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MARKOV DILATION OF DIFFUSION TYPE PROCESSES
AND ITS APPLICATION TO THE FINANCIAL
MATHEMATICS

R. TEVZADZE

ABSTRACT. The Markov dilation of diffusion type processes is de-
fined. Infinitesimal operators and stochastic differential equations for
the obtained Markov processes are described. Some applications to
the integral representation for functionals of diffusion type processes
and to the construction of a replicating portfolio for a non-terminal
contingent claim are considered.

1. INTRODUCTION

Let & = (&¢)ief0,1) be a stochastic process in the metric space X with
the sample paths from the space D([0,1], X) of functions which are right
continuous with left limit (r.c.l.l.). It is easy to see that the D(]0, 1], X)-
valued process defined for each ¢ € [0, 1] by

gt = (gt/\sa ERS [07 1])
has a Markov property, i.e., for any Borel set B in DJ0, 1]
P[Et € B‘€t17£t27"'7£tn} = P[Et € B|§tn]’ 0 <t <<ty < 1a (11)

since o-fields o (&%) = o(&s, s < t) increase as t increases.
Consider the case X = R and suppose that £ is a diffusion type pro-
cess,i.e., it satisfies a stochastic differential equation (S.D.E.)

¢, = alt, &)dw, + b(t, €)dt, (1.2)

where a(t, ), b(t,r) are nonanticipative functionals and w = (w¢)¢ejo,1) is
the Wiener process. We want to find a S.D.E. and infinitesimal operators
for a random process £f. This will allow us to write a parabolic equation
for functionals of diffusion type processes and to derive It6’s formula for
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nonanticipative functionals. In Section 2 we represent £¢ as a solution of a
S.D.E. in the space of square integrable paths. For this case the infinitesimal
operator can be defined using the results of infinite dimensional stochastic
analysis but one needs strong conditions on the coefficients a and b. In
Section 3 more general and complicated case of the continuous path space
is studied. Finally, we shall obtain a new proof of Clark’s formula for
It&’s processes [1] and we bring some applications to financial mathematics.
When ¢ is a homogeneous Markov process, our results have some intersection
with the recent results of [2].

Here we use the following notation: W/[0,1] is the space of continuous
functions, D0, 1] the space of r.c.L.l. functions, L2 [0,1] a space of square
integrable functions w.r.t. measure m, iy = 1y ), jt = 1p,15- CB([0,1] x
W10,1]) denotes class of bounded continuous functions and C'B%*([0,1] x
W10,1]) denote the subclasses of functions from CB([0,1] x W0,1]) with
continuous and bounded derivatives w.r.t. the first variable up to order ¢
and continuous bounded Frechet derivatives w.r.t. the second variable up
to order k.

For any ¢ € [0, 1] we shall consider the operators:

Cyx = ziy + x(t)jy, Cy:D[0,1] — D[0,1] C L2,[0,1],

Rix = x(t)j,;, R;:D[0,1] — D[0,1] c L?,[0,1],

P(s) —P(t) +x(t) if s>t
LY = =
cels) =9 ocals) {x(s) if s <t,
veD[0,1], L :D[0,1] — D[0,1] € L3,[0,1],
_J=(0) if s>1¢,
Qur(s) = {x(t) —z(s) +z(0) if s <t
Q: : D[0,1] — D[0,1] C L2 [0, 1].

Their restrictions on the space WJ0,1] will be denoted by the same
symbols. We shall also use the space W[0,00) with metric ||z — y|| =
oo .

S~ 2 % sup{|z(s) — y(s)|,1} and spaces CB(R,. x W), CB**(Ry x W)
<k

k=1 s<
defined in the same way.

