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A N. BOURBAKI TYPE GENERAL THEORY AND THE
PROPERTIES OF CONTRACTING SYMBOLS AND

CORRESPONDING CONTRACTED FORMS

SH. PKHAKADZE †

Abstract. A system of contracting symbols is introduced for a N. Bo-
urbaki type general mathematical theory corresponding to a general
classical mathematical theory T .

The classical formal mathematical theory corresponding to the formal
theory T ∗ of N. Bourbaki [1] is studied in [2], where a notation theory
for N. Bourbaki’s formal theory is developed. The goal of this paper is to
study similar questions for a N. Bourbaki type general mathematical theory
corresponding to the general classical mathematical theory T defined in [3].

1. The Notation Theory for T

We first recall very briefly and somewhat informally some basic defini-
tions concerning the introduction of contracting symbols in the theory T .
We do not define the employed concepts in their full generality, and refer
to [3] for more details.

The alphabet A of T may contain (a) an enumeration of n-ary predicate
variables and/or improper constants, called also n-ary predicate letters or
n-ary relational special letters or simply n-ary predicates. 0-ary predicate
variables (constants, letters) are also called propositional variables (con-
stants, letters); (b) an enumeration of n-ary substantive special variables
and/or improper constants, called also n-ary substantive special letters or
n-ary functions. 0-ary function variables (constants, letters) are called also
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object variables (constants, letters); (c) operator signs and (d) simple oper-
ators. Improper predicate and function constants are similar to variables in
that they can be bound. All the above symbols are called main, in order to
distinguish them from the defined or contracting symbols to be introduced
below. Variables and improper constants introduced in (a) and (b) are also
called quantifier letters.

Every simple operator has a weight or an arity n, and every operator sign
σ has a weight or arity (n,m), such that all or some (specified below) words
of the form σa1 . . . am, where a1 . . . am are variables or improper constants
(i.e., quantifier letters), are compound operators or quantifiers with weight
(arity) n. Each ai ranges (independent of other aj ’s) over all quantifier
variables or letters of one of the types (a) or (b) above. Further, n = 0
implies m = 0. The occurrences of a1 . . . am in σa1 . . . am are called the
operator letters of σa1 . . . am. (Thus operator letters are occurrences of
quantifier letters; the latter are not occurrences.)

Every quantifier σa1 . . . am (and the corresponding quantifier sign σ) has
a binding indicator which is a tuple (m1, . . . , ml), where m1, . . . , ml is a
subsequence of 1, . . . ,m. The binding indicator specifies the binding scope
of the quantifier. When (m1, . . . , ml) 6= (1, . . . , m), the operator is partial;
otherwise it is total. For example, the integral

∫ A2

A1
Adx in our notation is

written as
∫

xA1A2A, where
∫

is a quantifier sign with arity (3, 1), logicality
indicator ( ), and binding indicator (3); x is an object variable, i.e., 0-ary
function variable; and A1, A2, A are terms (to be defined below). So the
quantifier

∫

x binds free occurrences of x only in A.
Further, every operator has a logicality indicator – a tuple (n1, . . . , nk),

where n1, . . . , nk is a subsequence of 1, . . . , n. If (n1, . . . , nk) = ( ), resp.
(n1, . . . , nk) = (1, . . . , n), then the operator is called special, resp. logical;
otherwise, it is logical-special. Finally, every operator is either relational or
substantive. This classification of operators is needed to correctly construct
(and distinguish between) formulas and terms, and will be clear in the next
paragraph.

In T , syntactically correct expressions are forms; a form is either a term
or a formula. Terms are forms of the same type, and so are formulas – the
former are object forms, and the latter are propositional forms. Terms and
formulas are defined inductively as follows: propositional letters are formu-
las and object letters are terms. Further, if σa1 . . . am is an n-ary (simple or
compound) operator (m ≥ 0, n > 0) with logicality indicator (n1, . . . , nk)
and A1, . . . , An are such forms that An1 , . . . , Ank is the maximal subse-
quence of formulas in the sequence A1, . . . , An, then σa1 . . . amA1, . . . , An
is either a formula or a term depending on whether the operator σ is rela-
tional or substantive.

