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OSCILLATION AND NONOSCILLATION IN DELAY OR
ADVANCED DIFFERENTIAL EQUATIONS AND IN

INTEGRODIFFERENTIAL EQUATIONS

I.-G. E. KORDONIS AND CH. G. PHILOS

Abstract. Some new oscillation and nonoscillation criteria are given
for linear delay or advanced differential equations with variable coef-
ficients and not (necessarily) constant delays or advanced arguments.
Moreover, some new results on the existence and the nonexistence of
positive solutions for linear integrodifferential equations are obtained.

1. Introduction and Preliminaries

With the past two decades, the oscillatory behavior of solutions of dif-
ferential equations with deviating arguments has been studied by many
authors. The problem of the oscillations caused by the deviating arguments
(delays or advanced arguments) has been the subject of intensive investiga-
tions. Among numerous papers dealing with the study of this problem we
choose to refer to the papers by Arino, Györi and Jawhari [1], Györi [2],
Hunt and Yorke [3], Jaroš and Stavroulakis [4], Koplatadze and Chanturija
[5], Kwong [6], Ladas [7], Ladas, Sficas and Stavroulakis [8, 9], Ladas and
Stavroulakis [10], Li [11, 12], Nadareishvili [13], Philos [14, 15, 16], Phi-
los and Sficas [17], Tramov [18], and Yan [19] and to the references cited
therein; see also the monographs by Erbe, Kong and Zhang [20], Györi and
Ladas [21], and Ladde, Lakshmikantham and Zhang [22] and the references
therein. In particular, we mention the sharp oscillation results by Ladas
[7] and Koplatadze and Chanturija [5] (see also Kwong [6]); for some very
recent related results we refer to Jaroš and Stavroulakis [4], Li [11, 12], and
Philos and Sficas [17] (see also the references cited therein). In the special
case of an autonomous delay or advanced differential equation it is known
that a necessary and sufficient condition for the oscillation of all solutions is
that its characteristic equation have no real roots; such a result was proved
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by Arino, Györi and Jawhari [1], Ladas, Sficas and Stavroulakis [8, 9], and
Tramov [18] (see also Arino and Györi [23] for the general case of neutral
differential systems and Philos, Purnaras and Sficas [24] and Philos and
Sficas [25] for some general forms of neutral differential equations). Also,
for a class of delay differential equations with periodic coefficients, a neces-
sary and sufficient condition for the oscillation of all solutions is given by
Philos [15] (in this case a characteristic equation is also considered). For
the existence of positive solutions of delay differential equations we refer to
the paper by Philos [26]. The reader is referred to the books by Driver [27],
Hale [28], and Hale and Vertuyn Lunel [29] for the basic theory of delay
differential equations.

The literature is scarce concerning the oscillation and nonoscillation of
solutions of integrodifferential equations. We mention the papers by Gopal-
samy [30, 31, 32], Györi and Ladas [33], Kiventidis [34], Ladas, Philos and
Sficas [35], Philos [36, 37, 38], and Philos and Sficas [39] dealing with the
problem of the existence and the nonexistence of positive solutions of inte-
grodifferential equations or of systems of such equations. Integrodifferential
equations belong to the class of differential equations with unbounded de-
lays; for a survey on equations with unbounded delays see the paper by
Corduneanu and Lakshmikantham [40]. For the basic theory of integrodif-
ferential equations (and, more generally, of integral equations) we refer to
the books by Burton [41] and Corduneanu [42].

In this paper we deal with the oscillation and nonoscillation problem for
first order linear delay or advanced differential equations as well as for first
order linear integrodifferential equations. The discrete analogs of the results
of this paper have recently been obtained by the authors [43] and the second
author [44].

Consider the delay differential equation

x′(t) +
∑

j∈J

pj(t)x(t− τj(t)) = 0 (E1)

and the advanced differential equation

x′(t)−
∑

j∈J

pj(t)x(t + τj(t)) = 0, (E2)

where J is an (nonempty) initial segment of natural numbers and for j ∈ J
pj and τj are nonnegative continuous real-valued functions on the interval
[0,∞). For the delay equation (E1) it will be supposed that the set J is
necessarily finite and that the delays τj for j ∈ J satisfy

lim
t→∞

[t− τj(t)] = ∞ for j ∈ J ;

with respect to the advanced equation (E2) the set J may be infinite.
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Let t0 ≥ 0. By a solution on [t0,∞) of the delay differential equation
(E1) we mean a continuous real-valued function x defined on the interval
[t−1,∞), where

t−1 = min
j∈J

min
t≥t0

[t− τj(t)] ,

which is continuously differentiable on [t0,∞) and satisfies (E1) for all t ≥ t0.
(Note that t−1 ≤ t0 and that t−1 depends on the delays τj for j ∈ J and the
initial point t0.) A solution on [t0,∞) of the advanced differential equation
(E2) is a continuously differentiable function x on the interval [t0,∞), which
satisfies (E2) for all t ≥ t0.

As usual, a solution of (E1) or (E2) is said to be oscillatory if it has
arbitrarily large zeros, and otherwise the solution is called nonoscillatory.

Consider also the integrodifferential equations

x′(t) + q(t)
∫ t

0
K(t− s)x(s)ds = 0 (E3)

and

x′(t) + r(t)
∫ t

−∞
K(t− s)x(s)ds = 0 (E4)

as well as the integrodifferential inequalities

y′(t) + q(t)
∫ t

0
K(t− s)y(s)ds ≤ 0 (I1)

and

y′(t) + r(t)
∫ t

−∞
K(t− s)y(s)ds ≤ 0, (I2)

where the kernel K is a nonnegative continuous real-valued function on the
interval [0,∞), and the coefficients q and r are nonnegative continuous real-
valued functions on the interval [0,∞) and the real line R, respectively.

