper we shall use the following notation: z =

. 1/2

(z1,72,73), y = (Y1, y2,y3) are points of R3; |z —y| = (Zi:l(frk *yk)z) /
is the distance between the points x and y; Dy C R? is a finite domain
bounded by closed surfaces Sp,S1,..., Sy of the class Qa(a) 0 < o < 1
[8] with Sy covering all other Sy while the latter surfaces not covering each
other; S; N Sy = @ for ¢ # k, i,k = 0, m; the finite domain bounded by S
(k = T,m) will be denoted by Dy; Do :ADOLJ(kQOSQ,IZC: Dy, U S,

k=1m.

If u and v are the three-component real vectors u = (u1, ug, u3) and v =
(v1, vg, v3), then uv = Z?zl u;v; is the scalar product of these vectors; |u| =

i=1 Ui

column; the sign [-]7 denotes the operation of transposition; if A = || A;;||l3x3
. . 3
is a 3 x 3 matrix, then |A|? = D=1
treated as a 3 x 1 one-column matrix: u = [|ug|[3x1; Ar = [|Ajx[3=; is the
k-th column vector of the matrix A.

The vector u = (ug,us, uz) will be called regular in Dy, if

u; € CH(Dy) N C*(Dy), i=1,2,3.

(23 u2)1/2. The matrix product is obtained by multipliing a row by a

2 - .
A3 Any vector u = (u1, ug,us) is

A system of differential homogeneous equations of oscillation of classical
elasticity for a homogeneous isotropic elastic medium has the form [8]

pAu 4 (X + p) grad divu + pw?u = 0, (1)

where u(z) = (u1,us,us) is the displacement vector, A is the three-dimen-
sional Laplace operator, p = const > 0 is the medium density, w is the
oscillation frequency, A and p are the elastic Lamé constants satisfying the
natural conditions

w>0, 3A+2u>0.

We introduce the matrix differential operator
2

A((‘)x) = HAU@x A”((‘)w) = (Sijup_lA + (/\ + /J) !

s P 9 bz’

where ¢;; is the Kronecker symbol. Then equation (1) can be rewritten in
the vector-matrix form

A(0p)u + w?u = 0. (2)
The matrix-differential operator
T(0z, () = || Tij (0 () |5, 5

where

T@emla)) = Mo imi(e) g 4+ A0 ny (e g + e gy
j 7
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n(x) is an arbitrary unit vector at the point z (if € Sy, then k = 0,m
is the normal unit vector external with respect to the domain D) is called
the stress operator.

It will be assumed that the domains Dy, k = 0, mg are filled with homo-
geneous isotropic elastic media with the Lamé constants Ay, p and density
Pk, while the other domains Dy, k = mg + 1, m are hollow inclusions. When
the operators A and T contain A\, and pj instead of A and u, we shall write

k k
A and T, respectively.
We introduce the notation

() = li k=0,m:; u (2)= li , k=1 .
ut(z) = lim __ u(z), om; u(z) = lim o ou(z) ;Mo

The notation (7'(9., n(z))u(z))i has a similar meaning.
3. A Kupradze matrix of fundamental solutions of the homogeneous
equation of oscillation (2) has the form [8]
Pz —y,0”) = [Pis (@ = y,0%) |55
where
pak‘] eikQ’r‘ 1 82 e’ik‘lT _ eik‘gT

T dmp v 4Aww? Oy, Oz T

Tyj(z —y,w?) ) (3)
i is the imaginary unit, » = |z — y|, k1 and ks are the nonnegative numbers
defined by the equalities

2 pw?

2
w
ki §:L~

A t
Let s be an arbitrary real fixed positive integer and s > 37y be an
arbitrary number. If in (3) we replace w = i3, then we obtain

(4)

»xr xr T

porj e <2 1 0% e r —e =

)

Tpi(z —y, —»%) =

k(T =y, =) drp 1 47522 Oy, O T
where ¢ = (A +2u)p~!, ¢2 = up~!. Since u > 0 and 3\ + 2 > 0, we have
A+p>0and A+ 2u > p. Hence ¢ > c2 and cfl <c§1. Let 0 < i be
an arbitrary positive integer. Then (5) can be rewritten as

— 071 3T
2 P(Sk‘ _ €
ij(x—y,—%):4mje CT——+
1 82 —aur (6_6%T 6_61%T> (6)
4732 Oxy, O ¢ T ro /)

where §; = £ —aq = 2 Li§>0.

