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ON ACCURACY OF IMPROVED χ2-APPROXIMATIONS

V. V. ULYANOV AND Y. FUJIKOSHI

Abstract. For a statistic S whose distribution can be approximated by χ2-
distributions, there is a considerable interest in constructing improved χ2-
approximations. A typical approach is to consider a transformation T = T (S)
based on the Bartlett correction or a Bartlett type correction. In this paper
we consider two cases in which S is expressed as a scale mixture of a χ2-
variate or the distribution of S allows an asymptotic expansion in terms of
χ2-distributions. For these statistics, we give sufficient conditions for T to
have an improved χ2-approximation. Furthermore, we present a method for
obtaining its error bound.
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1. Introduction

Suppose that a statistic S has an asymptotic χ2-approximation as some pa-
rameter n tends to infinity. In this case, it is of considerable interest to con-
struct improved χ2-approximations for the statistic S. A typical approach is
to consider a transformation T = T (S) based on the Bartlett correction or a
Bartlett type correction. For a Bartlett type correction, see, e.g., the works
by Cordeiro and Ferrari [2] and by Fujikoshi [4]. In addition to that T has a
limiting χ2-distribution with q degrees of freedom, we can expect in some cases
that

P (T ≤ x) = G(x) + O(n−2)

while

P (S ≤ x) = G(x) + O(n−1),

where G is a distribution function of a χ2-variate χ2
q with q degrees of freedom.

We say that T has an improved χ2-approximation.
Our aim is to construct an improved χ2-approximation and to obtain its error

bound. First we consider the case in which S is expressed as a scale mixture of
a χ2-variate, i.e.,

S = Y −1χ2
q, (1.1)
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where Y is a positive random variable independent of χ2
q. In this case, the order

of the remainder term depends on the closeness of Y to 1. Next, we consider
the case in which S allows an asymptotic expansion such that

P (S ≤ x) = Gq(x) +
1

n

k∑

j=0

ajGq+2j(x) + Rk, (1.2)

where Rk satisfies the inequality

|Rk| ≤ ck/n
2 (1.3)

with some positive constant ck. For these statistics, we give sufficient conditions
for T (S) to have an improved χ2-approximation in terms of the inverse function
to T (x). Furthermore, we present a method for obtaining an error bound of the
improved approximation.

In Section 5 we consider a special case in which S = χ2
q/Y with Y = n−1χ2

n

and Y, χ2
n are independent. We show what kind of results with computed values

of absolute constants can be derived in this case from the general theorems of
Section 2. We also consider examples of transformations of S = nχ2

q/χ
2
n with

independent χ2
q and χ2

n which provide better approximations. We also compare
the transformations.

Note that a more general approach to constructing transformed statistics
T (S) with improved Pearson type approximations but without error bounds
can be found in [1].

2. Scale Mixtures of χ2-Variates

In this section, let S = χ2
q/Y be a mixture of a χ2-variate defined by (1.1).

Set G(x) = P{χ2
q ≤ x}, and

αi = E(Y − 1)i for i = 1, . . . , 4, and β = max{|α3|, α4}.
Under the condition α1 = 0 it is easy to show (see, e.g. [7]) that

∣∣∣P{S ≤ x} −G(x)
∣∣∣ ≤ cα2

with a constant c depending only on q.
In order to improve the appoximation we consider a transformation T that

is an increasing non-negative function defined on [0, +∞). We denote by b the
function which is inverse to T (x), i.e.,

b
(
T (x)

)
= T

(
b(x)

)
= x for all x ≥ 0.