Free and bound occurrences (of variables and improper constants) in a
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form are defined as usual, where it is understood that if the binding in-
dicator of a quantifier σa1 . . . am is (m1, . . . ,ml), then its (explicit) occur-
rence in a form σa1 . . . amA1, . . . , An binds free occurrences of ai only in
the arguments Am1 , . . . , Aml . Two forms are called congruent if one is ob-
tained from the other by renaming the bound variables. A word of the
form (A1 . . . An/a1 . . . an)A0, where A1 . . . An, A0 are forms, a1 . . . an are 0-
ary quantifier variables (i.e., propositional or object variables or improper
constants), and Ai and ai are of the same type, denotes the result of simul-
taneous substitution of A1 . . . An for free occurrences of a1 . . . an in A0. This
may require the renaming of the bound variables and improper constants
in A0 to avoid capture of free variables of Ai after the substitution.

Let a1, . . . , am be metavariables such that each ai ranges over the class
of all predicate or object quantifier variables or letters; and let A1, . . . , An

be metavariables such that each Aj ranges over the class of all formulas or
all terms (of the theory T or its extension). Forms constructed using the
metavariables a1, . . . , am, A1, . . . , An and ( / )-substitutions are defined sim-
ilarly to forms, by (a) declaring that the metavariables A1, . . . , An are forms
of the corresponding type; (b) identifying the metavariables a1, . . . , am with
letters of the corresponding type; and (c) declaring that words of the form
(A′1 . . . A′k/a′1 . . . a′k)A′0 are forms, where A′j are forms, a′i are metavariables
from the list a1, . . . , am, and the types match (i.e., A′i and a′i are of the
same type, i = 1, . . . , k).

Now we can introduce definitions of contracting symbols in the theory T .
The theory obtained from T by adding contracting symbols in the alphabet
(as main symbols of corresponding types) is denoted by ˜T . New symbols
– operators and operator signs – are introduced in some order, and each
definition has the form

σa1 . . . amA1 . . . An B, (1)

where a1, . . . , am, A1, . . . , An are metavariables, each ranged over a class of
quantifier letters or forms (as specified above), and B is a form constructed
using metavariables and ( / )-substitutions. Besides main operators, B may
contain only the previously introduced contracting symbols.

Depending on further conditions imposed on B, the contracting symbols
are classified into types I, II, II ′, III, IV, IV ′, V, V I, V I ′ and V II. Descrip-
tions of types I, II, II ′, III and IV ′ can be obtained by weakening some
conditions in the definition of type IV . The remaining types V, V I, V I ′ and
V II are introduced [3] mainly to demonstrate that, after weakening some
of the restrictions imposed on the other types, many desirable properties of
the class of contracting symbols are no longer valid. Therefore we do not
consider these types of contracting symbols here. It will be clear from the
definition below that the weight, logicality indicator and binding indicator
of a contracting symbol can be determined from its definition.
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Type IV : Besides the conditions specified above, the right-hand side B
of definition (1) satisfies the following conditions (a1S), (bS), (c1) and (dS):

(a1S) B is a form constructed using ( / )-substitutions and metavariables

a1 . . . am, A1 . . . An, b1, . . . , bk (2)

and containing these metavariables, where bi is a metavariable
ranged over a class of quantifier letters or quantifier variables of
some type (i = 1, . . . , k). All explicit occurrences of quantifier let-
ters in B, as well as occurrences of metavariables a1. . . am, b1, . . . , bk,
are bound. Further, there is a subsequence m1, . . . , ml of 1, . . . , n
such that every one of the metavariables Am1 , . . . , Aml is in the
binding scope of quantifiers among whose operator variables occur
a1, . . . , am, and possibly (only) some of the metavariables b1, . . . , bk;
the remaining metavariables Ai (i.e., with i 6= m1, . . . ,ml) may be
in the scope of quantifiers whose operator variables are occurrences
of some of the metavariables bi.1 Furthermore, l = 0 iff m = 0. Fi-
nally, the order of metavariables in the list b1, . . . , bk is determined
by their first occurrences in B.