c2 2 c1
Moreover,
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0] e~ e axr 1 or
1 7( —aQur ): —51%7‘<_1_7 >7;
) 0z N r 2z C el 0z
62 6—61%’[“ e~ 3
2 ( — QT ) — —61%7’ (3 .
@) Oz, Ox; ¢ T . + ) e
1, 2) or Or e 7 o ( 1 or
1) 0 Or (1 L) 2
+c§ e Oz Oz, + PR Co ) Oks Oxy,
(3) the functions (sr)"e~%1%" n =10,1,2,... are bounded in the inter-

val 2¢ € [0, +00).

Taking into account the above arguments, from (6) we obtain the esti-
mates

O"Tpy(z — y, —5%) - const
dxl dah ok - orntl

i+7+k=n n=0,12,...; pqg=1,3.

e, (7)

4. Let z,y € Dy, k = 0,mg and [, be the distance from the point y to
the boundary of Dy.
Denote py(x) = max{r,l,}. and introduce an auxiliary matrix

rm

Py (z)

to v = 1= (1= ) R

k
where I'(x — y, —3?) is the Kupradze matrix of fundamental solutions for

k
the operator A(dx) — »*Z (Z is the 3 x 3 unit matrix).
We denote by B(y,l,) a sphere of radius [, and center at the point
y, and by C(y,l,) its boundary. It is easy to verify that (1 - pT—Tz))n
Y
vanishes together with its derivatives up to the (n — 1)-th order inclusive
when the point z € B(y,[,) tends to the point of the boundary C(y,1,).

For z € Di\B(y,l,) we have

1= (1)

and

Jim [1 (1- - )} =1
B(y,ly)3xz—2€C(y,ly) p:}n(m)
Thus

% k
F(.’E - Y, _%2) = F(ZE - Y _%2)
for x € Dy\B(y,1,), while, in passing the boundary C(y,1,), the function

k
I and its derivatives up to the (n — 1)th order inclusive remain continuous.
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~

k
We write I' as
x ok )
D(z —y,—3") =T(2 —y,—) ("™ /oy (x) + ).
*
It is easy ti find that T and its derivatives up to the (m — 2)-th order

inclusive are continuous for x = y, while for = € B(y, l,) we have, by virtue
of (7), the estimates

%
‘asrpq(x —y, —2) ‘  const e pm—s—1 (9)
dxt dal dak Ly ’

Y
pq=13, i+tj+k=s m>s+1.

5. We determine the limit

k k
lim [F(:E —y, =) = T(z -y, —%g)}
T—Y

) xvyeDlw kzoamO'

Taking into consideration the expansion

xr

e 1 P 3,
=TT s or sl T
r r ca 2 3¢
we obtain
e Q"
e 2 e &2 5o — x5 —
1 — =
(1) T r Co 2! c2 T
e e e 11 1 1
p TR (L) el )
(2) r r 7 cl+02 + 202 212 rr
3 1 Ly o
+%(_3!c§’+3!c§>r+ ’
9 e —e = 1 1 0?r
: e
3) dxy, Oz T a1 213/ Oz 8:Ej+
n 3( 1 1 ) 0?r? N
P 4.
6c3  6¢3/ Oy, Ox; ’
d?r?
4) ——— = 20y;.
4 Oxy, Ox; k

By virtue of the above relations we have

k k
%IE;J [qu(x -, _%2) —Tpg(z —y, _%g)} =

_ G =90 o= 1 1 }5 _
amy? 127 (e +2p)3/2 22 |
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(0 — %)pi/Q 1 2

= + Opgy Prq=1,3. 10
127 (A + 25 )3/2 Mi/2 pa (10)