Theorem 2.1. Let S = χ2
q/Y , where Y is a positive random variable in-

dependent of χ2
q. Suppose that α1 = 0 and that there exist positive constants

Bi = Bi(q), i = 1, 2, 3, depending only on q such that B1 ≤ 1 and, for all x > 0,
one has

b(x) ≥ B1x, (2.1)

|b(x)− x| ≤ A(x)
√

β, (2.2)
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and ∣∣∣∣G′(x)
(
b(x)− x

)
+

α2

2
G′′(x)x2

∣∣∣∣ ≤ B3β, (2.3)

where

A(x) = B2x exp (B1x/16) . (2.4)

Then we have for q ≥ 2
∣∣∣P{T (S) ≤ x} −G(x)

∣∣∣ ≤ cβ, (2.5)

where c is a constant depending only on q and Bi with i = 1, 2, 3 (see (3.24)).

Remark 2.2. It is easy to see that the class of positive increasing functions b
on [0, +∞) which satisfy (2.1)–(2.3) is not empty. It is enough to take

b(x) = x
(
1− α2

4
(q − 2)

)
+

α2

4
x2. (2.6)

If √
β

4
(q − 2) > 1,

then (2.5) easily follows with c =
(
(q − 2)/4

)2
. Thus, we assume

√
β

4
(q − 2) ≤ 1.

Therefore, since α2 ≤
√

β, we obtain

1− α2

4
(q − 2) ≥ 0

and b(x) is increasing. Moreover, for b defined by (2.6), we have that (2.1) and
(2.3) hold with

B1 = 1− α2

4
(q − 2) and B3 = 0,

respectively. Condition (2.2) is also trivially satisfied (cf. Remark 4.2 after the
proof of Theorem 4.1).

Remark 2.3. In fact, it is possible to obtain an inequality similar to (2.5)
omitting the condition q ≥ 2 and replacing two conditions (2.2) and (2.3) by
only one condition. However, in this case we have also to replace the constant
c in (2.5) by a larger one. Namely, the following theorem holds.

Theorem 2.4. Let S = χ2
q/Y , where Y is a positive random variable inde-

pendent of χ2
q. Suppose that α1 = 0 and that there exist positive constants B1

and B4 depending only on q such that B1 ≤ 1 and, for all x > 0, the condition
(2.1) is satisfied and

∣∣∣∣b(x)− x +
α2

4
x2

(
q − 2

x
− 1

)∣∣∣∣ ≤ B4x exp(B1x/16)β. (2.7)
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Then we have for all q ≥ 1 that
∣∣∣P{T (S) ≤ x} −G(x)

∣∣∣ ≤ c1β, (2.8)

where c1 is a constant depending only on q, B1, and B4.

Remark 2.5. In Theorems 2.1 and 2.4, we give uniform error bounds. This
means that the right-hand sides of (2.5) and (2.8) do not depend on x. However,
by using an approach developed in [9], it is possible to construct the so-called
non-uniform bounds when the right-hand sides tend to 0 as x → +∞. For
example, the following theorem holds (see, e.g., Corollary 6 in [9]).

Theorem 2.6. Let S = χ2
q/Y , where Y is a positive random variable inde-

pendent of χ2
q and EY −4 < ∞. Suppose that α1 = 0 and we put

T0(x) =
q − 2

2
− 2

α2

+

(
1

4

(
q − 2− 4

α2

)2

+
4x

α2

)1/2

.

Then we have for all q ≥ 2 and x > 0 that
∣∣∣P{T0(S) ≤ x} −G(x)

∣∣∣ ≤ c2

1 + x4

(
β + EY −41{Y <1/2}

)
,

where c2 is a constant depending only on q and 1A is the indicator function of
an event A.

Remark 2.7. The proof of Theorem 2.6 and more general results with non-
uniform bounds will be published separately.