If t0 ≥ 0, by a solution on [t0,∞) of the integrodifferential equation
(E3) (resp. of the integrodifferential inequality (I1)) we mean a continu-
ous real-valued function x [resp. y] defined on the interval [0,∞), which is
continuously differentiable on [t0,∞) and satisfies (E3) [resp. (I1)] for all
t ≥ t0. In particular, a solution on [0,∞) of (I1) is a continuously differen-
tiable real-valued function y on the interval [0,∞) satisfying (I1) for every
t ≥ 0. Moreover, if t0 ∈ R, then a solution on [t0,∞) of the integrodif-
ferential equation (E4) [resp. of the integrodifferential inequality (I2)] is a
continuous real-valued function x [resp. y] defined on the real line R, which
is continuously differentiable on [t0,∞) and satisfies (E4) [resp. (I2)] for all
t ≥ t0. Also, a continuously differentiable real-valued function y on the real
line R, which satisfies (I2) for every t ∈ R, is called a solution on R of (I2).

The results of the paper will be presented in Sections 2, 3, 4 and 5.
Section 2 contains some results which provide sufficient conditions for the
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oscillation of all solutions of the delay differential equation (E1) or of the
advanced differential equation (E2). Conditions which guarantee the exis-
tence of a positive solution of the delay equation (E1) or of the advanced
equation (E2) will be given in Section 3. Section 4 deals with the nonex-
istence of positive solutions of the integrodifferential inequalities (I1) and
(I2) (and, in particular, of the integrodifferential equations (E3) and (E4)).
More precisely, in Section 4 necessary conditions are given for (E3) or, more
generally, for (I1) to have solutions on [t0,∞), where t0 ≥ 0, which are pos-
itive on [0,∞); analogously, necessary conditions are derived for (E4) or,
more generally, for (I2) to have solutions on [t0,∞), where t0 ∈ R, which
are positive on R. In Section 5, sufficient conditions are obtained for the
equation (E3) to have a solution on [t0,∞), where t0 > 0, which is positive
on [0,∞) and tends to zero at ∞; similarly, sufficient conditions are given
for the existence of a solution on [t0,∞), where t0 ∈ R, of the equation (E4)
which is positive on R and tends to zero at ∞.

2. Sufficient Conditions for the Oscillation of Delay or
Advanced Differential Equations

In this section, we will give conditions which guarantee the oscillation of
all solutions of the delay differential equation (E1) (Theorem 2.1) or of the
advanced differential equation (E2) (Theorem 2.2).

To state Theorem 2.1, it is needed to consider the points Ti (i = 0, 1, . . . )
defined as

T0 = 0

and for i = 1, 2, . . .

Ti = min
{

s ≥ 0 : min
j∈J

min
t≥s

[t− τj(t)] ≥ Ti−1

}

.

(It is clear that 0 ≡ T0 ≤ T1 ≤ T2 ≤ . . . .)

Theorem 2.1. Assume that

p ≡ inf
t≥0

∑

j∈J0

pj(t) > 0 and τ ≡ min
j∈J0

inf
t≥0

τj(t) > 0

for a nonempty set J0 ⊆ J . Moreover, suppose that there exists a nonnega-
tive integer m such that

∫ t?

t?−τ
Pm(s)ds > log

4
(pτ)2

for a sufficiently large t? ≥ Tm + τ,

where
P0(t) =

∑

j∈J

pj(t) for t ≥ 0 ≡ T0
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and, when m > 0, for i = 0, 1, . . . , m− 1

Pi+1(t) =
∑

j∈J

pj(t) exp
[ ∫ t

t−τj(t)
Pi(s)ds

]

for t ≥ Ti+1.

Then all solutions of the delay differential equation (E1) are oscillatory.

Proof. Let x be a nonoscillatory solution on an interval [t0,∞), t0 ≥ 0,
of the delay differential equation (E1). Without restriction of generality
one can assume that x(t) > 0, t ∈ [0,∞). Furthermore, there is no loss
of generallity to suppose that x is positive on the whole interval [t−1,∞),
where

t−1 = min
j∈J

min
t≥t0

[t− τj(t)] .

(Clearly, −∞ < t−1 ≤ t0.) Then it follows from (E1) that x′(t) ≤ 0 for all
t ≥ t0 and so x is decreasing on the interval [t0,∞).

Now we define

S0 = min
{

s ≥ 0 : min
j∈J

min
t≥s

[t− τj(t)] ≥ t0
}

and, provided that m > 0,

Si = min
{

s ≥ 0 : min
j∈J

min
t≥s

[t− τj(t)] ≥ Si−1

}

(i = 0, 1, . . . , m).

It is obvious that t0 ≤ S0 ≤ S1 ≤ . . . ≤ Sm. Moreover, we can immediately
see that Ti ≤ Si (i = 0, 1, . . . ,m).

We will show that

x′(t) + Pm(t)x(t) ≤ 0 for every t ≥ Sm. (2.1)

By the decreasing nature of x on [t0,∞) it follows from (E1) that for t ≥ S0

0 = x′(t) +
∑

j∈J

pj(t)x(t− τj(t)) ≥ x′(t) +
[

∑

j∈J

pj(t)
]

x(t),

i.e.,
x′(t) + P0(t)x(t) ≤ 0 for every t ≥ S0. (2.2)

Hence (2.1) is satisfied if m = 0. Let us assume that m > 0. Then by (2.2)
we obtain for j ∈ J and t ≥ S1

log
x(t− τj(t))

x(t)
= −

∫ t

t−τj(t)

x′(s)
x(s)

ds ≥
∫ t

t−τj(t)
P0(s)ds.