6. Our further investigation will be carried out for the first problem.
The other problems are treated analogously.
We apply the term “Green’s tensor of the first basic boundary-contact

k
problem of the operator A(9z) — »3Z” to the 3 x 3 matrix G(x,y, —»3) =
k m R
G(z,y,—33), r € Dy, y € D (D = kL_JOOD;C), x # vy, k € 0, mg which satisfies

the following conditions:
(1) Vee Dy, VyeD, x £y :

k k k
A(0x)G(z,y, —%3) —%gG(a:, Y, —%8) =0, k=0, mo,

(2) Vz € Sk, Vye D Co¥+(x,y, —}) = é’ — (z,y, =),
(D(0.n(2)G 2y —2)) " = (T(0. () G20y, —52)) " k= Tmo,
3)Vze Sk, VyeD:GH(zy,—2) =0, k=0,mo+1,...,m;
(1) Gla,y, ) =L(a — y, &)~ (2,9, ). € Dy, y D, k=T,
where 5(3:, y, —»¢) is a regular in Dy, solution of the following problem:
(1) Va € Dy, ¥y € D : AOn)f, y, )= 32w,y —32) = 0, k = 0.mp;
(2) V2 € Sk, Yy €D : gt (ny, —32) — 4 (z,y,—52) =
(= yo—) Dz =y =),
(T(0u ()i, ) = (10, ()29, —3)) ™ =
= %(@,n(z))lg(z —y, ) — Ik“(@z,n(z))llg(z — 1y, —3), k=1, mp;

(3)Vz € Sy, Vye D : gt (zy,—) = f‘(z —y, =),
k=0,mo+1,...,m;
The solvability of this problem is shown in [8] and thereby the existence of
G(z,y, —33) is proved. As is known [8], G(x,y, — 35 ) possesses a symmetry
property of the form

Gla,y, —»5) = G (y, 2, —). (11)
Moreover, we have the estimates [9]

V(Jf,y) € Dk X Dk : qu('r7y7 _%8) = O(|$ - y|71)7

5 s — (12)
ngq(x,y,—%o) =0(Jlz—y|™°), mn,j=1,3; k=0,mp.
J
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7. Let u(z) = lkt(:c)de v(z) = 5(:5), x € Dy, be arbitrary (regular)
vectors of the class C'(Dy) NC?(Dy,), k = 0, mg. Then the following Green
formula is valid [8]:

< kkk k o, , %0
Z /(vAu + E(v,u))dx = /v+(Tu)+ds +
k=075, %
< oy, %0 k_ Kk
+> /(v+(Tu)+ — 0~ (Tu)”)ds, (13)
k=1,

where S = Sy U Sk,
k=mo+

=myo 1
k
kE k& 7p,;1(3/\k+2uk) ko kPR vy
E(v,u) = S T divodivu + 5 pééq (78%
k k k 1 k k k k
0vg\ (Ou,  Oug Pr Mk 0v,  0vg\ (Oup, Oug
— )=+ — |l ) (14
+axp)(axq axp)+ 3 Z(ax,, axq><axp ax) (14)

)

k gk ok k kok kg k
It follows from (14) that E(v,u) = E(u,v) and E(v,v) > 0.

For the regular in Dy, k = 0, mg vector u(x) the following general integral
representation is valid [8]:

Yy € Dyt ui(y) = — Z / Ty (@ — g, —52) (A(D)hi(x) — 28(2))da +
k=0

o

4 [ (e = =) (F @) -

S
— & (2)T(Dz, n(2)T5 (2 — g, —52)] .S +
+y / [05(2 — g, —32)(T(0-,n(2))a(=))* —

k:lsk

k k &
~Tj(z =y, =) (T(0:,n(2))u(2)) "] d=S —

—u‘(z)(T(@mn(z))f‘j(z -, —%2)}sz, j=1,2,3. (15)
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8. To establish the asymptotic behavior of eigenfunctions and eigenvalues
we have to estimate the regular part of Green’s tensor g(w,y, —?) as » —
oo. To this end we consider the functional

L) =3 / (B(h, &)+ 5262)de — 23 / [0 (2)T(02n(2)) x
k:ODk k:lsk
X k K
xDj(z —y, =) —u (2)(T(0:,n(2))Lj(z —y, —5)|d.S,  (16)

where 7 = 1,2, 3 is the fixed number and y is an arbitrary fixed point in Dy,
k = 0,mq, which is defined in the class of regular in Dy, k = 0, mq, vector
functions satisfying the conditions:

(1) Vz € Sp: iH(z) — i (2) = Dy — g, —52) — T (= — g, —32),
(i) = (Th(2) " = F(0.n()E (=)=
T(0:,n(2))T(z — y,o—%2), k=1,mq,

(2)Vz€Sk: ut(2) =T;(z —y,—5%), k=0,mo+1,...,m.

Theorem 1. The functional L takes a minimal value for u=g;(x,y,—?).