3. Proofs of Theorems 2.1 and 2.4

Proof of Theorem 2.1. We have

P{T (χ2
q/Y ) ≤ x} = P{χ2

q ≤ b(x) · Y } = EG(Y · b). (3.1)

We consider the function G(y ·b) as a function of two variables F (y, b) = G(y ·b).
Since G(x) is smooth for x > 0, we can expand F (y, b) at the point (1, x) so
that the remainder term is of order O(β). Note that F (1, x) = G(x) and

F (y, b) = F (y, x) + G′(yx)(b− x)y +
1

2
G′′(yx′)(b− x)2y2, (3.2)

F (y, x) = F (1, x) + G′(x)x(y − 1) +
1

2
G′′(x)x2(y − 1)2

+
1

6
G′′′(x)x3(y − 1)3 +

1

24
G(4)(y′x)x4(y − 1)4, (3.3)

G′(yx) = G′(x) + G′′(x)x(y − 1) +
1

2
G′′′(x)(y′′x)x2(y − 1)2, (3.4)

where x′ ∈ (b ∧ x, b ∨ x), y′ ∈ (y ∧ 1, y ∨ 1), y′′ ∈ (y ∧ 1, y ∨ 1) and as usual
b ∧ x = min(b, x), b ∨ x = max(b, x).
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Combining (3.2)–(3.4), we arrive at the following representation:

F (y, b) = G(x) + G′(x)
(
(b− x)y + x(y − 1)

)

+
1

2
G′′(x)

(
x2(y − 1)2 + 2x(b− x)y(y − 1)

)

+
1

6
G′′′(x)x3(y − 1)3 +

1

2
G′′(yx′)(b− x)2y2

+
1

2
G′′′(y′′x)x2(y − 1)2(b− x)y +

1

24
G(4)(y′x)x4(y − 1)4. (3.5)

Our aim is to approximate EG(Y · b) (see (3.1)) by G(x) and to prove (2.5).
Therefore, considering y in (3.5) as a random variable Y , we subtract from each
term on the right-hand side of (3.5) its expectation excluding the terms of order
O(β). Then we arrive at an expression that we denote by 4(y, b, x), namely

4(y, b, x) ≡ F (y, b)−G(x)−G′(x)(b− x)(y − 1)−G′(x)x(y − 1)

− 1

2
G′′(x)x2(y − 1)2 +

α2

2
G′′(x)x2 −G′′(x)x(b− x)y(y − 1)

+ α2G
′′(x)x(b− x)− 1

6
G′′′(x)x3(y − 1)3 +

α3

6
G′′′(x)x3. (3.6)

It follows from (3.5) and (3.6) that 4(y, b, x) can also be written in the form

4(y, b, x) = G′(x)(b− x) +
α2

2
G′′(x)x2 + α2G

′′(x)x(b− x)

+
α3

6
G′′′(x)x3 +

1

2
G′′(yx′)(b− x)2y2

+
1

2
G′′′(y′′x)x2(b− x)(y − 1)2y +

1

24
G(4)(y′x)x4(y − 1)4. (3.7)

Since α1 = 0 we have α2 = EY (Y − 1). Then it follows from (3.1) and (3.6)
that

E4(Y, b, x) = EF (Y, b)−G(x) = P{T (χ2
q/Y ) ≤ x} −G(x).

Therefore, in order to prove the theorem, it is enough to show that

E|4(Y, b, x)| ≤ c · β. (3.8)

Let us fix an arbitrary d such that 0 < d < 1, and write

E|4(Y, b, x)| = I1 + I2,

where I1 = E|4(Y, b, x)| · 1{|Y−1|>d}, I2 = E|4(Y, b, x)| · 1{|Y−1|≤d}. We prove
the upper bounds for I1 and I2 with the help of (3.6) and (3.7), respectively.
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First we consider I1. By (3.6), we have, for all positive x and y with |y−1| > d,
that

|4(y, b, x)| ≤ 1 + |y − 1| sup G′(x)x + sup
∣∣∣∣G′(x)(b− x) +

α2

2
G′′(x)x2

∣∣∣∣

+
1

2
(y − 1)2 sup |G′′(x)|x2 + y sup G′(x)|b− x|

+ (y|y − 1|+ α2) sup |G′′(x)(b− x)|x
+

1

6

(
|y − 1|3 + |α3|

)
sup |G′′′(x)|x3

≤ (y − 1)4
(
d−4 + d−3 sup G′(x)x +

1

2
d−2 sup |G′′(x)|x2

)

