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OSCILLATION AND NONOSCILLATION CRITERIA FOR
A SECOND ORDER LINEAR EQUATION

T. CHANTLADZE, N. KANDELAKI, AND A. LOMTATIDZE

Abstract. New oscillation and nonoscillation criteria are established
for the equation

u′′ + p(t)u = 0,

where p : ]1, +∞[→ R is the locally integrable function. These cri-
teria generalize and complement the well known criteria of E. Hille,
Z. Nehari, A. Wintner, and P. Hartman.

We shall consider the equation

u′′ + p(t)u = 0, (0.1)

where the function p : ]1,+∞[→ R is Lebesgue integrable on each finite
segment from [1, +∞[ . By a solution of equation (0.1) is understood a
function u : [1, +∞[→ R which is absolutely continuous together with its
first derivative on each finite segment from [1, +∞[ and which satisfies al-
most everywhere equation (0.1). Equation (0.1) is called oscillatory if there
exists its solution with an infinite number of zeros and nonoscillatory oth-
erwise.

Below we shall give some new oscillation and nonoscillation criteria for
equation (0.1). The paper is organized as follows: the main results are
formulated in Section 1; Section 2 contains remarks and comments; the
auxiliary propositions are presented in Section 3, while the proofs of the
main results can be found in Section 4.

Before we proceed to the formulation of the main results we want to
introduce some notation.

Let

c(t) =
1
t

t
∫

1

s
∫

1

p(ξ) dξ ds for t ≥ 1.
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Below it will always be assumed that there exists a finite limit

c0
def= lim

t→+∞
c(t). (0.2)

We set

Q(t) = t
(

c0 −
t

∫

1

p(s) ds
)

, H(t) =
1
t

t
∫

1

s2p(s) ds for t ≥ 1,

Q∗ = lim inf
t→+∞

Q(t), Q∗ = lim sup
t→+∞

Q(t),

H∗ = lim inf
t→+∞

H(t), H∗ = lim sup
t→+∞

H(t).

1. Formulation of the Main Results

Theorem 1.1. Let

lim sup
t→+∞

t
ln t

(c0 − c(t)) >
1
4

. (1.1)

Then equation (0.1) is oscillatory.

Corollary 1.1. Let Q∗ > −∞ and

lim sup
t→+∞

1
ln t

t
∫

1

sp(s) ds >
1
4

.

Then equation (0.1) is oscillatory.

Corollary 1.2. Let

lim inf
t→+∞

[Q(t) + H(t)] > 1/2 . (1.2)

Then equation (0.1) is oscillatory.

Theorem 1.2. Let

lim sup
t→+∞

[Q(t) + H(t)] > 1. (1.3)

Then equation (0.1) is oscillatory.

Corollary 1.2 readily implies (see equality (4.1) below) that if Q∗ > 1
4

then equation (0.1) is oscillatory, while from Theorem 1.1 it follows (see
equalities (2.2) and (2.3) below) that the condition H∗ > 1

4 also guarantees
the oscillation of equation (0.1) (see also [11]). Hence we shall limit our
consideration to the case with Q∗ ≤ 1

4 and H∗ ≤ 1
4 .
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Theorem 1.3. Let either

0 ≤ Q∗ ≤ 1/4 and H∗ > 1/2
(

1 +
√

1− 4Q∗
)

, (1.4)

or

0 ≤ H∗ ≤ 1/4 and Q∗ > 1/2
(

1 +
√

1− 4H∗
)

. (1.5)

Then equation (0.1) is oscillatory.

Theorem 1.4. Let

0 ≤ Q∗ ≤ 1/4 and 0 ≤ H∗ ≤ 1/4 . (1.6)

Then each of the conditions

Q∗ > Q∗ + 1/2
(√

1− 4Q∗ +
√

1− 4H∗
)

(1.7)

and

H∗ > H∗ + 1/2
(√

1− 4Q∗ +
√

1− 4H∗
)

(1.8)

guarantees the oscillation of equation (0.1).

When condition (1.6) is fulfilled, Theorem 1.2 can be formulated in a
more precise way.

Theorem 1.5. Let condition (1.6) be fulfilled and

lim sup
t→+∞

[Q(t) + H(t)] > H∗ + Q∗ + 1/2
(√

1− 4Q∗ +
√

1− 4H∗
)

.