Proof. Let u be an arbitrary vector from the domain of definition of the
functional L, and let v = v — g;. Then, with (14) taken into account, (16)
implies

< L A ko k
Ll = Lo+ 95) = Y [ (BG+ G54 8,)+ 22+ §,)%)da -
k=0p,

i k ook kokok kkok k Kk k
= Z/ [E(vm) +2E(v,9;) + E(95,9;) + 2 (v? + 2vg; + gjz)}d;v —

[ele} mo [ele} N
—Z/ [8+Trj—5—5“1’3j]d8—22/(§j+nj b TT)ds =
k=14, k=14,
— k koK oko — k ok ok
= L[g;] +Z/ [E(v,v) + x“v ]da:—!—ZZ [E(v,gj) +

k:ODk k:ODk

o [elNe)
+5200, ) da — 2 Z/ [+TT, — §-TT,]ds. (17)
k:lsk
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Using the Green formula (13) for v = u — g;, v = g; and taking into
k [e]
account that Af]j = %25]-, vi(z) =0for 2z € Sk, k=0,mg+1,...,m, we
obtain
i k ko okk o [rop 2o vy ko Kk
Z [E(v,gj) + vgj]dm = Z [v (Tg;)™ —v (Tg;) |ds. (18)
k=05, k=18,

° o4 k ) kk
Now, since v (z) = 7’3_(,2), (Tg;)*" — (ng)_ =1TT; =TT, for z € Sk,
1,mg (17) by virtue of (18) takes the form

k

mo k
Llu] = Lig;] + Z/ [E(©,0) + 5°0%]dz > Llg;]. O
k=07,
Theorem 2. The estimate

const
|gjj(y7yv 7%2) - gjj(ya Y, 7%8)| S W? Y € D7 6 > 07 (19)
Yy

holds for the function gj;(y,y, —3?).

Proof. We write formula (15) for u;(x) =g;;(z,y, —»°) and T'j(z—y, —»*) =
G;j(z —y, —5*). Then taking into account the boundary and contact con-
ditions for g and G, we get

V(a:,y) € Dk : gjj(xaya _%2) =

(o)

== [y = =) (Tl (2.~ e -

+ Z/ [Gf”(z, x, —%2)70“(82, n(z))lgj (z -y, _%2) _

k=1
kS k k
Tz — =z, —%2)(T(8z, n(2))G;(z,y, —%2))_]d25’. (20)

Using formula (13) for w = v, (16) can be rewritten as

L=~ / Z[fi(am){i(z) — (x| da + /&+(z)(%a(z))+dzs +

k=0p, s
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+ Z/ [0 (=) (PR(2)) " — 6 (2)(Th(=))]doS —

k:1sk

Lig]l = [ T3z =y, —s2)T(0s, n(2)); (2 — g, —2)dS —
S
—/19‘](2— Y —%2)(T(8Z,n(z))éj(z Yy —%2))+dz5+
S
+ Z/ [T}z — g, =) T (0, n(2))T; (2 — g, —5?) —
kflsk
k k
—Dj(z —y, —#*)T(0.,n(2))L (2 — y, —5°)|d.S +
3 [ [0 o) T @ — .0 -
k:lsk
k k
_Gj (Z7ya %2)T(8Z TL(Z))FJ(Z ) _%2)]sz -
= [ 5= 0 =)@ nl2)Gis e, —) -
kZISk
k k k
_Fj (Z - Y _%2)(T(327 ’I”L(Z))GJ(Z, Y, _%2))7]612‘5" (22)

On the basis of (22), from (20) we obtain
953y, y, =) = Llg;] — /Fj(z =y, =) T(0:,n(2))L(2 =y, —2*)d: S +
S
3 [ 5= 3 =A@ ) -

kilSk
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k

The vector I'j(z — y, —3?) defined by (8) belongs to the domain of defi-
nition of the functional L and, since g;(z,y, —»?) imparts a minimal value
to the functional L, it is obvious that

Llg;] < L[T';].
Now (23) implies

955y, y, —3%) < L[fj] — /FJTFJdS +
S
o o 0o k kk
+Z/(PjTFj —I;TT;)ds, y € Dy. (24)
kzlsk

By virtue of the properties of I', from (21) we obtain

L[f]} = — / f](Af] — %zfj)dl’ + /fj%fjds -
B(y,ly) S
mo o oo k kk
-> /(rorj —T;TT,)ds. (25)
k:lsk