+(1 + d)d−2(y − 1)2 sup G′(x)|b− x|
+ sup

∣∣∣∣G′(x)(b− x) +
α2

2
G′′(x)x2

∣∣∣∣

+
(

1 + d

d
(y − 1)2 + α2

)
sup |G′′(x)(b− x)|x

+
1

6

(
d−1(y − 1)4 + |α3|

)
sup |G′′′(x)|x3, (3.9)

where all supremums in (3.9) are taken over all positive x.
Next, we consider I2. By (3.7), we obtain for all positive x and y with

|y − 1| ≤ d that

|4(y, b, x)| ≤ sup
∣∣∣∣G′(x)(b− x) +

α2

2
G′′(x)x2

∣∣∣∣

+α2 sup |G′′(x)(b− x)|x +
|α3|
6

sup |G′′′(x)|x3

+
(1 + d)2

2
sup |G′′(yx′)|(b− x)2

+
1 + d

2
(y − 1)2 sup |G′′′(y′′x)(b− x)|x2

+
(y − 1)4

24
sup |G(4)(y′x)|x4, (3.10)

where all supremums in (3.10) are taken over all positive x and y with |y−1| ≤ d,
x′ ∈ (b ∧ x, b ∨ x), y′ ∈ (y ∧ 1, y ∨ 1), y′′ ∈ (y ∧ 1, y ∨ 1).

Let us recall that

G′(x) =
[
2q/2Γ(q/2)

]−1
xq/2−1e−x/2 for x ≥ 0.

Let γi = supx>0 |G(i)(x)xi| for i = 1, 2, 3. For example,

γ1 = Γ−1(q/2)
(

q

2e

)q/2

.

It is clear that γ2 and γ3 are also functions of q. Now we show how other
supremums in (3.9) and (3.10) can be calculated by using the properties of b
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described in (2.1)–(2.3). We consider the most complicated expression

sup |G′′(yx′)|(b− x)2.

Note that

G′′(x)2q/2Γ(q/2) = e−x/2xq/2−2
(
−x

2
+

q

2
− 1

)
. (3.11)

We shall employ below the following inequality: for any positive numbers a
and b, we have |a− b| ≤ a ∨ b. We consider two cases.

Case 1: b(x) ≤ x. Then x′ ∈ (b, x) and, by (2.1), we have for q ≥ 2

exp
(
− yx′

2

)
≤ exp

(
− (1− d)B1

2
x

)
, (3.12)

(yx′)q/2−2
∣∣∣∣−

yx′

2
+

q

2
− 1

∣∣∣∣ ≤ 1

2
(1 + d)q/2−2xq/2−2

×[((1 + d)x) ∨ (q − 2)]. (3.13)

Case 2: b(x) > x. Then x′ ∈ (x, b) and we have for q ≥ 2

exp
(
− yx′

2

)
≤ exp

(
− (1− d)

2
x′

)
, (3.14)

(yx′)q/2−2
∣∣∣∣−

yx′

2
+

q

2
− 1

∣∣∣∣ ≤ 1

2
(1 + d)q/2−2(x′)q/2−2

×
[
((1 + d)x′) ∨ (q − 2)

]
. (3.15)

Since the function A(x) in condition (2.2) of the theorem is increasing, we have
in Case 2 that

sup |G′′(yx′)|(b− x)2 ≤ β

2
(1 + d)q/2−2

× sup
x

exp
(
− (1− d)

2
x

)
A2(x)xq/2−2

[[
((1 + d)x) ∨ (q − 2)

]
.