(bS) Groups of bound letters of B remain groups of bound letters af-
ter replacing the metavariables a1 . . . am by any letters from their
range.

(dS) The metavariables b1, . . . , bk, unlike other metavariables, cannot
be instanciated independent of the values of other metavariables.
Namely, the system of values

a′1 . . . a′m, A′1 . . . A′n, b′1, . . . , b
′
k

of metavariables (2) is admissible if and only if the following two
conditions are satisfied:
(d1S) The letters b′1, . . . , b

′
k are mutually different, are different

from the letters a′1 . . . a′m, do not have free occurrences in
the forms A′1 . . . A′n, and do not have (any) occurrences in B.

(d2) The indexes of the letters b′1, . . . , b
′
k are chosen minimal (recall

that these letters are chosen from the alphabetic enumeration
of quantifier letters of the corresponding type).

(c1) Let α be an admissible system of metavariables (2) with respect
to an extension ˜Ta of ˜T ; let A′ be the form of ˜Ta obtained from
the left-hand side of (1) by substituting the system α; and let B′

be the form of ˜Ta obtained from B first by substituting the system

1The tuple (m1, . . . , ml) is actually the binding indicator of σ.
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α for corresponding metavariables, and then evaluating all ( / )-
substitutions (if any) in the left to right inside-out order. Then the
forms A′ and B′ have the same sets of free variables.2

The expression

A′ B′ (3)

is called an instance of definition (1).

The definition of contracting symbols of type IV ′ is obtained from the
above definition by removing the condition (d2). If we require that B contain
no ( / )-substitutions, then from definitions of types IV and IV ′ we get
definitions of types II and II ′, respectively (the condition (c1) above is
trivially valid for such B). And if we require that the list of additional
metavariables b1, . . . , bk be empty, we get definitions of types I and III
from the definitions of types II and IV , respectively.

The following is an example of a definition of a contracting symbol of
type IV (resp. IV ′):

∃1aA ∃aA ∧ ∀a∀b(A ∧ (b/a)A → a = b),

where a is an object quantifier letter (i.e., an object variable or improper
constant), and b is the object quantifier letter with the minimal index (resp.
any object quantifier letter) that is different from a and does not have free
occurrences in A. The following (simpler) definition introduces a contracting
symbol, ⊆, of types II and II ′, which is not a contracting symbol of type I.

⊆ AB ∀b(b ∈ A → b ∈ B).

By definition, a form A of the theory ˜T denotes or is a contracted form of
any form of the theory T obtained from A by eliminating the occurrences
of contracting symbols in an inside-out order, i.e., by repeated replacement
of occurrences of left-hand sides of definition instances (3) with the corre-
sponding right-hand sides, in an inside-out order. It is proved in [3] that
such processes (called γ′-processes) are all finite (recall that in the right-
hand side of a definition only previously defined contracting symbols may
occur) and end with congruent forms of T . Thus any term of ˜T denotes
exactly one form of T , up to congruence. This allows us to define the ax-
ioms and inference rules in the theory ˜T from the axioms and rules of the
theory T .

More general processes of reconstruction of forms of T from the con-
tracted forms, called α-processes, are also introduced in [3], which allow the
elimination of contracting symbols in any order. It is shown that, for the

2We need to consider an extension ˜Ta of ˜T only if the alphabet of ˜T does not con-
tain enough symbols to detect ‘erasure’ of occurrences of free variables in the operands
(arguments) of σa1 . . . am.
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case of contracting symbols of types I, II, II ′, all such processes again ter-
minate with the same result, up to congruence. Algorithms for computing
the exact upper and lower bounds for the number of steps of α-processes,
as well as algorithms for constructing the longest and shortest α-processes,
are also presented. Further results on α-processes are obtained in [4], [5].