So we have

x(t− τj(t)) ≥ x(t) exp
[ ∫ t

t−τj(t)
P0(s)ds

]

for j ∈ J and t ≥ S1.
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Thus (E1) gives for t ≥ S1

0=x′(t)+
∑

j∈J

pj(t)x(t−τj(t)) ≥ x′(t)+
{

∑

j∈J

pj(t) exp
[ ∫ t

t−τj(t)
P0(s)ds

]}

x(t),

i.e.,
x′(t) + P1(t)x(t) ≤ 0 for every t ≥ S1. (2.3)

This means that (2.1) is fulfilled when m = 1. Let us consider the case
where m > 1. Then it follows from (2.3) that

x(t− τj(t)) ≥ x(t) exp
[ ∫ t

t−τj(t)
P1(s)ds

]

for j ∈ J and t ≥ S2

and so (E1) yields

x′(t) + P2(t)x(t) ≤ 0 for every t ≥ S2. (2.4)

Thus (2.1) holds if m = 2. If m > 2, we can use (2.4) and (E1) to obtain
an inequality similar to (2.4) with P3 in place of P2 and S3 in place of S2.
Following the same procedure in the case where m > 3, we can finally arrive
at (2.1).

Next, it follows from (2.1) that for t ≥ Sm + τ

log
x(t− τ)

x(t)
= −

∫ t

t−τ

x′(s)
x(s)

ds ≥
∫ t

t−τ
Pm(s)ds

and so we have

x(t− τ) ≥ x(t) exp
[ ∫ t

t−τ
Pm(s)ds

]

for all t ≥ Sm + τ. (2.5)

On the other hand, by the decreasing character of x on [t0,∞), from (E1)
we obtain for t ≥ S0

0 = x′(t) +
∑

j∈J

pj(t)x(t− τj(t)) ≥ x′(t) +
∑

j∈J0

pj(t)x(t− τj(t)) ≥

≥ x′(t) +
[

∑

j∈J0

pj(t)
]

x(t− τ) ≥ x′(t) + px(t− τ),

i.e.,
x′(t) + px(t− τ) ≤ 0 for every t ≥ S0. (2.6)

Following the same arguments used in the proof of Lemma in [8] (see also
Lemma 1.6.1 in [21]), from (2.6) it follows that

x(t− τ) ≤ 4
(pτ)2

x(t) for all t ≥ S0 + τ/2. (2.7)
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Combining (2.5) and (2.7), we get

exp
[ ∫ t

t−τ
Pm(s)ds

]

≤ 4
(pτ)2

for all t ≥ Sm + τ

or, equivalently,
∫ t

t−τ
Pm(s)ds ≤ log

4
(pτ)2

for every t ≥ Sm + τ.

This is a contradiction, since t? is sufficiently large and so it can be supposed
that t? ≥ Sm + τ.

Theorem 2.2. Let J0 be a nonempty subset of J and assume that p > 0
and τ > 0, where p and τ are defined as in Theorem 2.1. Moreover, suppose
that there exists a nonnegative integer m such that

∫ t?+τ

t?
Pm(s)ds > log

4
(pτ)2

for a sufficiently large t? ≥ 0,

where
P0(t) =

∑

j∈J

pj(t) for t ≥ 0

and, when m > 0, for i = 0, 1, . . . , m− 1

Pi+1(t) =
∑

j∈J

pj(t) exp
[ ∫ t+τj(t)

t
Pi(s)ds

]

for t ≥ 0.

Then all solutions of the advanced differential equation (E2) are oscilla-
tory.

Proof. Assume, for the sake of contradiction, that the advanced differential
equation (E2) has a nonoscillatory solution x on an interval [t0,∞), where
t0 ≥ 0. Without loss of generality, we can suppose that x is eventually
positive. Furthermore, we may (and do) assume that x is positive on the
whole interval [t0,∞). Then (E2) gives x′(t) ≥ 0 for every t ≥ t0 and so the
solution x is increasing on the interval [t0,∞).

We will prove that

x′(t)− Pm(t)x(t) ≥ 0 for every t ≥ t0. (2.8)

By taking into account the fact that x is increasing on [t0,∞), from (E2)
we obtain for t ≥ t0

0 = x′(t)−
∑

j∈J

pj(t)x(t + τj(t)) ≤ x′(t)−
[

∑

j∈J

pj(t)
]

x(t)
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and consequently

x′(t)− P0(t)x(t) ≥ 0 for every t ≥ t0. (2.9)

Thus, (2.8) holds when m = 0. Let us consider the case where m > 0. Then
we can use (2.9) to derive for j ∈ J and t ≥ t0

log
x(t + τj(t))

x(t)
=

∫ t+τj(t)

t

x′(s)
x(s)

ds ≥
∫ t+τj(t)

t
P0(s)ds.

This gives

x(t + τj(t)) ≥ x(t) exp
[ ∫ t+τj(t)

t
P0(s)ds

]

for j ∈ J and t ≥ t0.