Then equation (0.1) is oscillatory.

To conclude the paragraph, we shall give two theorems on nonoscillation.
In [3] and [12] it was respectively proved that if

−3/4 < Q∗ and Q∗ < 1/4 , (1.9)

or

−3/4 < H∗ and H∗ < 1/4 , (1.10)

then equation (0.1) is nonoscillatory. The theorem below complements these
results.

Theorem 1.6. Let either

−∞ < Q∗ ≤ −3/4 and Q∗ < Q∗ − 1 +
√

1− 4Q∗, (1.11)

or

−∞ < H∗ ≤ −3/4 and H∗ < H∗ − 1 +
√

1− 4H∗. (1.12)

Then equation (0.1) is nonoscillatory.
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Our next theorem is an attempt to reverse Corollary 1.1.

Theorem 1.7. Let there exist a finite limit

p0
def= lim

t→+∞

1
ln t

t
∫

1

sp(s) ds <
1
4

(1.13)

and
G∗ < G∗ +

√

1− 4p0,

where

G∗ = lim inf
t→+∞

ln t
[

1
ln t

t
∫

1

sp(s) ds− p0

]

,

G∗ = lim sup
t→+∞

ln t
[

1
ln t

t
∫

1

sp(s) ds− p0

]

.

Then equation (0.1) is nonoscillatory.

Corollary 1.3. Let

−∞ < lim sup
t→+∞

t
∫

1

sp(s) ds < lim inf
t→+∞

t
∫

1

sp(s) ds + 1 < +∞.

Then equation (0.1) is nonoscillatory.

2. Remarks

Among a great number of papers dealing with the oscillation of equation
(0.1) we shall mention only those having a direct connection with the above-
formulated theorems.

A. Wintner [2] and P. Hartman [4] proved respectively that if lim
t→+∞

c(t) =
+∞ or

−∞ < lim inf
t→+∞

c(t) < lim sup
t→+∞

c(t) ≤ +∞,

then equation (0.1) is oscillatory. Hence the case with the existence of the
finite limit (0.2) seems to us the most interesting one to investigate.

Frequently, equation (0.1) is considered under the assumption that there
exists a finite limit

+∞
∫

1

p(s) ds def= lim
t→+∞

t
∫

1

p(s) ds, (2.1)
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since in that case there also exist limit (0.2) (and c0 =
+∞
∫

1
p(s) ds). However

it is clear that (2.1) is not the necessary condition for (0.2). An example
will be given below to show that Theorem 1.1 also covers the case with

p∗ = lim inf
t→+∞

t
∫

1

p(s) ds < c0 < lim sup
t→+∞

t
∫

1

p(s) ds = p∗.

In the particular case, where p(t) ≥ 0 for t > 1, Corollary 1.1 was proved
in [10], while Theorems 1.3 and 1.4 in [12]. In order that the function Q be
bounded from below, it is necessary that c0 = p∗. Since

c(t) =

t
∫

1

p(s) ds− H(t)
t

− 1
t

t
∫

1

1
s

H(s) ds for t ≥ 1,

for the function H to be bounded from below it is necessary that c0 = p∗.
Therefore condition (2.1) is necessary for Theorem 1.4, while the conditions
c0 = p∗ and c0 = p∗ are necessary for the fulfilment of conditions (1.4)
and (1.5) of Theorem 1.3, respectively. Note that the oscillation criterion
Q∗ > 1

4 (originating from E. Hille [1]) is somewhat more general than in [5],
since it does not demand that (2.1) be fulfilled.

Theorems 1.3 and 1.4 generalize and improve the well-known oscillation
criterion from E. Hille [1]. In this paper, the case is considered when p(t) ≥ 0
for t > 1 and an example is given, showing that the constant 1 in the
oscillation criterion Q∗ > 1 cannot be decreased. However, in this example
Q∗ = 0 and H∗ = 0. If Q∗ > 0 or H∗ > 0, then, as follows from Theorems
1.3 and 1.4, the constant 1 can be decreased.

One can easily verify that for any pair of numbers (x0, y0), where x0 ≤ y0,
there is a function p : ]1, +∞[→ R such that (0.2) holds and Q∗ = x0, Q∗ =
y0 (H∗ = x0 and H∗ = y0). Therefore Theorems 1.3–1.6 are meaningful.

