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OPTIMAL MEAN-VARIANCE ROBUST HEDGING UNDER
ASSET PRICE MODEL MISSPECIFICATION

T. TORONJADZE

Abstract. The problem of constructing robust optimal in the mean-varian-
ce sense trading strategies is considered. The approach based on the notion
of sensitivity of a risk functional of the problem w.r.t. small perturbation of
asset price model parameters is suggested. The optimal mean-variance robust
trading strategies are constructed for one-dimensional diffusion models with
misspecified volatility.
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1. Introduction and statement of the problem. Let (Ω,F , F, P ) be a
filtered probability space with a fitration F = (Ft)0≤t≤T satisfying the usual
conditions, where T ∈ (0,∞] is a fixed time horizon.

Let for each ε > 0

Λε :=
{
λ : λ = λ0 + εh, h ∈ H

}
, (1)

where λ0 is a fixed F -predictable vector or matrix valued process satisfying
some additional integrability conditions (see, e.g., (7), (9), (18) below),

H :=
{
h : h bounded, F -predictable, vector or matrix valued process,

h ∈ BallL(0, R), 0 < R < +∞
}
. (2)

Here BallL(0, R) denotes the closed R-radius ball of processes h in an appropri-
ate metric space L with center at the origin.

The class H is called the class of alternatives.
Let Xλ, λ ∈ Λε, be a continuous Rd-valued semimartingale describing the

misspecified discounted price of a risky asset (stock) in a frictionless financial
market. A contingent claim is an FT -measurable square-integrable random
variable (r.v.) H, and a trading strategy θ is a F -predictable Rd-valued process
such that the stochastic integral G(λ, θ) :=

∫
θ dXλ, λ ∈ Λε, is a well-defined

real-valued square-integrable semimartingale.
Intuitively, H models the payoff from a financial product one is interested in

and for each λ, G(λ, θ) describes the trading gains induced by the self-financing
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portfolio strategy associated with θ when the asset price process follows the
semimartingale Xλ.

For each λ ∈ Λε, the total loss of a hedger, who srarts with the initial capital
x, uses the strategy θ, believes that the stock price process follows Xλ and has
to pay a random amount H at the date T , is thus H − x−GT (λ, θ).

The robust mean-variance hedging means solving the optimization problem

minimize sup
λ∈Λε

E
(
H − x−GT (λ, θ)

)2
over all strategies θ. (3)

Denote by J(λ, θ) the risk functional of problem (3),

J(λ, θ) := E
(
H − x−GT (λ, θ)

)2
,

and consider the following approximation (which is common in the robust statis-
tics theory, see, e.g., [1], [2]):

sup
λ∈Λε

J(λ, θ) = exp
{

sup
h∈H

ln J(λ0 + εh; θ)
}

' exp

{
sup
h∈H

[
ln J(λ0, θ) + ε

DJ(λ0, h; θ)

J(λ0, θ)

]}

= J(λ0, θ) exp

{
ε

sup
h∈H

DJ(λ0, h; θ)

J(λ0, θ)

}
,

where

DJ(λ0, h; θ) :=
d

dε
J(λ0 + εh; θ)

∣∣∣
ε=0

= lim
ε→0

J(λ0 + εh; θ)− J(λ0, θ)

ε
, (4)

is the Gateaux differential of the functional J at the point λ0 in the direction
h.

Our approach consists in approximating (in the leading order ε) the opti-
mization problem (3) by the problem

minimize J(λ0, θ) exp

{
ε

sup
h∈H

DJ(λ0, h; θ)

J(λ0, θ)

}
over all strategies θ, (5)

and note that every solution θ∗ of problem (5) minimizes J(λ0, θ) under the
constraint

sup
h∈H

DJ(λ0, h; θ)

J(λ0, θ)
≤ k :=

sup
h∈H

DJ(λ0, h; θ∗)

J(λ0, θ∗)
.

This gives a characterization of an optimal strategy θ∗ of problem (5), and thus
leads to
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Definition 1. The trading strategy θ∗ is called optimal mean-variance ro-
bust against the class of alternatives H if it is a solution of the optimization
problem

minimize J(λ0, θ) over all strategies θ, subject to constraint

sup
h∈H

DJ(λ0, h; θ)

J(λ0, θ)
≤ c (6)

(c is some general constant).