Hence from (E2) it follows that for t ≥ t0

0=x′(t)−
∑

j∈J

pj(t)x(t+τj(t))≤x′(t)−
{

∑

j∈J

pj(t) exp
[ ∫ t+τj(t)

t
P0(s)ds

]}

x(t)

i.e.,
x′(t)− P1(t)x(t) ≥ 0 for every t ≥ t0. (2.10)

So (2.8) is satisfied if m = 1. Let us suppose that m > 1. Then, using the
same arguments as above with (2.10) in place of (2.9), we can obtain

x′(t)− P2(t)x(t) ≥ 0 for every t ≥ t0.

Thus (2.8) is fulfilled when m = 2. Repeating the above procedure if m > 2,
we can finally arrive at (2.8).

Now from (2.8) we get for t ≥ t0

log
x(t + τ)

x(t)
=

∫ t+τ

t

x′(s)
x(s)

ds ≥
∫ t+τ

t
Pm(s)ds

and consequently

x(t + τ) ≥ x(t) exp
[ ∫ t+τ

t
Pm(s)ds

]

for all t ≥ t0. (2.11)

Next, taking into account the fact that x is increasing on [t0,∞), from (E2)
we derive for t ≥ t0

0 = x′(t)−
∑

j∈J

pj(t)x(t + τj(t)) ≤ x′(t)−
∑

j∈J0

pj(t)x(t + τj(t)) ≤

≤ x′(t)−
[

∑

j∈J0

pj(t)
]

x(t + τ) ≤ x′(t)− px(t + τ)

and so
x′(t)− px(t + τ) ≥ 0 for all t ≥ t0. (2.12)
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As in the proof of Lemma 1.6.1 in [21], (2.12) gives

x(t + τ) ≤ 4
(pτ)2

x(t) for every t ≥ t0. (2.13)

A combination of (2.11) and (2.13) yields
∫ t+τ

t
Pm(s)ds ≤ log

4
(pτ)2

for all t ≥ t0.

The point t? is sufficiently large and so we can assume that t? ≥ t0. We
have thus arrived at a contradiction. This contradiction completes the proof
of the theorem.

3. Existence of Positive Solutions of Delay or Advanced
Differential Equations

Our results in this section are Theorems 3.1 and 3.2 below. Theorem 3.1
provides conditions under which the delay differential equation (E1) has a
positive solution; analogously, the conditions which ensure the existence of
a positive solution of the advanced differential equation (E2) are established
by Theorem 3.2.

Let us consider the delay differential inequality

y′(t) +
∑

j∈J

pj(t)y(t− τj(t)) ≤ 0 (H1)

and the advanced differential inequality

y′(t)−
∑

j∈J

pj(t)y(t + τj(t)) ≥ 0, (H2)

which are associated with the delay differential equation (E1) and the ad-
vanced differential equation (E2), respectively. For the delay inequality (H1)
it will be assumed that J is finite and that limt→∞ [t− τj(t)] = ∞ for j ∈ J ,
while for the advanced inequality (H2) the set J may be infinite.

Let t0 ≥ 0 and define t−1 = minj∈J mint≥t0 [t− τj(t)] . (Clearly, −∞ <
t−1 ≤ t0.) By a solution on [t0,∞) of the delay differential inequality
(H1) we mean a continuous real valued function y defined on the interval
[t−1,∞), which is continuously differentiable on [t0,∞) and satisfies (H1)
for all t ≥ t0. A solution on [t0,∞) of the delay inequality (H1) or, in
particular, of the delay equation (E1) will be called positive if it is positive
on the whole interval [t−1,∞).

Let again t0 ≥ 0. A solution on [t0,∞) of the advanced differential
inequality (H2) is a continuously differentiable function y on the interval
[t0,∞), which satisfies (H2) for all t ≥ t0. A solution on [t0,∞) of the
advanced inequality (H2) or, in particular, of the advanced equation (E2) is
said to be positive if all its values for t ≥ t0 are positive numbers.
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In order to prove Theorems 3.1 and 3.2 we need Lemmas 3.1 and 3.2
below, respectively. These lemmas guarantee that if there exists a positive
solution of the delay inequality (H1) or of the advanced inequality (H2),
then the delay equation (E1) or the advanced equation (E2), respectively,
also has a positive solution.

Lemma 3.1 below is similar to Lemma in [16] concerning the particular
case of constant delays. The method of proving Lemma 3.1 is similar to that
of Lemma in [16] (see also the proof of the Lemma in [14] and the proof of
Theorem 1 in [26].

Lemma 3.1. Let t0 ≥ 0 and let y be a positive solution on [t0,∞) of the
delay differential inequality (H1). Set

t1 = min
{

s ≥ 0 : min
j∈J

min
t≥s

[t− τj(t)] ≥ t0
}

and assume that t1 > t0. (Clearly, we have minj∈J mint≥t1 [t− τj(t)] = t0.)
Moreover, suppose that there exists a nonempty subset J0 of J such that the
functions τj for j ∈ J0, and

∑

j∈J0
pj are positive on [t1,∞).

Then there exists a positive solution x on [t1,∞) of the delay differential
equation (E1) with limt→∞ x(t) = 0 and such that x(t) ≤ y(t) for all t ≥ t0.

Proof. It follows from the inequality (H1) that for ˜t ≥ t ≥ t0

y(t) ≥ y(˜t) +
∫ t̃

t

∑

j∈J

pj(s)y(s− τj(s))ds >
∫ t̃

t

∑

j∈J

pj(s)y(s− τj(s))ds.