2. REPESENTATION OF A DIFFUSION TYPE PROCESS IN THE SPACE
L3,00,1]
Let (€, F,P) be a probabilist space with filtration (F;)ic[o,1). Let

(w, Ft)teo,1] be a Wiener process and (3, 4 );e[0,1] @ random process with
paths from the space D[0,1]NV[0, 1]. Denote by I5(g); and I,,(g); the inte-

gral fot gsdfs and the stochastic integral fot gsdwg respectively, for a process
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(g¢, F+) with values in the Hilbert space satisfy standart condition, which
guarantees the existence of those integrales. If 8, = t, then Ig(g) is shortly
denoted by I(g). Then the following theorem is valid.

Theorem 2.1. Let (a¢, Ft), (be, Fi) be real processes such that

1 1
P(/ |bt|dﬁt<oo> =1, E/ |a;|2dt < oo.
0 0

Then the identities take place
CI(B)) = 13(R(b)), C(lw(a)) = Lu(R(a)).

In other words, if & = fot asdwg + fot bsdfBs, then Cif = fot R(a)dws +
Jo Rs(b)dB.
Proof. Let ¢ € L2,]0,1]. Then

(16, Ci(15(b)) = /0 e /0 budBudme + / " /0 bududm, —

t t 1 t
= sbu-s d ud s sbud wdims =
| [ obisdsam,+ [ [ v.b.as.am
t t 1 t
— [ [ vbiti@dsidm. + [ [ vbidsiam. -
0 0 t 0
t t t 1

N /ot bu /u1 YsdmsdfB, = /(:(1/J,Ru(b))dﬁu =

- (w, /0 tRu(b)dﬁu).

By the arbitrariness of 1 the first relation is established. Identitities for
stochastic integrals may be derived in similar way. For instance, the tran-

sition . . .
/ dm / VYsayjs(u)dw, = / / Psaufs(u)dmsdwy
0 0 0 0

is true by Fubini’s theorem for stochastic integrals [3, p. 217]. In particular,
we must take

Q=10,1], F = B[0,1],p = m, gs(w,d) = Yyas(w)lp,q (D)

in the equality

1 1
// gs(w,u?)dwsdpz/ /gs(w,u?)dpdws. 0
aJo 0o Ja
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Corollary. Let f : [0,1] x L2,[0,1] — R be a bounded function with
bounded and continuous Frechet derivative fi, Vif, V2f and let & =

fot asdws + fot bsdf3, be the Ité process. Then

t
F(0,G) = Ft0.Cu) = [ [ 52150+ by £(s.C8) +

L r.c0las s [l sis.c0 (21)
=g =5 (S, Cs S Qs J(S,0Ug Wys, .

2 %952 o OJs

where % denotes the Gateux derivative in the direction j;.

Proof. Using Ito’s formula for the L2, [0,1]-valued It process 1, = fotas jedwet
fg bsjsds [4] and taking into account

. 0
(Vaf(t,x),bije) = btafjtf(tax)a
32

V2 f(t @) (agje, agj) = a%ﬁf(tvx)v

we obtain (2.1). O

About Cy§, Qi€ or L;pﬁ we shall say that each of them is the Markov
dilation of &, since each of them has the Markov property.

Theorem 2.2. Let A, B : [0,1] x L2,[0,1] — R be Lipschitz function,
satisfying linearly growth condition. Suppose that functions a¥,b¥ : [0,1] x
W10,1] — R defined by

a’(t,z) = A(t,L¥x), b¥(t,x) = B(t, LY x)
and £4Y 0¥ denote solutions of the S.D.E.
s S
& = o+l [ @ Odun+i) [ 0w Od (23
¢ ¢
0s = 1/1—1—/ A(u, 0y,)judwy, —|—/ B(u, 0y,)jyudu, (2.4)
¢ ¢
respectively. Then 04Y = LY (£4¥).
Proof. Equation (2.3) has a unique strong solution ([3], [4]) and equation
A

(2.4) has a unique strong solution only in the space L2 [0, 1] [5]. By Theorem
2.1 equation (2.3) gives

Cof = s + / 0% (u, €)juduw + / b (u, €) judu.