In the present paper we consider first a simple diffusion model with zero drift
and show (see the Proposition in Section 2) that the solutions of problems (3)
and (6) coincide. Then we pass to a more complicated diffusion model with
nonzero drift and a deterministic mean-variance tradeoff process and solve the
optimization problem (6) which will be at the same time an approximation (in
leading order ε) solution of problem (3) (see the Theorem in Section 3).

The consideration of misspecified asset price models was initiated by Avel-
laneda et al. [3], Avelaneda and Paras [4], and Avellaneda and Lewicki [5].
They obtained pricing and hedging bounds in markets with bounds on uncer-
tain volatility. El Karoui et al. [6] investigate the robustness of the Black–
Scholes formula, C. Gallus [7] give an estimate of the variance of additional
costs at maturity if the hedger uses the classical Black–Scholes strategy, but
the volatility is uncertain. H. Ahn et al. [8] consider the Black–Scholes model
with misspecified volatility of the form σ̃2 = σ2 + δS(t, x), |S(t, x)| ≤ 1. The
trading strategies are also the Black–Scholes ones, and the risk functional is an
expected exponencial utility. Based on Feynman–Kac formula, they write the
partial differential equation for the corresponding optimization problem whose
solution cannot be obtained in explicit form. Instead, they find an approximate
solution in the functional form.

2. Diffusion model with zero drift. Let a standard Wiener process w =
(wt)0≤t≤T be given on the complete probability space (Ω,F , P ). Denote by
Fw = (Fw

t , 0 ≤ t ≤ T ) the P -augmentation of the natural filtration Fw
t = σ(ws,

0 ≤ s ≤ t), 0 ≤ t ≤ T , generated by w.
Let the stock price process be modeled by the equation

dXλ
t = Xλ

t · λt dwt, Xλ
0 > 0, 0 ≤ t ≤ T, (7)

where λ ∈ Λε, see (1), (2), with

T∫

0

(λ0
t )

2 dt < ∞,

P -a.s., and h ∈ BallL∞(dt×dP )(0, R), 0 < R < ∞. All considered processes are
real-valued.

Denote by Rλ the yield process, i.e.,

dRλ
t = λt dwt, R0 = 0, 0 ≤ t ≤ T, (8)
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and let θ = (θt)0≤t≤T be the dollar amount invested in the stock Xλ.
Define the class of admissible strategies Θ = Θ(Λε) = Θ(λ0,H).

Definition 2. A class of admissible strategies Θ = Θ(λ0,H) is a class of
Fw-predictable real-valued processes θ = (θt)0≤t≤T such that

E

T∫

0

θ2
t (λ

0
t )

2 dt < ∞, E

T∫

0

θ2
t h

2
t dt < ∞, ∀h ∈ H,

or, equivalently,

E

T∫

0

θ2
t (λ

0
t )

2 dt < ∞, E

T∫

0

θ2
t dt < ∞. (9)

The corresponding gain process has the form

Gt(λ, θ) =

t∫

0

θs dRλ
s , 0 ≤ t ≤ T, (10)

(recall that θ is the dollar amount invested in the risky asset rather than the
number of shares). Evidently, GT (λ, θ) ∈ L2(P ) for each λ ∈ Λε. The wealth
at maturity T , with the initial endowment x, is equal to

V x,θ
T (λ) = x +

T∫

0

θt dRλ
t .

Let, further, the contingent claim H be Fw
T -measurable P -square-integrable r.v.

For simplicity, we suppose that a risk-free interest rate r ≡ 0; hence the
corresponding bond price Bt ≡ 1, 0 ≤ t ≤ T .

Consider the optimization problem (3). It is easy to see that if λ ∈ Λε; then

λ0
t − εR ≤ λt ≤ λ0

t + εR, 0 ≤ t ≤ T, P -a.s.

By the martingale representation theorem

H = EH +

T∫

0

ϕH
t dwt, P -a.s., (11)

where ϕH is the Fw-predictable process with

E

T∫

0

(ϕH
t )2 dt < ∞. (12)

Hence

E
(
H − V x,θ

T (λ)
)2

= (EH − x)2 + E

T∫

0

(ϕH
t − λtθt)

2 dt.
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From this it directly follows that the process

λ∗t (θ) = (λ0
t − εR)I

{ϕH
t

θt
≥λ0

t }
I{θt 6=0}

+ (λ0
t + εR)I

{ϕH
t

θt
<λ0

t }
I{θt 6=0}, 0 ≤ t ≤ T, (13)

is a solution of the optimization problem

maximize E
(
H − V x,θ

T (λ)
)2

over all λ ∈ Λε, with a given θ ∈ Θ.