Thus, as ˜t →∞, we obtain

y(t) ≥
∫ ∞

t

∑

j∈J

pj(s)y(s− τj(s))ds for every t ≥ t0. (3.1)

Let X be the space of all nonnegative continuous real-valued functions x
on the interval [t0,∞) with x(t) ≤ y(t) for every t ≥ t0. Then using (3.1)
we can easily show that the formulae

(Lx)(t) =
∫ ∞

t

∑

j∈J

pj(s)x(s− τj(s))ds, if t ≥ t1

and

(Lx)(t) =
∫ ∞

t1

∑

j∈J

pj(s)x(s− τj(s))ds +

+
∫ t1

t

∑

j∈J

pj(s)y(s− τj(s))ds, if t0 ≤ t < t1
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are meaningful for any function x ∈ X and that, by these formulae, an
operator L : X → X is defined. Furthermore, we see that, for any pair
of functions x1 and x2 in X such that x1(t) ≤ x2(t) for t ≥ t0, we have
(Lx1)(t) ≤ (Lx2)(t) for t ≥ t0. This means that the operator L is monotone.
Next, we set

x0 = y|[t0,∞) and xν = Lxν−1 (ν = 1, 2, . . . ).

Clearly, (xν)ν≥0 is a decreasing sequence of functions in X . (Note that the
decreasing character of this sequence is considered with the usual pointwise
ordering in X .) Define

x = lim
ν→∞

xν pointwise on [t0,∞).

By the Lebesgue dominated convergence theorem, we obtain x = Lx, i.e.,

x(t) =
∫ ∞

t

∑

j∈J

pj(s)x(s− τj(s))ds, if t ≥ t1 (3.2)

and

x(t) =
∫ ∞

t1

∑

j∈J

pj(s)x(s− τj(s))ds +

+
∫ t1

t

∑

j∈J

pj(s)y(s− τj(s))ds, if t0 ≤ t < t1. (3.3)

Equation (3.2) gives

x′(t) = −
∑

j∈J

pj(t)x(t− τj(t)) for all t ≥ t1,

which means that the function x is a solution on [t1,∞) of the delay equation
(E1). Clearly, we have 0 ≤ x(t) ≤ y(t) for every t ≥ t0. Moreover, from
(3.2) it follows that x tends to zero at ∞. Hence it remains to show that
x is positive on the whole interval [t0,∞). From (3.3) we obtain for any
t ∈ [t0, t1)

x(t) ≥
∫ t1

t

∑

j∈J

pj(s)y(s− τj(s))ds ≥

≥
[

min
j∈J

min
t0≤s≤t1

y(s− τj(s))
] ∫ t1

t

∑

j∈J

pj(s)ds.

Thus, by taking into account the facts that y is positive on the interval
[t−1, t1], where t−1 = minj∈J mint≥t0 [t− τj(t)] (clearly, −∞ < t−1 ≤ t0),
and that

∑

j∈J pj(t1) ≥
∑

j∈J0
pj(t1) > 0, we conclude that x is positive on

the interval [t0, t1). We claim that x is also positive on the interval [t1,∞).
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Otherwise, there exists a point T ≥ t1 such that x(T ) = 0, and x(t) > 0 for
t ∈ [t0, T ). Then (3.2) gives

0 = x(T ) =
∫ ∞

T

∑

j∈J

pj(s)x(s− τj(s))ds

and so
∑

j∈J

pj(s)x(s− τj(s)) = 0 for all s ≥ T.

Taking into account the fact that x is positive on [t0, T ) as well as the fact
that τj(T ) > 0 for j ∈ J0 and that

∑

j∈J0
pj(T ) > 0, we have

0 =
∑

j∈J

pj(T )x(T − τj(T )) ≥
∑

j∈J0

pj(T )x(T − τj(T )) ≥

≥
[

min
j∈J0

x(T − τj(T ))
]

∑

j∈J0

pj(T ) > 0.

But, this is a contradiction and so our claim is proved.

Theorem 3.1. Set

t0 = min
{

s ≥ 0 : min
j∈J

min
t≥s

[t− τj(t)] ≥ 0
}

.

(Clearly, t−1 ≡ minj∈J mint≥t0 [t− τj(t)] = 0). Suppose that there exist
positive real numbers γj for j ∈ J such that

exp
[

∑

i∈J

γi

∫ t

t−τj(t)
pi(s)ds

]

≤ γj for all t ≥ t0 and j ∈ J.

Also, define

t1 = min
{

s ≥ 0 : min
j∈J

min
t≥s

[t− τj(t)] ≥ t0

}

and assume that t1 > t0. (Obviously, minj∈J mint≥t1 [t− τj(t)] = t0.) More-
over, suppose that there exists a nonempty subset J0 of J such that the
functions τj for j ∈ J0, and

∑

j∈J0
pj are positive on [t1,∞).

Then there exists a positive solution on [t1,∞) of the delay differential
equation (E1), which tends to zero at ∞.

Proof. Define

y(t) = exp
[

−
∑

i∈J

γi

∫ t

0
pi(s)ds

]

for t ≥ 0
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and observe that y is positive on the interval [0,∞). By Lemma 3.1 it suffices
to show that y is a solution on [t0,∞) of the delay differential inequality
(H1). To this end we have for every t ≥ t0

y′(t) +
∑

j∈J

pj(t)y(t− τj(t)) =

=−
[

∑

i∈J

γipi(t)
]

y(t) +
{

∑

j∈J

pj(t) exp
[

∑

i∈J

γi

∫ t

t−τj(t)
pi(s)ds

]}

y(t) =

=
(

∑

j∈J

pj(t)
{

− γj + exp
[

∑

i∈J

γi

∫ t

t−τj(t)
pi(s)ds

]})

y(t) ≤ 0.