By (25) and (24) we have

gjj(y7y7 _%2) S — / fj(AfJ — %ij)d.’lﬁ, Yy S Dk, k‘ = 0,m0. (26)
B(y,ly)
Taking into account estimates (9), for m = 5 we obtain

EN const

T (2,9, 7%2)| < for s=0,
Y
= const e” >
|%2Fij(xay77%2)| < %21757" =
y
const o, o5 o\ _ ., _ const
= ——r°(re < for s=0,
B 3
Y y
B t
‘AFj(x,y, —%2)’ < COISIS for s=2.
ly
Hence (26) implies
9 const 4 . const _ const
gjj(yay7 - ) < l;j : gﬂ'ly < ly = lzlJ+6 ) (27)

where § > 0 is an arbitrary integer.
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Let us estimate g;;(y,y, —»°) from below. For this we introduce the

notation:
M =Y / [E(h, 8) + 5242 dz, Mofu] =S / B0, ) + 525 da,
]fZODk k::ODk
Nlu] = Z/ [13+(Z)TFJ<Z —y, =) —u (z)%l&j(z Y, %2)}(1,35
k=1g

Since »¢ < 32, we have
L{g;(z,y, —5*)] = min L[u] = min(M[u] — 2N[u]) > min(M,[u] — 2N[u]).
Let the vector function ¢(x,y) impart a minimal value to the functional
My[u] — 2Nu]. Then ¢(z,y) is a regular in Dy (k = 0,mq) solution of the
following problem:
k
(1) Ve € Dy,Vy € D : A((‘?x)g]z(x,y) - %gg(x,y) =0, k=0, my;
° o k
(2) V2 € St,Vy € D ¢*(2,9)— & (2,) = Dz —y, —5*) T (z—y, ),
o 45 kL oo kk
(Te(z,y)" = (Te(z,y))” =TL(z =y, —2*) = TT (2 — y, —5);
(3) Vz € Sk,Vye D : g%“‘(z,y) =T(z—y,—»%), k=0,mg+1,...,m.
Rewriting formula (15) for ¢(x,y) with T' = G, we obtain

V(x,y) € Dy : p(z,y) = f/I‘j(z -z, f%Q)TGj(z,y, fxg)dzs +
S

+Z/ [é] (2, x, —%g)r}fo‘j(z,y, —?) — G, (z,x, —%8) X
k=13
k k o o oo
Ty s = Y [ [5G = 2 (FC (e —s8) " -
k=18
k k&
—I'j(z — =, —%2)(TGj(z, Y, —%g))]dzs. (28)

By (7) and (12) and the theorem on kernel composition [10] it follows
from (28) that

const -
9 k:05m07 ra:y: |.'I;_y| (29)
Txy

V<J},y) € ﬁk: X Dk : |<p(x,y)| <

In that case

Llg;(z,y, —”) > Mole] — 2N[p] > —2N[¢] =
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mo
o ° o k_ k k
:—22/ [0 (2,y)TT;(z—y,—5*) — ¢~ (2,9)TT;(z—y,—*)]d.s. (30)
k=1g,
Now taking into account that
const 1
V(Z7y) € Sk X Dk : |<p(z7y)\ < < 7
T2y Ly
const const
V(z,y) € Sk x Dy : |TTj(z —y, =) < —5— = 5 <
sz rzyrzll
1 1
< - 0>0
f— _5) )
li Tgy
from (30) we obtain
const
Llg;] > _W’ d>0.

By virtue of representation (23) we can easily conclude that the estimate

const
VyeD: g(y,y,—»") > — (31)
Y

holds.
(27) and (31) imply (19). O

9. Consider the first boundary-contact problem on eigenvalues: In the

domain Dy, (k = 0,my), find a regular vector w(z) = &(x), x € Dy, which
is a nontrivial solution of the equations

k
Vo € Dy : A(@x)z’f)(x) + ’}/{Z(I) =0, k=0,mo,
satisfying the contact conditions

Vze Sy wt(z) =t (2), (Tw(z)" = (:'F{“u(z)): k=T, mo,

and the boundary condition
Vz € Sk : ﬂﬁ(z) =0, k=0mo+1,...,m.