t
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Since a¥(¢) = A, (LY¢), we have
szg =9+ / Alu, L:ﬁjf).judwu + / B(u, Lﬁ&)judua
t ¢

oL = LY (£5¥) because of the solution is unique. [J

Corollary 1. Suppose that in addition to the conditions of Theorem 2.2
the functions A, B belong to C12([0,1] x L2)) and n € C*(L2,). Then the
Cauchy problem

0 0 1 02

0 _ 9 B
(57 + AW )ultse) = (55 +b(t.0) 5+ alt,9)* 525 Jult 0) =0, (25)
u(l,¢) = n(p) (2.6)
has a solution which can be represented as
u(t, ) = En(€"?), (2.7)

where €% is a solution of (2.3).

Proof. Tt follows from the results of [5, pp. 322, 325] taking into account
(2.2). O

Corollary 2. & = §2’w(0)j0 satisfies the S.D.E.

& =00+ [ alwdw,+ [ b g)d
0 0
where a(u, &) = A(u, Cy,€),b(u, &) = B(u, Cy¢), and we have
E[n©)|F] = En(€")ly=cye-
Remark 1. If we suppose
¥ =ojo, m =01, A(t,x)=A(t,x(t)), B(t,z)= B(t,z(t)),

then a(t,z) = A(t, Cix) = A(t, 2(t)),b(t, z) = B(t,Cyx) = B(t, z(t)).

Theorem 2.3. Suppose that a continuous bounded function

f:00,1] x L2 [0,1] — R

possesses the continuous bounded derivatives %f(t,w), % (), %%f(s,vﬁ)
for each t,s € [0,1]. Then (2.1) holds.
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Proof. By a standard way the proof of formula (2.1) reduces to the case
ft = Tty + (t - tO)Rto (b) + (’U)(t) - U)(to))RtO (a) Evidently, ft — Tty = ntjtv
g(tvnt) = f(t7€t)7 where g(taq) = f(t7qxtojto)7 n = (t - to)bto + (w(t) -
w(to))at,. By the It6 formula for scalar case we obtain

() = 0.0) = [ [Lotom) + b gm) +
g\, Nt g(lo, - 889 S, 1s toaqg»ns

to

1, 02 Lo
+2atoaq29<57ns)}d3+/to ato%g(sans)dws~

Then the Itd formula is obtained for &, since aqk g(t q) = 8 o f(t Tty +qJt, ),
k=12 O

The first and second Frechet derivatives VF, V2F for the functions F :
W10,1] — R by Riesz’ theorem are represented as a Borel measure on [0, 1]
and a symmetric (w.r.t. the inversion (u,v) — (v,u)) Borel measure on
[0,1]%, respectively [6, p. 68]. These measures are denoted by VF(x,du)
and V2F(x, dudv).

Remark 2. If f : W[0,1] — R is a twice continuous Frechet differentiable
function, then by the results of [2] both aijtf(t, Cix), %if(t, Ciz) are r.c.l.l.
in ¢.

Theorem 2.4. Suppose that f € CBY2([0,1] x
%f(t,x);tfl(tal‘) = th(t,ﬂﬂ, t,1]), f2(t,2,[t,1]%) =
77t = 1/}—’_];0 asjsdws'i_j;fo bsjsds7 where (ataft)7 (bta )
of Theorem 2.1. Then

wi,1), St z) =
Vif ( z,[t,1]%) and

satisfy the conditions

t
£t = Flto,my) = [ [fsum)+ b 5m) + 327 o) s +

to

+/ asf (s, ns)dws. (2.8)

to

Proof. For each h € L?[0,1] we denote

hn(t) = n/ot e ") h(s)ds. (2.9)

Evidently, the mapping L?[0,1] € h — h,, € W0, 1] is a lineary continuous
function and h,, — h,m — oo in L?[0,1]. The mapping f(t,z) = f(t,z)
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is a differentiable w.r.t. ¢ and twice Frechet differetiable w.r.t. z. For
h € L?[0,1] we have