Lemma 3.2. Let t0 ≥ 0 and let y be a positive solution on [t0,∞) of the
advanced differential inequality (H2).

Then there exists a positive solution x on [t0,∞) of the advanced differ-
ential equation (E2) such that x(t) ≤ y(t) for all t ≥ t0.

Proof. It follows from (H2) that

y(t) ≥ y(t0) +
∫ t

t0

∑

j∈J

pj(s)y(s + τj(s))ds for all t ≥ t0. (3.4)

Consider the set X of all continuous real-valued functions x on the interval
[t0,∞) such that 0 < x(t) ≤ y(t) for every t ≥ t0. Then by (3.4) we can see
that the formula

(Lx)(t) = y(t0) +
∫ t

t0

∑

j∈J

pj(s)x(s + τj(s))ds for t ≥ t0

is meaningful for any function x in X and that this formula defines an
operator L of X into itself. This operator is monotone in the sense that,
if x1 and x2 are two functions in X with x1(t) ≤ x2(t) for t ≥ t0, then
we also have (Lx1)(t) ≤ (Lx2)(t) for t ≥ t0. Next, we define x0 = y and
xν = Lxν−1 (ν = 1, 2, . . . ). Clearly, x0(t) ≥ x1(t) ≥ x2(t) ≥ · · · holds for
every t ≥ t0 and so we can define x(t) = limν→∞ xν(t) for t ≥ t0. Then
applying the Lebesgue dominated convergence theorem, we have x = Lx,
i.e.,

x(t) = y(t0) +
∫ t

t0

∑

j∈J

pj(s)x(s + τj(s))ds for every t ≥ t0.

This ensures that x is a solution on [t0,∞) of the advanced equation (E2),
which is positive (on [t0,∞)) and such that x(t) ≤ y(t) for t ≥ t0.
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Theorem 3.2. Suppose that there exist positive real numbers δj for j ∈ J
such that

exp
[

∑

i∈J

δi

∫ t+τj(t)

t
pi(s)ds

]

≤ δj for all t ≥ 0 and j ∈ J

and, when J is infinite,

∑

i∈J

δi

∫ t

0
pi(s)ds < ∞ for every t ≥ 0.

Then there exists a positive solution on [0,∞) of the advanced differential
equation (E2).

Proof. The function y defined by

y(t) = exp
[

∑

i∈J

δi

∫ t

0
pi(s)ds

]

for t ≥ 0

is clearly positive on the interval [0,∞). Moreover, for every t ≥ 0 we obtain

y′(t)−
∑

j∈J

pj(t)y(t + τj(t)) =

=
[

∑

i∈J

δipi(t)
]

y(t)−
{

∑

j∈J

pj(t) exp
[

∑

i∈J

δi

∫ t+τj(t)

t
pi(s)ds

]}

y(t) =

=
(

∑

j∈J

pj(t)
{

δj − exp
[

∑

i∈J

δi

∫ t+τj(t)

t
pi(s)ds

]})

y(t) ≥ 0

and hence y is a solution on [0,∞) of the advanced inequality (H2). So, the
proof can be completed by applying Lemma 3.2.

4. Necessary Conditions for the Existence of Positive
Solutions of Integrodifferential Equations and Inequalities

In this section the problem of the nonexistence of positive solutions of the
integrodifferential equations (E3) and (E4) (or, more generally, of the inte-
grodifferential inequalities (I1) and (I2)) will be treated. The main results
here are Theorems 4.1 and 4.2 below.

Theorem 4.1. Let t0 ≥ 0. Assume that

A ≡ inf
t≥t0+τ1

[

q(t)
∫ t−t0

τ0

K(s)ds
]

> 0
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for two points τ0 and τ1 with 0 < τ0 < τ1. Moreover, suppose that there
exists a nonnegative integer m such that

∫ t?

t?−τ0

Um(s)ds > log
4

(Aτ0)2
for some t? ≥ t0 + τ1 + τ0/2,

where

U0(t) = q(t)
∫ t−t0

0
K(s)ds for t ≥ t0

and, when m > 0, for i = 0, 1, . . . , m− 1

Ui+1(t) = q(t)
∫ t−t0

0
K(s) exp

[ ∫ t

t−s
Ui(ξ)dξ

]

ds for t ≥ t0.

Then there is no solution on [t0,∞) of the integrodifferential inequality
(I1) (and, in particular, of the integrodifferential equation (E3)), which is
positive on [0,∞).

Proof. Assume, for the sake of contradiction, that the integrodifferential
inequality (I1) admits a solution y on [t0,∞), which is positive on [0,∞).
Then (I1) guarantees that y′(t) ≤ 0 for every t ≥ t0 and so the solution y is
decreasing on the interval [t0,∞).