We denote this problem by I,. In the same manner as in [8] we can show
that problem I, is equivalent to a system of integral equations

w(z) = (v + ) / Gz, y, —2)w(y)dy. (32)
D
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By virtue of (11) and (12) equation (32) is an integral equation with
a symmetric kernel of the class Lo(D). Hence it follows that there ex-
ists a countable system of eigenvalues (7, + »3)2%; and the corresponding

orthonormal in D system of eigenvectors {w(™ (z)}>2, = {t’f} ™ (x)}e,,
x € Dy, k = 0,mg, of equation (32). Therefore (7,)5%, and {w™ (x)}5,
are respectively the eigenvalues and eigenvectors of problem I,. As estab-
lished in [8], all v, > 0. Moreover, it is proved in [11] that the system
{w™(2)}22, is complete in Ly(D). The properties of the volume potential
[8] imply that eigenvectors are regular.

10. Hardy and Littlewood’s theorem of the Tauber type [12] plays the
major part in deriving asymptotic formulas.

Theorem 3. If a nondecreasing function ®(t) is Stieltjes summable, and
for x — oo the asymptotic representation

7 do(t) P
(x+t)t  am’
0
where I, m,p satisfy the conditions 0 < m <, p# 0, is fulfilled, then

pF(l) tl*’ln
()T —m + 1)

B(t) ~

Here T is the Euler function.

Write the kernel expansion in terms of the eigenfunctions

o~ w™ (@) x wlm (y)
G(‘Ta Y, 7%2) = Z by ) (33)
n=1 Tn +
L () < w(y)
G(CL’, Y, _%2) = ) (34)
’ ; Yo + 32

where x,y € Dy, k = 0, mg, and the symbol x denotes the matrix product
of a column vector by a row vector (dyadic product) w(™ (z) x w(™ (y) =

||w£") (x) -wén) (y)]| 4,4 =1,2,3. From (33) and (34) we obtain

= z) x w™(y
Gy, =) =Gl ) = 0 =) 32 ey )
net \In n 0

Passage in equality (35) to the limit as  — y results in

00 (")( 2
y)] . 2
E = lim [T (x — y, — %) —
ot “/n-l-% )(n + #3) Il~>y|: i@ =y, =)

_Fjj (.13 - Y _%O)] - hm [g]] (I Y, — ) — 955 (ZE? Y, _%g)} ’ (36)
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z,y € Dy, k=0,mg, j=1,3.
Taking into account (10) and (19), we find from (36) that
i (n)( LY ! ], 67
(7n + 32) (Y +52)  127(se + s20) | (A + 2u1)3/2 ”i/Q )

yEDka k:07m07 ]:1773

n=1

Consider the function

[ ()2 .
D,;(t) = E 773_’_%2 y€ Dy, k=0,mg, j=1,3.
'Yngt " 0

It is easy to observe that

™
)?
/t+%2 Z ’yn+% (Yn +3)

5 =
y (37) we have

Tdo (1) A
e 38
[~k (38)
0
where
A P’ { 1 L2
k= .
127 | O 22 7
By Theorem 3 with regard for (38) we obtain
(n) .12
w; ApIN(1 2
@j(t) _ Z [ J (y)i - f ( 2 /2 fA;gtl/Z. (39)
<t Yn + g F(i)r(g) ™

Obviously,

t t

S = [(€+ R0 = €+ R0, - [ #i(6as
0

Yn <t 0

Taking into account (39), we obtain

n 2 o
S WV ~ oo A2,y € Dy, k=0mg, j=13.

Yn<t
If we sum these relations with respect to j = 1,2, 3, then we shall have

n 2
> VW~ ZAd2, yeD,

Yn <t
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or

S [t ™ ()] ~ oi” [ ! +2 |82, ye Dy, k=0mg. (40)
j y k> =Y, Myo.

st ’ 62 [ (Ae+2u)3/2 32

The above expression provides the asymptotic distribution of eigenfunctions.
11. Taking into account (10), from (36) we obtain

( 2 2) .- [w(n)( )]2 3( )A
o — X = M — M L+
) 2 5 ) (v + ) °
3
+> (95w y, %) — 955 (v, y, =) (41)
Jj=1
Denote
3
oy, ) =303 — 20) Ak + Y [0;5(0, 9, —5%0) — 9 (v, 4, =)
j=1
Now (41) yields
ey, ) < [w™ (y) [w™ (y
%27%(2) ;(7714’%0)7 +%2 _g 77l+%0 ( )