8 1
g ) = [ ahate),

1 1
giﬂm“@_ﬁgﬂfﬂﬁwﬂwmmawmw>

for h = jg, hy(t) = e " (e™ — "), ie.,
0
— M (t,z) - fit,x), n— occ.
Oj
Similarly,
82
7f(”)(t,x) — f2(t,x), n — oo.
9ji
By Lebesgue’s theorem we can pass to the limit in formula (2.1). O

Remark 3. In [7] it was proposed to define derivatives of anticipative
functions as follows. f(t,z) called differentiable if there exist f* and f! such
that f(t,7) = fO(t, ) —|—f0t fi(s,z)dxs for x € V[0,1]. If f(t,z) = F(t,Ciz)
then the derivatives fO(t,z), f1(¢,7) can be calculated as

LoF oF

; a(s,csx)ds, a—jt(t,C'tx),

respectively.

Remark 4. Tt is possible to define the Markov dilation by the operator
Q:. Then the infinitesimal operator will have the form % + b(t,x)é% +

1 2 92

§a(t,x) 871%

3. MARKOV DILATION OF A DIFFUSION TYPE PROCESS IN THE SPACE
W10, o0)

Let a,b: Rx WJ0,00) — R be nonanticipative continuous functions such
that the S.D.E.

&=m+/2M£W%+/EWQM,t§& (3.1)
t t

being defined as ¥(s) for s < t has a unique strong solution for any ¢. For
this it must satisfies the following condition [5]: There exists K > 0 such
that

lat, ) — a(t,y)* + [b(t, x) = b(t, 9)|* < K|l — g7,

) ) ) (3.2)
la(t, 2)[” + [b(t, 2)[* < K(1 + [lz]7).
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Lemma 3.1. Let £4Y s >t be a solution of (3.1). Then
gt = gl t<s <

Proof. By inserting ¢ = £% in the equality

5;110590 = o4 @(T) + /T a(u’gwosw)dwu + /tT b(u’ gwos@)du, v ew,
t

and taking into account that

/ST g(u, r)dwy|r=p = /STg(u, ndw,, n€ Fs,
we have
gvos =) — () + €00+
+ /Ta(u, §‘g’¢°‘55t’¢)dwu + /T b(u,fs’w"sgt’w)du =
s s
=&Y —a(s) — /S a(u,gs’wosgt’w)dwu - /S b(u,fs’woa‘gt’w)du +
t t

T

-
+(7) + / au, &0 )dw, + / b(u, € ) du =
Tt Tt
=u(1) + / a(u, fs’wosgt'w)dwu + / b(u, fs’wosgt’w)du.
t t
This equality is valid, since ¢4¥ = ff;wosgt'w for t < u < s. By the uniqueness
of a solution it follows that L% = ¢vo=€""

Theorem 3.1. 5% =)o, Y = LY(£5Y) is a W-valued Markov family
of processes.

Proof. Suppose f € CB(W). By Lemma 3.1 ¢ o, 8% = 4o, fs’d’oﬂf?w, ie.,
OLY =1 o, ES*wO-*gé’w, t<s<T, and

ELF(0)165] = BLF05")104] = BLF03)) g

On the other hand, (1.1) is fulfilled, i.e., E[f(02%)[05%] = Ef(03%) _psv,

since
o) =o(ehY, t<u<s)=o0Y, t<u<s). 0O

Now we shall describe infinitesimal operators of Markov family of pro-
cesses. Here j; will denote 1 ).
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Theorem 3.2. Suppose that the bounded function f : Ry x L>(R,) — R
has the continuous bounded derivatives %f(t,z/}), % (t, ), %zf(t,w) for
each t,s € Ry. Then

0

5,059 = 1(0.0) = [ [ 0. 05%) + AP, 0] du+

. )
+ a u,@fﬂ’ — u,@fﬂ’ dw,,.
| atw.03) 5 pw.03®)

u

Proof. Tt can be obtained immediately by the theorem 2.3 and the repre-
sentation

S S
0 =t [ Guatu)du, + [ gubuv)du. O
¢ t
Let us denote by C’B},’Q(RJr x W) a class of function satisfying the con-
ditions of Theorem 3.2.