2. The Theory T ∗

A N. Bourbaki type general mathematical theory T ∗ corresponding to the
general classical mathematical theory T is defined as follows. The alphabet
A∗ of the theory T ∗ consists of symbols of the alphabet A of the theory T
and of some of the symbols from the following lists:

�0, �1, �2, . . . , (4)

�0, �1,�2, . . . . (5)

Further, the alphabet A∗ contains �n if and only if the alphabet A of the
theory T contains n-ary quantifier function letters, and A∗ contains �n

if and only if the alphabet A contains n-ary quantifier predicate letters.
Symbols from the lists (3) and (4) are called quasiletters. Further, �n is
called (quantifier) n-ary substantive (function) quasiletter, and �n is called
(quantifier) an n-ary predicate quasiletter. Moreover, �0 is also called an
object quasiletter and �0 is also called a propositional quasiletter. By def-
inition, n-ary predicate quasiletters and n-ary predicate letters are of the
same type, and similarly for n-ary function quasiletters and n-ary function
letters.

In the case of the formal theory of N. Bourbaki, the alphabet contains
only one quasiletter – an object quasiletter, and the symbol � is used for
�0.

All definitions in the theory T concerning the notion of operator (in
particular, quantifier) remain valid for the theory T ∗.

Let σδ1 . . . δm be a quantifier, where σ is an operator sign and δ1 . . . δm are
operator letters. We call σ �′1 . . . �′m a quasiquantifier if �′i is a quasiletter
of the same type as δi (i = 1, . . . , m) and �′i◦�′j if and only if δ′i◦δj . In
the latter case, σ �′1 . . . �′m is called the quasiquantifier corresponding to
σδ1 . . . δm. The quasiquantifier corresponding to σδ1 . . . δm is determined
uniquely. However, the same quasiquantifier may correspond to different
quantifiers. Moreover, the number of quantifiers corresponding to a given
quasiquantifier is infinite.

The operator letters of a quantifier (which are occurrences of letters)
fall into groups of graphically equal letters. These groups are enumerated
by positive natural numbers according to the order of their first members,
from left to right. Operator quasiletters in a quasiquantifier are grouped
and enumerated similarly.



A N. BOURBAKI TYPE GENERAL THEORY 185

Symbols of the alphabet A∗ of the theory T ∗ will also be called signs.
An assemblage of the theory T ∗, by definition, is a word of the alphabet

A∗ of T ∗ with links, where a link in an assemblage is defined as follows. A
link in an assemblage A consists of vertical segments coming out of symbols
of A, and of a minimal horizontal segment connecting the upper endpoints
of all the above vertical segments. Further, the number of vertical segments
in a link must be at least two, and there may be at most one vertical
segment coming out of a symbol in the assemblage belonging to that link.
It is required that the number of links in an assemblage be finite, horizontal
segments not intersect, any different links cross only at separated (finite
number of) points. From the conditions above it follows easily that vertical
segments do not intersect. The links in an assemblage are enumerated
by positive natural numbers according to the order of their first vertical
segments, from left to right.

Let A be an assemblage, let C be its link, let A be the set of all symbols
from which vertical segments of C are coming out, and let B be an arbitrary
non-empty subset of A. Then we say that C binds or links symbols in the set
B. The phrase C binds a symbol a, where a is an element of A, is interpreted
similarly. By the set of symbols bound by the link C we mean the maximal
set of symbols bound by C.

Clearly, any word of the alphabet A∗ is an assemblage of A∗. The empty
word is called the empty assemblage.

The following is an example of an assemblage:

σ ∨ ∧ ∈ x y ∈ z ∧ �1 �0 �2

Here the first link binds three symbols, and the second one binds four
symbols.

The base of an assemblage, by definition, is the word obtained from the
assemblage by removing all links. Hence an assemblage consists of a base
and a system of links.

Let A be an assemblage, let C be a link of A, and let B be a part of the
base of A. We say that the link C is above the part B if it is possible to
draw a vertical segment out of a symbol of B that crosses the horizontal
segment of C. Here B can be a symbol of the base of A.