By virtue of the Bessel inequality we have

o [w™) ()] / 2412
— =< [ |G — d Dy, k=0,mqy. (43
Z (7n+%§)2 - | (fZ?,y7 J40)| Y, HAS ks , Ty ( )
D
By estimate (8) it follows from (42) that the sum of the series

i [w™ (2)]?
= (yn + #3)?

exists and is uniformly bounded in Dy. This and (42) imply

Yy € Dy, : |o(y, 2)| < const(s* — »3), k=0,mp. (44)

Integrating equality (42) in D and using the fact that the vectors

[w(™ (2)]22, are orthonormal in D, we obtain

[etwaty =2 =) s @)

D

/w(y,%)dy=/ (50— %oAkdy+/Zi: (955 (Y, v, —25) —

D D
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mo
~9;;(y,y, —3)|dy = 3(5¢ — 30) Y Apmes Dy +
k=0
3
+ / (955, v, —5) = 935y, y, =) ]dy. (46)
Jj=1 D
By (46), from (45) we have
> 1 3
— A ‘D =
2 (gt ) (1 +32) 7t 2 RIS P
3
1
= m Z/ [gjj (Y, v, —%(2)) = 95 (Y, —%2)]dy. (47)
Jj=1 D

Denote by Dy, that part of Dy, k = 0,mg, whose points lie from the
boundary Dy, at a distance less than n. D, = ;QOOD;W. Then

/ [gjj (yv Y, _%g) — Gjj (y? Y, _%2)] dy = / [gjj (yv Y, _%(2)) -

D DD,
~955 (. y, =) | dy + /w(yv%)dy - /3(%— »0) Ardy.
D, D,

This and (47) imply

o0 1 3 mo
- Apmes Dy | <
; (’y”—"_%(Q))(’Yn"'%Q) %"‘r%o];) k k| =
1 1 3
2
< 72— /@(y,%)dy‘ +m ' / (955 (Y, y, —543) —
Do 7= p\p,

/ Akdy‘. (48)

m

3
g _)1d
955y, y, — )] y‘+%+%0

The following estimates are valid:

3 3 Ml 3
Apdy| = / Apdy| < const , 49
P / ky’ P kgo ky’_ P (49)
n "Dy
| [ el < TR s = constn, (50)
S — > ———5 (" — »5)n = cons
%2 _ %8 90 y7 y = %2 _%g 0 7] T}a

D,
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1
2_,2
72— 3

const 1

2,26
o

1945 (s y,—25) = 935 (y, y,—30) | dy| < . (51)

D\D»,

3
Jj=

1
The validity of (49) is obvious. (50) and (51) hold by virtue of (44)
and (19), respectively. It is important to remark here that the constants

appearing in (49), (50) and (51) do not depend on s and y. Consider the
function

1
=20 s
Yn <t Tn 0
It is easy to verify that
/ do(t) i 1
b+ 2 (gt ) O + #2)
0 n=

By of (49), (50) and (51) we find from (48) that

/ do(t) 327, Armes Dy
t+ 52 P

0

for n = %2%%3 According to Theorem 3 we have

- 6 Z?:OO Ay, mes Dy, £1/2

0 - (52)
Denoting
Nty => 1,
Yn <t
for a number of eigenvalues not higher than ¢, we get
t t
N = [+ v = €+ el - [ o
0 0
Hence with regard for (52) we obtain
N(t) ~ 2 %AkmeSDk 372,
T =0
or, finally,
1 & 1 2 f
N®~ Gz ,;) |:(/\k + 2p)3/2 * ui/in/Z mes Dy, - %2 (53)

Thus the results of this paper can be formulated as



ASYMPTOTIC DISTRIBUTION OF EIGENFUNCTIONS 125

Theorem 4. The asymptotic distribution of eigenvector-functions and
etgenvalues of the basic boundary-contact problems of oscillation of classical
elasticity is given by formulas (40) and (53), respectively.

Remark 1. The results obtained remain valid (a) when the boundary
conditions on S (k= 0,mo+1,...,m) are replaced by those of the second
basic problem [8] (i.e., with elastic stresses given on the boundary) and
(b) when the conditions of the first problem are given on some part of
the boundary Sy (k = 0,mg + 1,...,m), and the conditions of the second
problem on the remainder of the boundary (a mixed problem).

Thus we have considered the case of the main contact conditions. The
results remain valid for other admissible contact conditions [13].