Lemma 3.2. Suppose f € CB(Ry x W), f™(t,xz) = f(t,z"™), where z"
is defined by (2.9). Then f)(t,z) — f(t,z), (t,x) € Ry x W, and {f"} is
the uniformly bounded family.

Proof. The results of [8] imply that z,,(t) — (¢) uniformly on each segment
[a,b], i.e., ,, — 2 in W. By the continuity of f we have f(")(t,z) — f(t, ),
ft2) < fllee O

Corollary. CB}]’Q(R+ x W) dense in CBj(Ry x W) in the topology of
bounded pointwise convergence.

Proof. 1t is sufficient to recall that Gateux differentiable functions in the
Hilbert space H dense in CB(H) [5]. O

Now we introduce the Ry x W-valued homogeneous Markov family
bV = (t + 379ff5)7 s> 0.

Evidently, by Theorem 2.3 for each f € C’B},’Q(RJr x W), we have the
following decomposition

F) = F(t,0) + /0 CF(u+ 1,050 )du +

0
+ / - / (u+t, HZ’ft)a(u +t, Gi’fft)dwu.
0 OJutt

Therefore C’B}]’2 belongs to the domain of the generator of the Markov
family {n%¥} and the equation Lf = (% + A(t))f holds for any f €
C’B}]’2 (R4 x W). We will show the solvability of this equatiion.
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Lemma 3.3. Let ay,(t,u),b,(t,u),c,(t), (t,u) € Ry Xx R, n =0,1,...,
be the processes adapted with filtration (Fy) for each fized u. Furtermore,
an(t,-), bu(t,-) are functions of finite variation. Assume that there exist K
such that

lan(t, )l < K, on(t, )| < K, Esuplea(s)] < K,

s<t

and

”an(ta ) - aO(tv ')”V[O,t] — 0, an(tv ) - bO(ta ')”V[O,t] — 0,
Esup|e,(s) —co(s)] — 0
s<t

in probability. Let (,, n=0,1,..., be solutions of

n = Cn ) n 7d n d s t Sbn 7d n ds.
Gty =ealt)+ [ [ antsdu,du,+ [ [ b auguwas
Then Bl|¢n — Coll7 — 0.

Proof. We shall use the proof from [9]. Using the inequality (a + b+ ¢)? <
3(a? + b + %) we obtain

Esup[Gu(7) = Co(M)IF <

T s 2
<sswp [ | [ (@nls du)Gu(dn) = an(s, du)go(w)du. |+
T<t JO 0
T S 2
+38sup [ [ (s, (du)—bo(s, du)ou)ds| -+
T<t JO 0
+ 3E sup |e, (1) —co (1)
<t
By Doob’s inequality we have
T s 2
Esup/ /(an(s,du)(jn(du)—ao(s,du)Co(u))dws <
7<t Jo 0
t s 2
<4E /O /O (an (s, du)Co(du) — ag (s, du)co(w)| ds,
ie.,
Esup [(u(1) = Co(7)]? < BEsup [en(t) — co(t)]* +
<t T<t
t s 2
12E (5, du)Co(u) — ag(s, d d
128 [ ] [ (aus.au)G0 (00 - ao(s. du)o(w)| ds +
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+—3t£?j£ Jﬂs<bn<s,du><n<u>——bo<s,du><o<u>>

< 3Esup|cn (1) — co(T)]* +
<t

2
ds <

2

+ 24E/0 /OS[(an(s,du) —ag(s,du)]¢o(w))| ds+

t

2
ds +

[m@mwmwmmm»