We first prove that

y′(t) + Um(t)y(t) ≤ 0 for all t ≥ t0. (4.1)

To this end, using the decreasing character of y on [t0,∞), from (I1) we
obtain for any t ≥ t0

0 ≥ y′(t) + q(t)
∫ t

0
K(t− s)y(s)ds = y′(t) + q(t)

∫ t

0
K(s)y(t− s)ds ≥

≥ y′(t) + q(t)
∫ t−t0

0
K(s)y(t− s)ds ≥ y′(t) + q(t)

[ ∫ t−t0

0
K(s)ds

]

y(t)

and so we have

y′(t) + U0(t)y(t) ≤ 0 for all t ≥ t0. (4.2)

Thus (4.1) is satisfied when m = 0. Let us assume that m > 0. Then it
follows from (4.2) that for t ≥ t0 and 0 ≤ s ≤ t− t0

log
y(t− s)

y(t)
= −

∫ t

t−s

y′(ξ)
y(ξ)

dξ ≥
∫ t

t−s
U0(ξ)dξ

and consequently

y(t− s) ≥ y(t) exp
[ ∫ t

t−s
U0(ξ)dξ

]

for t ≥ t0 and 0 ≤ s ≤ t− t0. (4.3)
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Furthermore, in view of (4.3), inequality (I1) yields for t ≥ t0

0 ≥ y′(t) + q(t)
∫ t

0
K(t− s)y(s)ds = y′(t) + q(t)

∫ t

0
K(s)y(t− s)ds ≥

≥ y′(t) + q(t)
∫ t−t0

0
K(s)y(t− s)ds ≥

≥ y′(t) + q(t)
{ ∫ t−t0

0
K(s) exp

[ ∫ t

t−s
U0(ξ)dξ

]

ds
}

y(t).

Therefore
y′(t) + U1(t)y(t) ≤ 0 for all t ≥ t0. (4.4)

Hence (4.1) is proved when m = 1. In the case where m > 1, we can repeat
the above procedure with (4.4) in place of (4.2) to conclude that (4.1) is
finally satisfied.

Now from (4.1) we obtain for t ≥ t0 + τ0

log
y(t− τ0)

y(t)
= −

∫ t

t−τ0

y′(s)
y(s)

ds ≥
∫ t

t−τ0

Um(s)ds

and hence

y(t− τ0) ≥ y(t) exp
[ ∫ t

t−τ0

Um(s)ds
]

for every t ≥ t0 + τ0. (4.5)

Next, taking into account the fact that y is decreasing on [t0,∞), from (I1)
we derive for t ≥ t0 + τ1

0 ≥ y′(t) + q(t)
∫ t

0
K(s)y(t− s)ds ≥ y′(t) + q(t)

∫ t−t0

τ0

K(s)y(t− s)ds ≥

≥ y′(t) +
[

q(t)
∫ t−t0

τ0

K(s)ds
]

y(t− τ0) ≥ y′(t) + Ay(t− τ0),

i.e.,
y′(t) + Ay(t− τ0) ≤ 0 for all t ≥ t0 + τ1. (4.6)

As in the proof of the Lemma in [8] (see also Lemma 1.6.1 in [21]), it follows
from (4.6) that

y(t− τ0) ≤
4

(Aτ0)2
y(t) for every t ≥ t0 + τ1 + τ0/2. (4.7)

A combination of (4.5) and (4.7) leads to
∫ t

t−τ0

Um(s)ds ≤ log
4

(Aτ0)2
for all t ≥ t0 + τ1 + τ0/2,

which is a contradiction.
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Theorem 4.2. Let ̂t0 ∈ R and set t0 = max{0,̂t0}. Moreover, let the
assumptions of Theorem 4.1 be satisfied with r in place of q.

Then there is no solution on [̂t0,∞) of the integrodifferential inequality
(I2) (and, in particular, of the integrodifferential equation (E4)), which is
positive on R.

Proof. Obviously, t0 ≥ 0. Assume that there exists a solution y on [̂t0,∞)
of the integrodifferential inequality (I2), which is positive on R. Then, for
every t ≥ t0, we have

0 ≥ y′(t) + r(t)
∫ t

−∞
K(t− s)y(s)ds = y′(t) + r(t)

∫ 0

−∞
K(t− s)y(s)ds +

+ r(t)
∫ t

0
K(t− s)y(s)ds ≥ y′(t) + r(t)

∫ t

0
K(t− s)y(s)ds.

This means that the function y|[0,∞) is a solution on [t0,∞) of the inte-
grodifferential inequality

y′(t) + r(t)
∫ t

0
K(t− s)y(s)ds ≤ 0,

which is positive on [0,∞). By Theorem 4.1, this is a contradiction and
hence our proof is complete.

5. Sufficient Conditions for the Existence of Positive
Solutions of Integrodifferential Equations

Theorems 5.1 and 5.2 below are the main results in this last section.
Theorem 5.1 establishes conditions which guarantee the existence of positive
solutions of the integrodifferential equation (E3); similarly, Theorem 5.2
provides sufficient conditions for the existence of positive solutions of the
integrodifferential equation (E4).

To prove Theorems 5.1 and 5.2 we will apply Theorems A and B, respec-
tively, which are known.

Theorem A (Philos [38]). Let y be a positive solution on [0,∞) of
the integrodifferential inequality (I1). Moreover, let t0 > 0 and suppose that
K is not identically zero on [0, t0] and q is positive on [t0,∞).

Then there exists a solution x on [t0,∞) of the integrodifferential equation
(E3), which is positive on [0,∞) and such that

x(t) ≤ y(t) for every t ≥ t0, lim
t→∞

x(t) = 0

and

x′(t) + q(t)
∫ t

0
K(t− s)x(s)ds ≤ 0 for 0 ≤ t < t0.
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Theorem B (Philos [38]). Assume that K is not identically zero on
[0,∞). Let y be a positive solution on R of the integrodifferential inequality
(I2). Moreover, let t0 ∈ R and suppose that r is positive on [t0,∞).

Then there exists a solution x on [t0,∞) of the integrodifferential equation
(E4), which is positive on R and such that

x(t) ≤ y(t) for every t ∈ R, lim
t→∞

x(t) = 0

and

x′(t) + r(t)
∫ t

−∞
K(t− s)x(s)ds ≤ 0 for t < t0.