For (1.9) and (1.11) condition (2.1) is necessary.
By using the equality

c(t) = c(τ) +

t
∫

τ

ln s
s2

[

1
ln s

s
∫

1

ξp(ξ) dξ
]

ds for t, τ > 1 (2.2)

one can readily find that if there exists a finite limit lim
t→+∞

1
ln t

∫ t
1 sp(s) ds,

then (0.2) holds. Thus for Theorem 1.7 condition (0.2) is necessary.
As is known (see [8] and [9]), for equation (0.1) to be oscillatory when

p(t) = µ
t sin t for t ≥ 1, it is necessary and sufficient that |µ| < 1√

2
. This

example shows that only condition (1.13) is not enough for the nonoscillation
of equation (0.1).
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It might seem at first glance that for conditions (1.10) and (1.12) it is
not required that (0.2) be fulfilled. However, using equalities (2.2) and

1
ln t

t
∫

1

sp(s) ds =
1

ln t
H(t) +

1
ln t

t
∫

1

1
s

H(s) ds for t > 1 (2.3)

it is easy to show that if the function H is bounded (from both sides), then
(0.2) holds. A similar situation arises for the oscillation criterion H∗ > 1

4
(originating from Z. Nehari [6]). By (2.2) and (2.3) one can easily verify
that in that case either (0.2) holds or this limit is equal to +∞. However in
the latter case, equation (0.1) will be oscillatory by virtue of A. Wintner’s
above mentioned theorem [2]. Therefore for this criterion condition (0.2) is
also necessary in a certain sense.

Finally, if we rewrite equation (0.1) as

v′′(x) = − 1
λ2 t2(1−λ)

[

p(t)− 1− λ2

4t2

]

v(x),

then, after transforming u(t) = t
1−λ

2√
λ

v(x), x = tλ, λ > 0, and applying
Theorems 1.3 and 1.4, we can generalize and improve the oscillation criteria
of Z. Nehari [6].

Example. Let λ 6= 0 and γ be real numbers,

g(t) = −γ
ln t
t

+
λ

1 + ln t
(sin ln2 t− 1) for t ≥ 1

and
p(t) = 2g′(t) + tg′′(t) for t ≥ 1.

It is easy to verify that

t
∫

1

p(s) ds = g(t) + tg′(t) + γ, c(t) = g(t) +
t− 1

t
(γ − λ) + λ for t ≥ 1,

lim inf
t→+∞

t
∫

1

p(s) ds = γ − 2|λ|, lim sup
t→+∞

t
∫

1

p(s) ds = γ + 2|λ|, c0 = γ,

t
ln t

(c0 − c(t)) = − t
ln t

g(t) +
1

ln t
(γ − λ) for t ≥ 1,

−∞ = lim inf
t→+∞

t
ln t

(c0 − c(t)), lim sup
t→+∞

t
ln t

(c0 − c(t)) = γ for λ < 0,

γ = lim inf
t→+∞

t
ln t

(c0 − c(t)), lim sup
t→+∞

t
ln t

(c0 − c(t)) = +∞ for λ > 0.
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Thus, by Theorem 1.1, if λ > 0 or λ < 0 and γ > 1
4 equation (0.1) is

oscillatory.

3. Some Auxiliary Propositions

In this paragraph we establish some properties of solutions of equation
(0.1). Throughout this paper it is assumed that the function p : ]1, +∞[→
R is Lebesgue integrable on each finite segment from [1,+∞[ . For the
convenience of reference we shall give one proposition without proving it
(see, for example, [7], Lemma 7.1, p. 365).

Lemma 3.1. Let equation (0.1) be nonoscillatory and u(t) 6= 0 for t ≥ a
be its some solution. Then

+∞
∫

ρ2(s) ds < +∞

and

ρ(t) = c0 −
t

∫

1

p(s) ds +

+∞
∫

t

ρ2(s) ds for t ≥ a, (3.1)

where

ρ(t) =
u′(t)
u(t)

for t ≥ a. (3.2)

Lemma 3.2. Let equation (0.1) be nonoscillatory and 0 ≤ Q∗ ≤ 1
4 .