In the above example of an assemblage, every link is above the first
occurrence of the symbol ∈. The first and second links are above the symbol
σ (that is, above the first occurrence of the symbol σ).

We say that an assemblage B has an occurrence in an assemblage A if
A can be represented as A1, B,A2, where A1 and A2 are assemlages. The
triple (A1, B, A2) will be called an occurrence of the assemblage B in the
assemblage A. The occurrences of B in A are enumerated according to
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the growth (of the length) of the first component. An occurrence will be
identified with its second component.

An occurrence of an assemblage in an assemblage A will be called a part
of the assemblage A. It is easy to see that if B is a part of an assemblage
A, then the system of links of the part (assemblage) B coincides with the
system of all links of A that are above B.

By definition, two assemlages are graphically equal if their bases are
graphically equal, the numbers of their links are equal, and the correspond-
ing links (i.e., links with the same numbers) bind corresponding sets of sym-
bols (of the bases). We write the fact that A and B are graphically equal
as A◦B. Clearly, the graphical equality of assemlages is a generalization of
the graphical equality of words.

In the theory T ∗, formulas and terms are called forms, where formulas
and terms are defined as follows:

1. If A is a propositional letter, then A is a formula.
2. If A is an object letter, then A is a term.
3. If σ is a simple n-ary operator (n > 0) with the logicality indi-

cator (n1, . . . , nk) and A1, . . . , An are such forms of the theory T ∗
that An1 , . . . , Ank is the maximal subsequence of formulas in the se-
quence A1, . . . , An, then σA1, . . . , An is either a formula or a term
depending on whether the operator σ is relational or substantive.

4. If σδ1 . . . δm is an n-ary quantifier of the theory T ∗ (or equiv-
alently, of the theory T ) with operator letters δ1 . . . δm, logical-
ity indicator (n1, . . . , nk), and binding indicator (m1, . . . , me), and
A1, . . . , An are such forms of the theory T ∗ that An1 , . . . , Ank is
the maximal subsequence of formulas in the sequence A1, . . . , An,
then σδ1 . . . δmA1, . . . , An denotes the assemblage obtained from the
assemblage B◦σδ1 . . . δmA1, . . . , An in the following way. Let �′ki

denote �ki or �ki depending on whether δi is a ki-ary predicate
symbol or a ki-ary function symbol (i = 1, . . . , m). Further, let
δi1 , . . . , δik be obtained from δ1, . . . , δm by removing the repeated
occurrences (i1 = 1). Then we construct a number of short verti-
cal segments coming out of the explicit occurrence of σ in B, and
enumerate them, from left to right, by positive natural numbers.
Further, for every j ∈ {1, 2, . . . , k}, we replace every occurrence of
the letter δij in the parts δ1, . . . , δm, Am1 , . . . , Ame of the assem-
blage B by the quasiletter �′kij

and, for every j ∈ {1, . . . , k}, we
construct a link connecting the explicit occurrence of σ in B with
the substituted occurrences of the quasiletter �′kij

in such a way
that the link contains the j-th vertical segment coming out of the
explicit occurrence of σ in B. The thus obtained assemblage is
denoted by the assemblage σδ1 . . . δmA1, . . . , An.



A N. BOURBAKI TYPE GENERAL THEORY 187

5. A is a formula or a term if and only if this follows from Items 1–4
above.

The initial part of the base of the form B′, denoted by the assemblage
σδ1. . . δmA1, . . . , An from the Item 4 of the previous definition, consisting
of m + 1 symbols is a quasiquantifier. In a process of construction of larger
forms using the form B′ that quasiquantifier does not change.

By definition, a part of a form A is a part of an assemblage A that is a
form. A part of the form A is called a propositional part or an object part
depending on whether it is a formula or a term.