2

+24F /S an(s,du)[Cn(u) — Co(u)]| ds +
o |Jo
w6t [ | [ buls.du) ) = G| ds <
<3FE sipt) len(T) = co(T)]? +
2

an (s, du)[Cn(u) — Go(w)]| ds +
(u) — Co(u)) ds <

< O (t )—|—6K2 Esup|§n( ) — Co(u)|*ds +

0 7<s

t
+24K? | Esup |G (u) — Co(u)|*ds,

0 T<s

where

0n(t) =3Esup|c,(s) — co(s)| +

s<t

t
+ 24E sup ICo(S)IQE/ lan(s, ) = ao(s,-)|[ds +
s<t 0

t
+ 6tE sup \CO(S)FE/ lbn(s,-) — bo(s, ) |2ds.
s<t 0

Evidently, 6, (t) — 0,¢ > 0. By Gronwall’s lemma
BlGa(s) = Go(s)[* < sup [dn(s)[*e™,

where H = 24K? + 6K?%t. O

Theorem 3.3. Let a,b € CB%2(R. xW). Then the solution of equation
(3.1) is Frechet differeniable w.r.t. 1 for each t,s. Moreover, Y (s,u) =
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%Eﬁ’w satisfies the equation

dSY(Sa u) = (Va(s,f), Y('au))dws + (Vb(svg),y('vu))d& s> u,
Y(u,u) =1, (3.3)

Proof. Let t,1) be fixed. Denote (£¢ = 1[¢5¥+¥ — (%] for any direction
. Then

ot =i [ Lol €) — au, ), +

i [ )~ b,

Using the mean value theorem we obtain
S
GO =ttt [ (Valu, €+ e0C7), ¢, +
t

+Jt /S(Vb(u, MY 4 9CP), %) du

t

for some 6, 0 < # < 1. Introduce the notation a,, = Va(u, Y + €,(9 ),
b, = Vb(u,&HY + €,(¥ ), where ¢, — 0. By Lemma 3.3 it follows that
(Pen — %ft’w and consequently sup, < [e,(£*] — 0. Thus a, — Va(u, &%),
by — Vb(u,£5%) as n — oo. Evidently (%gt’w)(s) = (s), s < t. It remains
to take ¢ = j,. The existence of second derivatives at @ is proved in a
similar way [9]. O

Theorem 3.4. Let the conditions of Theorem 3.3 hold and n € C*(W).
Then u(t, ) = En(&H?) belongs to CV2(Ry x W) and satisfies

(% _|_A(t)>u(t7z/)) =0, [lim u(t, ) = n(¥).

Proof. The differentiability of the functions u(t,®) w.r.t. ¢ follows from
Theorem 3.2. We have

0.&Y 5,10
u(t, ) = En(E"")=En(e"*¢ ") = El(e™*Y)| y—grv] = Bu(s, v o5 €Y),
y € W, ie., u(t,y)) = Eu(s,0%Y). Let s =t + h. By Itd’s formula

u(t +h,0)0) — u(t + h,) =

th o 1 0?
¢ s s

t+h a
+/ als, 05%) ——u(t + h,05%)dw,.
t a]s
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Consequently,

w(t, ) — u(t + h,9) = Bu(t + h,05,) — u(t + h,) =

0 t,ap 1 I at,N2 0? t,2
. U(t+ h7os/ )+ 70’(5 ’es’ ) u(t+h503’ )]h7

Eb(s,05Y
(s )838 2 dj2

» Vsl

for some s, t < s’ <t+h,ie.,

1

E(u(t7w> - u(t + h’w)) - A(t)u(t7¢)7 h — 0,

and (% +A(t))u(t, ) = 0. Evidently, £€4¥ — 1 when ¢ tends to infinity. [J

Remark 5. Applying a similar reasoning, one can prove the solvability of
the Cauchy problem

0 .
(57 +A® =19 )ult.0) =0, lim ult,p) = (),
where r € C%2(R, x W).