It remains to minimize (w.r.t. θ) the expression

E

T∫

0

(
ϕH

t − λ∗t (θ)θt

)2
dt.

From (13) it easily follows that the equation (w.r.t. θ)

ϕH
t − λ∗t (θ)θt = 0,

has no solution, but

θ∗t =
ϕH

t

λ0
t

I{λ0
t 6=0}, 0 ≤ t ≤ T, (14)

solves problem (3). We assume that 0/0 := 0.
Consider now the optimization problem (6).
For each fixed h

J(λ, θ) = E
(
H − x−

T∫

0

θt dRλ
t

)2

= E

(
H − x−

T∫

0

θtλ
0
t dwt − ε

T∫

0

θtht dwt

)2

= J(λ0, θ)− 2εE

[(
EH − x +

T∫

0

(
ϕH

t − θtλ
0
t

)
dwt

) T∫

0

θtht dwt

]

+ ε2E

T∫

0

θ2
t h

2
t dt,

and hence

DJ(λ0, h; θ) = 2E

T∫

0

(
θtλ

0
t − ϕH

t

)
θtht dt, (15)
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as follows from (9), (12), the definition of the class H and the estimation

(
E

T∫

0

(
θtλ

0
t − ϕH

t

)
θtht dt

)2

≤ E

T∫

0

(
θtλ

0
t − θH

t

)2
dt E

T∫

0

θ2
t h

2
t dt

≤ const ·R2

(
E

T∫

0

θ2
t (λ

0
t )

2 dt + E

T∫

0

(ϕH
t )2 dt

)
E

T∫

0

θ2
t dt < ∞. (16)

Since, further, DJ(λ0, h; θ) = 0 for h ≡ 0, using (16) we get

0 ≤ sup
h∈H

DJ(λ0, h; θ) < ∞.

Hence we can take 0 ≤ c < ∞ in problem (6). Now if we substitute θ∗ from
(14) into (15), we get DJ(λ0, h; θ∗) = 0 for each h, and thus

sup
h∈H

DJ(λ0, h; θ∗)

J(λ0, θ∗)
= 0.

If we recall that θ∗ = arg min
θ∈ΘΛε

J(λ0, θ), we get that θ∗ defined by (14) is a

solution of the optimization problem (6) as well.
Thus we prove the following
Proposition. In scheme (7), (8) under assumptions (9):
(a) the optimal mean-variance robust trading strategy θ∗ = (θ∗t )0≤t≤T for the

optimization problem (6) is given by the formula

θ∗t =
ϕH

t

λ0
t

I{λ0
t 6=0};

(b) this strategy is an approximation (in leading order ε) strategy for the
optimization problem (3) and coincides with the exact optimal strategy of this
problem.

3. Diffusion model with nonzero drift. Let us consider the filtered prob-
ability space (Ω,F , Fw = (Fw

t )0≤t≤T , P ) with a given standard Wiener process
w = (wt,Fw

t ), 0 ≤ t ≤ T , and a given P -square-integrable Fw
T -measurable r.v.

H. Let the stock price process be defined by the equation

dXλ
t = Xλ

t

(
µt dt + λtdwt

)
, Xλ

0 > 0, (17)

where

µt = ktλt, 0 ≤ t ≤ T, (18)

and k = (kt)0≤t≤T is a bounded deterministic function, λ = (λt)0≤t≤T ∈ Λε, i.e.,

λt = λ0
t + εht,
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where λ0 is an Fw-predictable process with
T∫
0
(λ0

t )
2 dt < ∞, P -a.s. h∈H, with

L=L∞(dt×dP ), i.e., h is a bounded F -pedictable process, h∈BallL∞(dt×dP )(0,R),
0 < R < +∞. All processes in (17), (18) are real-valued.

Consider the optimization problem (6). Denote, as in the previous section,
by Rλ the yield process defined by the equation

dRλ
t = λt(ktdt + dwt), Rλ

0 = 0, 0 ≤ t ≤ T, (19)

and for each θ = (θt)0≤t≤T ∈ Θ(λ0,H) (see Definition 2) introduce the risk
functional of the problem

J(λ, θ) = E
(
H − x−

T∫

0

θt dRλ
t

)2

.