Then for each solution u of equation (0.1) the estimate

lim inf
t→+∞

tu′(t)
u(t)

≥ 1
2

(

1−
√

1− 4Q∗
)

(3.3)

is valid.

Proof. Let u(t) 6= 0 for t ≥ a be some solution of equation (0.1). By Lemma
3.1 equality (3.1) is fulfilled, where the function ρ is defined by (3.2). We
set

r = lim inf
t→+∞

tρ(t).

If r = +∞, then there is nothing to prove. Therefore it will be assumed
that r < +∞. If Q∗ = 0, then estimate (3.3) is trivial by virtue of (3.1).
So it will assumed that Q∗ > 0. For arbitrary ε ∈ ]0, Q∗[ we choose tε > a
such that

Q(t) > Q∗ − ε for t ≥ tε. (3.4)
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Now from (3.1) we have tρ(t) > Q∗−ε for t ≥ tε. Hence we readily conclude
that r ≥ Q∗. Choose t1ε > tε such that tρ(t) > r − ε for t ≥ t1ε. Taking
this and inequality (3.4) into account, from (3.1) we find

tρ(t) ≥ Q∗ − ε + (r − ε)2 for t ≥ t1ε.

Therefore r ≥ Q∗− ε+(r− ε)2 and, since ε was arbitrary, we have r2− r +
Q∗ ≤ 0. Now by simple calculations we conclude that (3.3) is valid.

Lemma 3.3. Let equation (0.1) be nonoscillatory and 0 ≤ H∗ ≤ 1
4 .

Then for each solution u of equation (0.1) the estimate

lim sup
t→+∞

tu′(t)
u(t)

≤ 1
2

(

1 +
√

1− 4H∗
)

(3.5)

holds.

Proof. Let u(t) 6= 0 for t ≥ a be some solution of equation (0.1). We
introduce the function ρ by equality (3.2) and set

M = lim sup
t→+∞

tρ(t).

If M ≤ 0, then there is nothing to prove. Hence it will be assumed that
M > 0.

Clearly, ρ′(t) = −p(t)− ρ2(t) for t ≥ a. By multiplying both sides of this
equality by t2 and integrating from τ > a to t we obtain

tρ(t) =−H(t) +
1
t

t
∫

τ

sρ(s)(2− sρ(s)) ds +

+
1
t

τ
∫

1

s2p(s) ds +
τ2

t
ρ(τ) for t > τ > a. (3.6)

Since sρ(s)(2− sρ(s)) ≤ 1 for s ≥ a, (3.6) implies

tρ(t) ≤ 1−H(t) +
1
t

τ
∫

1

s2p(s) ds +
τ2

t
ρ(τ) for t > τ > a,

and therefore M ≤ 1−H∗. Thus estimate (3.5) is valid for H∗ = 0.
Now let us assume that H∗ > 0. For arbitrary 0 < ε < min{H∗, 1−M}

we choose tε > a such that tρ(t) < M + ε, H(t) > H∗ − ε for t ≥ tε. Now
(3.6) (for τ = tε) implies

tρ(t) ≤ −H∗+ε+(M +ε)(2−M−ε)+
1
t

tε
∫

1

s2p(s) ds+
1
t

t2ερ(tε) for t > tε.



OSCILLATION AND NONOSCILLATION CRITERIA 409

Hence we easily find that M ≤ −H∗+ ε+(M + ε)(2−M − ε) and therefore
M2 − M + H∗ ≤ 0. Now by simple calculations we conclude that (3.5)
holds.

Lemma 3.4. For equation (0.1) to be nonoscillatory it is necessary and
sufficient that the equation

v′′ = − 1
t2

(

Q2(t) + 2αQ(t) + α(α− 1)
)

v − 2
t

(α + Q(t)) v′

(

v′′ = − 1
t2

(

H2(t) + 2(1− α)H(t) + α(α− 1)
)

v +
2
t

(H(t)− α) v′
)

,
(3.7)

where α is some real number, be nonoscillatory.

Proof. It is easy to verify that if v is a solution of equation (3.7), then the
function u defined by the equality

u(t) = tαv(t) exp
[

t
∫

1

Q(s)
s

ds
]

for t ≥ 1

(

u(t) = tαv(t) exp
[

−
t

∫

1

H(s)
s

ds
]

for t ≥ 1
)

is a solution of equation (0.1). Therefore these equations are simultaneously
either oscillatory or nonoscillatory.