Remark. The definition of a part of a form in the theory T ∗ is simpler
than for the theory T (as in the case of T ∗ forms do not contain quantifier
variables). In the theory T , in a process of constructing larger forms from
shorter ones, the latter forms become parts of the constructed (larger) forms.
In the theory T ∗, this is not always the case. Shorter forms sometimes
change. Sometimes shorter forms do not change, but still they do not remain
parts of larger formulas when the latter are considered as assemlages. If a
shorter form becomes a part of a larger form (considered as an assemblage),
then it is also a part of the larger form. The above observations suggest
that the language of the theory T is more convenient than the language of
the theory T ∗ (for studying some questions).

Let us mention some properties of forms of the theory T ∗ whose proofs
are not difficult.

(1) Every link of a form A of T ∗ connects an operator sign of the form
A and some occurrences of the same quasiletter to the right of that
operator sign.

(2) If L1 and L2 are two different links of a form of T ∗ and A and B are
the sets of corresponding occurrences of symbols (i.e., the sets of
symbols bound by these links), then either A and B do not intersect,
or their intersection is a singleton consisting of an operator sign.

Formulas (of T ∗) will be called propositional forms and terms will be
called object forms. We call formulas, respectively terms, forms of the same
type. Forms defined in Items 1 and 2 are called simplest forms – simplest
formulas and simplest terms respectively.

It is easy to see that:

Proposition 1. Let σ be an operator sign with weight (n,m), logicality
indicator (n1, . . . , nk) and binding indicator (m1, . . . ,mp), and let δ1, . . . ,δm,
δ′1, . . . , δ

′
m and A1, . . . , An, A′1, . . . , A

′
n be such sequences of letters and forms

(respectively) that

σδ1 . . . δmA1, . . . , An and σδ′1 . . . δ′mA′1, . . . , A
′
n

are forms of the theory T ∗ (i.e., are denotations of forms of T ∗). Further,
let the following conditions be satisfied;
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1. Ai◦A′i, i ∈ {1, 2, . . . ,m} \ {m1, . . . , mp}.
2. If i, j ∈ {1, 2, . . . , m}, then δ′i◦δ′j iff δi◦δj.
3. The letters δ′1 . . . δ′m do not have occurrences in the bases of the

assemlages Am1 , . . . , Amp .
4. For every i ∈ {1, . . . , p}, the assemblage A′mi

is obtained from Ami

by simultaneous substitution of letters δ′1 . . . δ′m for δ1 . . . δm.

Then the forms σδ1 . . . δmA1, . . . , An and σδ′1 . . . δ′mA′1, . . . , A
′
n of the the-

ory T ∗ are graphically equal.

Remark. The possibility of simultaneous substitutions mentioned in Item
4 above follows from condition 2. Simultaneous substitution of letters
δ′1 . . . δ′m for letters δ1 . . . δm in a form A requires (exactly) the replace-
ment of every occurrence of δi in A by δ′i. This is not always possible. For
example, this is impossible if δ1◦δ2 but δ′1 6 ◦δ′2.

We will consider a form A of the theory T as a denotation of the uniquely
determined form A∗ of the theory T ∗, defined by the following algorithm Γ.

We add to the alphabet of T a proper propositional constant t and a
proper object constant a, and obtain an extension T of T . We denote this
alphabet by A. The theory T ∗ is obtained similarly.

Steps of the algorithm Γ determine a finite sequence of assemlages of the
alphabet A ∪ {(, )}

A0◦A,A1, . . . , Ak,

whose last member is A∗. Further, Ak is obtained from Ak−1 by removing
all parentheses; and every Ai (i = 0, 1, . . . . , k − 1) satisfies the following
conditions:

A part of the assemblage Ai may be an expression enclosed in a pair of
parentheses. Every such an expression without the enclosing pair of paren-
theses is a form of T ∗; and if we identify these expressions with t or a
depending on their type, then Ai becomes a form of the theory T . Further-
more, Ak−1 does not contain quantifiers, and all the preceding members
do.