Note that since the mean-variance tradeoff process (
t∫
0

k2
s ds)0≤t≤T is continuous

and bounded, the space {GT (λ, θ) : θ ∈ Θ} is closed in L2(P ) for each λ ∈ Λε,
see, e.g., Corollary 4 of [9]. Further, there exists a unique equivalent martingale
measure (which does not depend on the parameter λ) given by the relation

dP̃ = z̃T dP,

where z̃T = ET (−k.w), z̃T > 0, Ez̃T = 1, Et(−k.w) is the Dolean exponential of

the martingale −k.wt = −
t∫
0

ks dws, 0 ≤ t ≤ T . Moreover, the process G(λ, θ)

belongs to S2, the set of square integrable semimartingales, for each λ ∈ Λε.

Now, following [10] and [11], introduce the objects: z̃t = EP̃ (z̃T /Fw
t ), 0 ≤

t ≤ T , dQ̃ = z̃T

z̃0
dP̃ (and thus dQ̃ =

z̃2
T

z̃0
dP ). Since z̃ > 0 is a strictly positive

P̃ -martingale, Q̃ is a probability measure with Q̃ ≈ P .
Introduce, further, the process

w0
t = wt +

t∫

0

ks ds, 0 ≤ t ≤ T.

Then Fw0

t = Fw
t , 0 ≤ t ≤ T , because k is deterministic, and hence the process

w0 = (w0
t )0≤t≤T is a standard (P̃ , Fw)-Wiener process. Consider now the new

filtered probability space (Ω,F , Fw, P̃ ), rewrite the process Rλ in the form

dRλ
t = λt dw0

t , Rλ
0 = 0, 0 ≤ t ≤ T, (20)

and decompose the r.v. z̃T w.r.t. w0:

z̃T = z̃0 +

T∫

0

ζt dw0
t . (21)
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In this notation, based on Proposition 5.1 of [10], we can write

J(λ, θ) = E
z̃2

T

z̃2
0

z̃2
0

z̃2
T

(
H − x−

T∫

0

θt dRλ
t

)2

= z̃−1
0 EQ̃ z̃2

0

z̃2
T

(
H − x−

T∫

0

θtλt dw0
t

)2

= z̃−1
0 EQ̃

(
H

z̃T

z̃0 − x−
T∫

0

ψ0
t (λ) d

z̃0

z̃t

−
T∫

0

ψ1
t (λ) d

w0
t

z̃t

z̃0

)2

:= J(λ, ψ0, ψ1). (22)

Here

ψ1
t (λ) = θtλt, ψ0

t (λ) = x +

t∫

0

θsλs dw0
s − θtλtw

0
t , 0 ≤ t ≤ T.

Thus

ψ1
t (λ) = ψ1

t (λ
0) + εψ1

t (h), ψ0
t (λ) = ψ0

t (λ
0) + εψ

0

t (h), (23)

where ψ
0

t (h) = ψ0
t (h)− x.

If now

H

z̃T

z̃0 = EQ̃
(

H

z̃T

z̃0

)
+

T∫

0

ψ0,H
t d

z̃0

z̃t

+

T∫

0

ψ1,H
t d

w0
t

z̃t

z̃0 (24)

is the Galtchouk–Kunita–Watanabe decomposition of the r.v. H
z̃T

z̃0 w.r.t.

(Q̃, Fw)-local martingales z̃0

z̃t
and

w0
t

z̃t
z̃0, then, using (22), (23) and (24), we

get for each fixed h

J(λ, ψ0, ψ1) = J
(
λ0, ψ0(λ0), ψ1(λ0)

)
+ ε2z̃−1

0 EQ̃

{[(
x− EQ̃

(
H

z̃T

z̃0

))

+

T∫

0

(
ψ0

t (λ
0)− ψ0,H

t

)
d
z̃0

z̃t

+

T∫

0

(
ψ1

t (λ
0)− ψ1,H

t (λ0
)
d
w0

t

z̃t

z̃0

]