Lemma 3.5. For equation (0.1) to be nonoscillatory it is necessary and
sufficient that the equation

v′′ = − 1
t2

[

G2(t)− (2α− 1)G(t) + p0 + α(α− 1)
]

v +

+
2
t

(α−G(t)) v′, (3.8)

where

G(t) =

t
∫

1

sp(s) ds− p0 ln t for t ≥ 1 (3.9)

be nonoscillatory for some numbers α and p0.

Proof. It is easy to verify that if v is a solution of equation (3.8), then the
function u defined by the equality

u(t) = tαv(t) exp
[

−
t

∫

1

G(s)
s

ds
]

for t ≥ 1
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is a solution of equation (0.1).

4. Proof of the Main Results

Proof of Theorem 1.1. Let us assume the opposite, i.e., that u(t) 6= 0 for
t ≥ a is a solution of equation (0.1). Equality (3.1), where the function ρ
is defined by (3.2), is fulfilled by virtue of Lemma 3.1. The integration of
(3.1) from a to t gives

t(c0 − c(t)) =

t
∫

a

sρ(s)(1− sρ(s))
s

ds− t

+∞
∫

t

ρ2(s) ds + aρ(a) +

+

a
∫

1

sp(s) ds for t ≥ a.

Since sρ(s)(1− sρ(s)) ≤ 1
4 for s ≥ a, the latter equality implies

t
ln t

(c0 − c(t)) ≤ 1
4

+
1

ln t

[

aρ(a) +

a
∫

1

sp(s) ds
]

for t ≥ a,

which contradicts condition (1.1).
By virtue of the equality

t
ln t

(c0 − c(t)) =
1

ln t
Q(t) +

1
ln t

t
∫

1

sp(s) ds for t > 1,

one can easily show that Corollary 1.1 is valid.

Proof of Corollary 1.2. It is easy to find that

Q(t) + H(t) =
2
t

t
∫

1

Q(s) ds +
c0

t
for t ≥ 1 (4.1)

and

t
ln t

(c0 − c(t)) =
1

ln t

t
∫

1

Q(s)
s

ds +
c0

ln t
=

=
1

ln t

[

1
t

t
∫

1

Q(s) ds +

t
∫

1

1
s2

(

s
∫

1

Q(ξ) dξ
)

ds
]

+
c0

ln t
for t > 1. (4.2)
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Using (1.2) and (4.1) we obtain

lim inf
t→+∞

1
t

t
∫

1

Q(s) ds >
1
4

.

Hence by (4.2) we conclude that (1.1) is fulfilled. Therefore equation (0.1)
will be oscillatory by virtue of Theorem 1.1.

Proof of Theorem 1.2. Let us assume the opposite, i.e., that u(t) 6= 0,
t ≥ a, is a solution of equation (0.1). Equality (3.1), where the function ρ
is defined by (3.2), holds by virtue of Lemma 3.1. Clearly,

ρ′(t) = −p(t)− ρ2(t) for t ≥ a.

By multiplying both sides of this equality by t2 and integrating from τ ≥ a
to t we obtain equality (3.6).

Now, using (3.1), we find that

Q(t) + H(t) =
1
t

t
∫

τ

sρ(s)(2− sρ(s)) ds− t

+∞
∫

t

ρ2(s) ds +

+
1
t

τ
∫

1

s2p(s) ds +
1
t

τ2ρ(τ) for t ≥ a. (4.3)

Hence we have

Q(t) + H(t) ≤ 1 +
1
t

τ
∫

1

s2p(s) ds +
1
t

τ2ρ(τ) for t ≥ a,

which contradicts condition (1.3).