We will now state and prove Theorems 5.1 and 5.2.

Theorem 5.1. Let λ be a positive continuous real-valued function on the
interval [0,∞) such that

exp
{ ∫ t

t−s
q(ξ)

[ ∫ ξ

0
λ(σ)K(σ)dσ

]

dξ
}

≤ λ(s) for all t ≥ 0 and 0 ≤ s ≤ t.

Moreover, let t0 > 0 and suppose that K is not identically zero on [0, t0]
and q is positive on [t0,∞).

Then there exists a solution on [t0,∞) of the integrodifferential equation
(E3), which is positive on [0,∞) and tends to zero at ∞.

Proof. Define

y(t) = exp
{

−
∫ t

0
q(ξ)

[ ∫ ξ

0
λ(σ)K(σ)dσ

]

dξ
}

for t ≥ 0.

Clearly, y is positive on the interval [0,∞). By Theorem A it is enough to
verify that y is a solution on [0,∞) of the integrodifferential inequality (I1).
For this purpose we have, for every t ≥ 0,

y′(t) + q(t)
∫ t

0
K(t− s)y(s)ds = y′(t) + q(t)

∫ t

0
K(s)y(t− s)ds =

=− q(t)
[ ∫ t

0
λ(σ)K(σ)dσ

]

y(t) +

+ q(t)
[ ∫ t

0
K(s) exp

{ ∫ t

t−s
q(ξ)

[ ∫ ξ

0
λ(σ)K(σ)dσ

]

dξ
}

ds
]

y(t) =

=q(t)
[

−
∫ t

0
λ(s)K(s)ds +

+
∫ t

0
K(s) exp

{ ∫ t

t−s
q(ξ)

[ ∫ ξ

0
λ(σ)K(σ)dσ

]

dξ
}

ds
]

y(t) =
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=q(t)
( ∫ t

0
K(s)

[

− λ(s)+exp
{∫ t

t−s
q(ξ)

[ ∫ ξ

0
λ(σ)K(σ)dσ

]

dξ
}]

ds
)

y(t)≤

≤ 0.

Theorem 5.2. Assume that K is not identically zero on [0,∞). Assume
also that

∫ 0

−∞
r(ξ)dξ < ∞

and let µ be a positive continuous real-valued function on the interval [0,∞)
such that

∫ ∞

0
µ(σ)K(σ)dσ < ∞

and

exp
{[∫ ∞

0
µ(σ)K(σ)dσ

] ∫ t

t−s
r(ξ)dξ

}

≤ µ(s) for all t ∈ R and s ≥ 0.

Moreover, let t0 ∈ R and suppose that r is positive on [t0,∞).
Then there exists a solution on [t0,∞) of the integrodifferential equation

(E4), which is positive on R and tends to zero at ∞.

Proof. Set

y(t) = exp
{

−
[ ∫ ∞

0
µ(σ)K(σ)dσ

] ∫ t

−∞
r(ξ)dξ

}

for t ∈ R.

We observe that y is positive on the real line R. So by Theorem B it suffices
to show that y is a solution on R of the integrodifferential inequality (I2).
To this end we obtain, for every t ∈ R,

y′(t) + r(t)
∫ t

−∞
K(t− s)y(s)ds = y′(t) + r(t)

∫ ∞

0
K(s)y(t− s)ds =

=− r(t)
[ ∫ ∞

0
µ(σ)K(σ)dσ

]

y(t) +

+ r(t)
[ ∫ ∞

0
K(s) exp

{[ ∫ ∞

0
µ(σ)K(σ)dσ

] ∫ t

t−s
r(ξ)dξ

}

ds
]

y(t) =

=r(t)
[

−
∫ ∞

0
µ(s)K(s)ds +

+
∫ ∞

0
K(s) exp

{[ ∫ ∞

0
µ(σ)K(σ)dσ

] ∫ t

t−s
r(ξ)dξ

}

ds
]

y(t) =

=r(t)
( ∫ ∞

0
K(s)

[

− µ(s)+exp
{[ ∫ ∞

0
µ(σ)K(σ)dσ

] ∫ t

t−s
r(ξ)dξ

}]

ds
)

y(t)≤

≤ 0.
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37. Ch. G. Philos, Oscillation and nonoscillation in integrodifferential
equations. Libertas Math. 12(1992), 121–138.



284 I.-G. E. KORDONIS AND CH. G. PHILOS

38. Ch. G. Philos, Positive solutions of integrodifferential equations. J.
Appl. Math. Stochastic Anal. 6(1993), 55–68.

39. Ch. G. Philos and Y. G. Sficas, On the existence of positive solutions
of integrodifferential equations. Appl. Anal. 36(1990), 189–210.

40. C. Corduneanu and V. Lakshmikantham, Equations with unbounded
delay: A survey. Nonlinear Anal. 4(1980), 831–877.

41. T. A. Burton, Volterra integral and differential equations. Academic
Press, New York, 1983.

42. C. Corduneanu, Integral equations and applications. Cambridge
University Press, Cambridge, 1991.

43. I.-G. E. Kordonis and Ch. G. Philos, Oscillation and nonoscillation
in linear delay or advanced difference equations. Math. Comput. Modelling
27(1998), 11–21.

44. Ch. G. Philos, On the existence of positive solutions for certain
difference equations and inequalities. J. Inequalities Appl. 2(1998), 57–69.

(Received 29.05.1997)

Authors’ address:
Department of Mathematics
University of Ioannina
P.O. Box 1186
451 10 Ioannina
Greece