×
( T∫

0

ψ
0

t (h) d
z̃0

z̃t

+

T∫

0

ψ1
t (h) d

w0
t

z̃t

z̃0

)}

+ ε2z̃−1
0 EQ̃

( T∫

0

ψ
0

t (h) d
z̃0

z̃t

+

T∫

0

ψ1
t (h) d

w0
t

z̃t

z̃0

)2

. (25)
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Consequently,

DJ(λ0, h; ψ0, ψ1) = 2z̃−1
0

{
EQ̃

T∫

0

(
ψ0

t (λ
0)− ψ0,H

t

)
ψ

0

t (h) d
〈

z̃0

z̃t

〉

+EQ̃

T∫

0

[(
ψ1

t (λ
0)− ψ1,H

t

)
ψ

0

t (h) +
(
ψ0

t (λ
0)− ψ0,H

t

)
ψ1

t (h)
]
d
〈

w0
t

z̃t

z̃0,
z̃0

z̃t

〉

+EQ̃

t∫

0

(
ψ1

t (λ
0)− ψ1,H

t

)
ψ1

t (h) d
〈

w0
t

z̃t

z̃0

〉}
. (26)

From the definition of ψ1(h) and ψ
0
(h) (see (23)) it follows that for h ≡ 0,

ψ1(h) = 0 and ψ
0
(h) = 0. Hence

DJ(λ0, 0; ψ0, ψ1) = 0,

and thus

sup
h∈H

DJ(λ0, h; ψ0, ψ1) ≥ 0. (27)

We show now that

sup
h∈H

DJ(λ0, h; ψ0, ψ1) < ∞. (28)

For this it is sufficient to estimate the expression (as it easily follows from (25))

I = EQ̃

( T∫

0

ψ
0

t (h) d
z̃0

z̃t

+

T∫

0

ψ1(h) d
w0

t

z̃t

z̃0

)2

.

But using Proposition 8 of [11], we have for each h

z̃0

z̃t

GT

(
h, Θ(0,H)

)

=

{ T∫

0

ψ
0

t (h) d
z̃0

z̃t

+

T∫

0

ψ1(h) d
w0

t

z̃t

z̃0

∣∣∣∣ ψ
0
(h), ψ1(h) ∈ L2

(
z̃0

z̃
,
w0

z̃
z̃0, Q̃

)}
,

where L2( z̃0

z̃
, w0

z̃
z̃0, Q̃) is the space of Fw-predictable processes (ψ0, ψ1) such

that
∫

ψ0 d z̃0

z̃
+

∫
ψ1 dw0

z̃
z̃0 is in the space M2(Q̃, Fw) of martingales.

Hence, using notation (10), we have

I = EQ̃ z̃2
0

z̃2
T

G2
T (h, θ) = z̃0EG2

T (h, θ) = z̃0E
( T∫

0

θt dRh
t

)2

= z̃0E
( T∫

0

θtht(kt dt + dwt)
)2
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≤ z̃0 const ·
(
E

T∫

0

θ2
t h

2
t k

2
t dt + E

T∫

0

θ2
t h

2
t dt

)

≤ z̃0 const ·R2
(
E

T∫

0

θ2
t dt

)
< ∞,

by the definitions of the classes Θ, H, and the boundedness of the function
k = (kt)0≤t≤T .

From (27) and (28), as in the previous section, it follows that we can take
0 ≤ c < ∞ in problem (6).

Now if we substitute ψ1,∗(λ0) := ψ1,H and ψ0,∗(λ0) := ψ0,H into J(λ0, ψ0, ψ1)
and DJ(λ0, h, ψ0, ψ1), we get

J
(
λ0, ψ0,∗, ψ1,∗) = min

ψ0,ψ1
J(λ0, ψ0, ψ1)

(see Lemma 5.1 of [10]), and

sup
h∈H

DJ(λ0, h; ψ0,∗, ψ1,∗)
J(λ0, ψ0,∗, ψ1,∗)

= 0

(hence the constraint of problem (6) is satisfied).
Consequently, using Proposition 8 of [11], we arrive at the following
Theorem. In model (17)–(19) the optimal mean-variance robust trading

strategy (in the sense of Definition 1) is given by the formula

θ∗t =

[
ψ1,H

t

λ0
t

+
ζt

λ0
t

(
V ∗

t − ψ0,H
t

z̃0

z̃t

− ψ1,H
t

w0
t

z̃t

z̃0

)]
I{λ0

t 6=0}, 0 ≤ t ≤ T,

where

V ∗
t =

z̃0

z̃t

(
x +

t∫

0

ψ0,H
s d

z̃0

z̃s

+

t∫

0

ψ1,H
s d

w0
s

z̃s

z̃0

)
,

ψ0,H and ψ1,H are given by relation (24), ζt is defined in (21).
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