Proof of Theorem 1.3. Let us assume the opposite, i.e., that u(t) 6= 0, t ≥ a,
is a solution of equation (0.1). Then (3.1) and (3.6), where the function
ρ is defined by (3.2), are valid. By Lemma 3.2 when (1.4) is fulfilled and
by Lemma 3.3 when (1.5) is fulfilled, for any sufficiently small ε > 0 there
exists tε > a such that,

tρ(t) > r − ε and tρ(t) < M + ε for t ≥ tε, (4.4)

respectively, where

r =
1
2

(

1−
√

1− 4Q∗
)

, M =
1
2

(

1 +
√

1− 4H∗
)

. (4.5)
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Hence, if (1.4) is fulfilled, (3.1) and (3.6) imply

H(t) ≤ −r + ε + 1 +
1
t

t2ερ(tε) +
1
t

tε
∫

1

s2p(s) ds for t ≥ tε,

and if (1.5) is fulfilled, (3.1) and (3.6) imply Q(t) ≤ M + ε for t ≥ tε, which
contradicts the conditions of the theorem.

Proof of Theorem 1.4. Let us assume that (1.8) is fulfilled (the case, where
(1.7) is fulfilled, is proved similarly). Let u(t) 6= 0, t ≥ a, be a solution
of equation (0.1). Then (3.6), where the function ρ is defined by equality
(3.2), is valid. We shall assume that H∗ > 0, since for H∗ = 0 condition
(1.8) is equivalent to condition (1.4) of Theorem 1.3 which has been proved
above. By Lemmas 3.2 and 3.3, for arbitrary ε ∈ ]0, 1 − M [ , there exists
tε > a such that (4.4) holds, where r and M are the numbers defined by
equalities (4.5). Since M + ε < 1, we have

sρ(s)(2− sρ(s)) < (M + ε)(2−M − ε) for s ≥ tε. (4.6)

Taking into account (4.4) and (4.6), from (3.6) we obtain

H(t) ≤ −r + ε+(M + ε)(2−M − ε)+
1
t

tε
∫

1

s2p(s) ds+
1
t

t2ερ(tε) for t ≥ tε.

Hence we easily conclude that H∗ ≤ −r + M(2 − M), which contradicts
condition (1.8).

The proof of Theorem 1.5 repeats that of Theorem 1.2 with the only
difference that one should use (4.4) and (4.6) in equality (4.3).

Proof of Theorem 1.6. Assume that (1.11) ((1.12)) is fulfilled. Choose ε > 0
such that

Q∗ + ε < Q∗ − ε− 1 +
√

1− 4(Q∗ − ε)
(

H∗ + ε < H∗ − ε− 1 +
√

1− 4(H∗ − ε)
)

.

We set

α =
[1
2

(

1 +
√

1− 4(Q∗ + ε)
)

]2 (

α = 1− 1
4

(

1 +
√

1− 4(H∗ + ε)
)2

)

.

It is easy to verify that

Q∗ + ε =
√

α− α
(

H∗ + ε =
√

1− α− (1− α)
)

(4.7)

and

Q∗ − ε > −
√

α− α
(

H∗ − ε > −
√

1− α− (1− α)
)

. (4.8)
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Choose tε > 1 such that

Q∗ −
ε
2

< Q(t) < Q∗ +
ε
2

for t ≥ tε
(

H∗ −
ε
2

< H(t) < H∗ +
ε
2

for t ≥ tε
)

.

Now by (4.7) and (4.8) we have

−
√

α− α < Q(t) <
√

α− α for t ≥ tε
(

−
√

1− α− (1− α) < H(t) <
√

1− α− (1− α) for t ≥ tε
)

,

i.e.,

Q2(t) + 2αQ(t) + α(α− 1) < 0 for t ≥ tε
(

H2(t) + 2(1− α)H(t) + α(α− 1) < 0 for t ≥ tε
)

.

Thus equation (3.7) is nonoscillatory. Therefore, by Lemma 3.4, equation
(0.1) is nonoscillatory.

Proof of Theorem 1.7. Let the function G be defined by equality (3.9).
Choose ε > 0 and tε > 1 such that G∗ + 2ε < G∗ +

√
1− 4p0 and G∗ − ε <

G(t) < G∗ + ε for t ≥ tε.
We set

α = G∗ − ε +
1
2

+
1
2

√

1− 4p0.

Clearly,

α− 1
2
− 1

2

√

1− 4p0 < G(t) < α− 1
2

+
1
2

√

1− 4p0 for t ≥ tε,

i.e.,
G2(t)− (2α− 1)G(t) + p0 + α(α− 1) < 0 for t ≥ tε.

Thus equation (3.8) is nonoscillatory. Therefore by Lemma 3.5 equation
(0.1) is nonoscillatory.
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