Remark 2. It A\, = A, p = 11, pr = p (k = 0,myp) i.e., if a homogeneous
elastic medium Dj U (E_JOID;C) u (;@01,5';.3) is considered, then, as can readily

be verified, [w™ (x)]2, and (v,)5, will be the eigenvector-functions and
eigenvalues of equation (2) the corresponding boundary value problem and
the obtained asymptotic formulas will coincide with the well-known formulas

of Weyl, Plejel, Burchuladze and others.

Remark 3. Note that the above asymptotic formulas with certain mod-
ifications are also fulfilled for two-dimensional problems. For example, in
the two-dimensional case formula (53) takes the form

1 <& 1 1
N(t) ~ — —1—} mes Dy, - t,
®) 4 I;) |:)\k + 2w Pk P

where mes Dy, is a space of the domain Dy.

REFERENCES

1. T. Carleman, Proprietes asymptotiques des fonctions fondamentales
des membranes vibrantes. 8th Scand. Math. Congress, 1934; Stockholm
1934, Collected works, Malmd, 1960, 471-483.

2. T. Carleman, Uber die asymptotische Verteilung der Eigenwerte par-
tieller Differentialgleichungen. Ber. der Sdchs. Akad. d. Wiss. Leipzig,
1936, 119-132; Collected works, Malmao, 1960, 483—-496.

3. A. Plejel, Proprietes asymptotiques des fonctions et vareurs propres
de certains problems de vibrations. Arkiv fir Math., Astr. Och Fysik. 27
A(1940), 1-100.

4. T.V. Burchuladze, To the theory of boundary value problems of oscil-
lation for an elastic body. (Russian) Trudy Tbiliss. Gos. Univ., Mat. Mekh.
Astron. 64(1957), 215-240.



126 T. BURCHULADZE AND R. RUKHADZE

5. T. V. Burchuladze, On the asymptotic behavior of eigenfunctions of
some boundary value problems of an anisotropic elastic body. (Russian)
Soobshch. Akad. Nauk Gruz. SSR 23(1959), No. 3, 265-272.

6. R. G. Dikhamindzhia, Asymptotic distribution of eigenfunctions and
eigenvalues of some basic problems of vibration of the moment theory of
elasticity. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze 73(1983), 64-71.

7. M. Svanadze, Asymptotic behavior of eigenfunctions and eigenfre-
quiencies of oscillation boundary value problems of the linear theory of
elastic mixtures. Georgian Math. J. 3(1996), No. 2, 177-200.

8. V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, and T. V. Bur-
chuladze, Three-dimensional problems of the mathematical theory of elastic-
ity and thermoelasticity. (Translated from Russian) North—Holland series
in applied mathematics and mechanics, v. 25, North—-Holland Publishing
Company, Amsterdam—New York—Ozford, 1979; Russian original: Nauka,
Moscow, 1976.

9. D. G. Natroshvili and A. Ya. Jagmaidze, Dynamic problems of the
classical theory of elasticity for piecewise-homogeneous bodies. (Russian)
Thilisi University Press, Tbilisi, 1978.

10. D. G. Natroshvili, Estimation of Green’s tensors of the theory of
elasticity and some of their applications. (Russian) Tbilisi University Press,
Thilisi, 1978.

11. T. Burchuladze and R. Rukhadze, The Fourier method in three-
dimensional boundary-contact dynamic problems of elasticity. Georgian
Math. J. 2(1995), No. 6, 559-576.

12. G. Hardy and I. Littlewood, Tauberian theorems concerning power
series and Dirichlet series whose coefficients are positive. Proc. Lond. Math.
Soc. 2(1914), No. 13, 174-191.

13. L. Jentsch, Sur Existenz von reguldren Losungen der Elastostatik
stiickweise homogener Korper mit neuen Kontaktbedingungen an den Trenn-
flichen zwischen zwei homogenen Teilen. Abh. d. Séichs. Akad. d. Wiss.
Leipzig Band 53, Heft 2, Akademie-Verlag, Berlin, 1977.

(Received 15.05.1997)

Authors’ addresses:

Tengiz Burchuladze Roland Rukhadze

A. Razmadze Mathematical Institute ~ Georgian Technical University
Georgian Academy of Sciences Department of Mathematics (3)
1, M. Aleksidze St., Thilisi 380093 77, M. Kostava St., Thilisi 380075

Georgia Georgia