Finally, Ai+1 is obtained from Ai (i = 0, 1, . . . , n− 2) as follows.
We find in Ai the first from the right quantifier σδ1 . . . δm with operands

A′1, . . . , A
′
n, where every expression enclosed in a pair of parentheses as

above is considered as the formula t or the term a. Further, by considering
the expressions with parentheses as forms of the theory T ∗ (by removing
the parentheses), these operands become forms A′′1 , . . . , A′′n of the theory
T ∗ (as they do not contain quantifiers). Further, we find the assemblage
denoted by the assemblage σδ1 . . . δmA′′1 , . . . , A′′n (as this is done in Item 4
of the definition of a form). We enclose thus obtained form of the theory
T ∗ in parentheses and substitute it for the part σδ1 . . . δmA′1, . . . , A

′
n in Ai.

Now it is easy to prove
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Theorem 1. Any form A of the theory T is a denotation of the uniquely
determined form A∗ of the theory T ∗. Further, two forms of the theory T
denote the same form of the theory T ∗ if and only if the two forms are
congruent. And if a form A of the theory T is a denotation of the form A∗
of the theory T ∗, then either both forms are formulas, or both are terms (of
the corresponding theories).

It follows from the above theorem that, in order to determine the class
of all forms of the theory T that denote a form A∗ of the theory T ∗, it is
enough to determine one denotation A of A∗. (The class of denotations of
the form A∗ is the class of all forms of T that are congruent to A∗.)

A form A of the theory T which denotes a given form A∗ of the theory
T ∗ can be determined by the following algorithm Γ1.

1. The zero step of the algorithm Γ needs to determine whether the
assemblage A∗ contains an operator sign with a link. If there is a
such an operator sign in A∗, then the algorithm Γ does not halt with
the zero step. Otherwise, the algorithm halts with the result A0◦A∗,
and A0 (i.e., A∗) is a form of the theory T and is a denotation of
the form A∗. In the latter case, A∗ does not contain an operator
sign and its denotation is determined uniquely (the class of forms
congruent to A0 (A0◦A∗) is a singleton containing A0 (i.e., A∗)).

2. If i > 0 and the algorithm does not halt with the (i−1)-th step, then
the i-th step is defined as follows (it is assumed that Ak denotes
the result of the k-th step).
Find in the assemblage Ai the first from the right quantifier sign σ
with a link. Let C be the first link associated with σ. Replace all
symbols different from σ and linked by C by the quantifier letter δ
satisfying the following conditions:

(a) The type of δ and the type of the symbols that it replaces are
the same (the replaced symbols are graphically equal quasilet-
ters; that quasiletter will be denoted by �).

(b) For every j ∈ {i1, . . . , ik}, δ is admissible as the j-th operator
letter in the quantifier obtained from σ, where i1, . . . , ik are
the numbers of occurrences of � in the part of the assemblage
Ai−1 consisting of m symbols following σ.

(c) δ does not occur in Ai−1.
(d) The subscript of δ in minimal.

The existence of such a quantifier variable δ follows from the defi-
nition of forms. It is not difficult to choose such a quantifier letter,
and the last condition is introduced to guarantee its uniqueness.
Finally, we need to remove the above link C.
The thus obtained assemblage is the result of the i-th step and is
denoted by Ai. The i-th steps needs also to determine whether the
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assemblage Ai contains an operator sign with a link. If there is such
an operator sign in Ai, then the algorithm does not halt. Otherwise,
the algorithm halts with the result Ai – Ai is a form of the theory
T and is the desirable denotation of the form A∗ (any link of a form
in the theory T ∗ is associated with an operator sign). Clearly, the
type of the form Ai coincides with the type of the form A∗.

We will use forms of the theory ˜T to denote forms of theory T ∗ (where ˜T
is the extension of the theory T with contracting symbols of types I − IV ,
II ′ and IV ′) as follows: If the form ˜A of the theory ˜T denotes a form A
of the theory T , and A denotes the form A∗ of the theory T ∗, then we
will assume that ˜A is a denotation of the form A∗ of the theory T ∗, and
that contracting symbols of the theory T , of one of the types above, are
contracting symbols for the theory T ∗ of the same type.
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