4. APPLICATIONS

The obtained results allow us to derive a representation formula for func-
tionals of a diffusion type process (Clark’s formula) [1]. However our condi-
tions will be stronger than those in [1] and more general than those in the
recent work [2].

Theorem 4.1. Let a(t,v), b(t,v), n(¥) be the functions with bounded
continuous Frechet derivatives of first and second order w.r.t. ¢ € W0, 1].
Suppose (&¢)iejo,1) 45 a solution of (1.2). Then

E©] = BW@] + [ B| [ Vale.asy (.07 atwgdw, (1)
where Y satisfies (3.3).

Proof. By the Markov property we have E[n(&)|F] = V(¢ Ci), where
V(t,%) = En(¢h¥). By Theorem 3.4 and Ito’s formula for V(¢,C.€) we
have

t o
V(t,Cié) = V(0,60) + / 5 V(0. Cualu, i
By Theorem 3.3

0

5 V() = B(V9().Y () = / V(e ds)Y (s, u).
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Using Corollary 2 of Theorem 2.2 we can write

0

1
V(1. Cu) = E[ | onte.anyisuiz.

Thus relation (4.1) is valid. O

The other application refers to financial mathematics. Suppose that the
stock price process S; satisfies

dSt = ,L,L(t, S)dt + O'(t, S)dwt
and the bond price process satisfies
dBt = ’I"(t, S)Btdt

Also suppose that g(.9) is a contingent claim under the stock S; with delivery
time 1.

The portfolio process (a(t, S),3(t,S)), where a denotes the number of
stocks and ( the number of bonds, is called a self-financing if the wealth
process h(t,S) = «a(t,S)S: + B(t, S)B: can be represented as

h(t,S) = h(0, Sp) +/0ta(s,S)dSS +/Ot[3(s,5)st.

The process (a(t, S), 5(t,5)), is called a replicating portfolio for the contin-
gent claim ¢(5), if, additionaly, h(1,S) = g(S) [10].

Theorem 4.2. Suppose that a(t,)), r(t,)) belongs to C%2([0,1]xW[0,1])

and g(v) belongs to BC?(W[0,1]). Then there exists a replicating portfolio
process (o, B¢) whose wealth process is a solution of the Cauchy problem

0 0

1 2 0° _ (4.2)
+§U(t?'(/]) @h(tvdﬁ - T(t,¢>h(t7¢) =0,
h(1,¢) = g(¥).

Moreover, a(t,v) = %h(hw),

Proof. Let h(t,1) be a solution of problem (4.2) existing by virtue of The-
orem 3.4. Define the portfolio process by
0 1 0
t,5) = =—h(t,S t,S) = —=(h(t,S) — Si=—h(t,9)).
a(a) ajt(v)aﬁ(v) B((a) tajt(7)>

t
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This strategy replicates the contingent claim, since h(1,5) = g¢(S). To
verify the self-financing property we perform the transformation

t
/audS +/ BudB, =

¢ d
/ aJuh u, )o(u S)dwu—F/O u(u,S)@h(u,w)du-y-
/( (u,S) — Su a—_h(u, Vr(u, S)du =
0 u

t
= /O O'(U, S)%h(u, '(/J)dwuv

0

i )l =

/0 [, S)r (s ) + ({1, S) — Sur(u, S)) o
t 0
:/0 U(u,S)@h(uﬂ/J)dwu—l—

i / [1(u, S)r(u, S) + (A*(u) = A" (u))h(u, §)]du =
0

:/Ot o(u, S)aa )duwn + /A“ _

= h(t,S) — (0, Sy),

where we use the notation

0 1 9?2
B(o) — o 1 2 07
AP(3) = . 8) g + 505
v 0 1 5 02
A"(s) =r(u, S)S, a7 + 2U(u, S) 77

The equality is valid by It6’s formula. [
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