(3.16)

Let us take d = 1/2. Combining (2.4), (3.11)–(3.16) we obtain

2q/2Γ(q/2) sup |G′′(yx′)|(b− x)2 ≤ βB2
2

2

(
3

2

)q/2−2

×
[(

3

2
c(B1/8, q/2 + 1)

)
∨

(
(q − 2)c(B1/8, q/2)

)]

≡ c1(q, B1)B
2
2β, (3.17)

where

c(α, γ) = sup
x>0

(
xγ exp{−αx}

)
=

(
γ

αe

)γ

for positive α and γ.



408 V. V. ULYANOV AND Y. FUJIKOSHI

Since

2q/2Γ(q/2)G′′′(x)

= e−x/2xq/2−3

(
x2

4
−

(
q

2
− 1

)
x +

(
q

2
− 1

) (
q

2
− 2

))
(3.18)

and

2q/2Γ(q/2)G(4)(x) = e−x/2xq/2−4

(
−x3

8
+

3

4

(
q

2
− 1

)
x2

− 3

2

(
q

2
− 1

) (
q

2
− 2

)
x +

(
q

2
− 1

) (
q

2
− 2

) (
q

2
− 3

))
, (3.19)

similarly to (3.17) we obtain

sup G′(x)|b− x| ≤
(
2q/2Γ(q/2)

)−1
B2

√
β c

(
7/16, q/2

)
, (3.20)

2q/2Γ(q/2) sup |G′′(x)(b− x)|x
≤ 1

2

[
c
(
7/16, q/2 + 1

)
∨

(
(q − 2)c

(
7/16, q/2

))]
B2

√
β

≡ c2(q)B2

√
β, (3.21)

2q/2Γ(q/2) sup |G′′′(y′′x)(b− x)|x2

≤
(

1

4
c
(
3/16, q/2 + 2

)
+

∣∣∣∣
q

2
− 1

∣∣∣∣ c
(
3/16, q/2 + 1

)

+
∣∣∣∣
(

q

2
− 1

) (
q

2
− 2

)∣∣∣∣ c
(
3/16, q/2

))
B2

√
β ≡ c3(q)B2

√
β,

(3.22)

2q/2Γ(q/2) sup |G(4)(y′x)|x4

≤ 1

8
c
(
1/4, q/2 + 3

)
+

3

4

∣∣∣∣
q

2
− 1

∣∣∣∣ c
(
1/4, q/2 + 2

)

+
3

2

∣∣∣∣
(

q

2
− 1

) (
q

2
− 2

)∣∣∣∣ c
(
1/4, q/2 + 1

)

+
∣∣∣∣
(

q

2
− 1

) (
q

2
− 2

) (
q

2
− 3

)∣∣∣∣ c
(
1/4, q/2

)
≡ c4(q). (3.23)

Since E(y − 1)2 = α2 ≤
√

β, we obtain from (3.9), (3.10), and (3.17)–(3.23)
that (3.8) holds with

c = 16 + 8γ1 + 2γ2 +
1

2
γ3 + B3

+B2

(
2q/2Γ(q/2)

)−1
[
6c(7/16, q/2) + 4c2(q)

+
9

8
B2c1(q, B1) +

3

4
c3(q) +

1

24
c4(q)

]
, (3.24)
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where c1(q, B1), c2(q), c3(q) and c4(q) are defined in (3.17), (3.21), (3.22), and
(3.23), respectively. Thus, Theorem 2.1 is proved.

Proof of Theorem 2.4. It is enough to verify that (2.7) implies (2.2) and (2.3).
Note that

x exp(B1x/16) exp(−x/2)xq/2−1 ≤ c
(
1/2−B1/16, q/2

)
.

Therefore, (2.7) implies (2.3) with

B3 = B4[2
q/2Γ(q/2)]−1c(1/2−B1/16, q/2).

Furthermore, without loss of generality, we may assume that β ≤ 1. Otherwise
(2.8) holds with c1 = 1. It is easy to see that (2.2) follows from (2.7) if we take
in (2.4)

B2 = B4 +
1

4
(|q − 2|+ c(B1/16, 1)).

Moreover, now q can be equal to 1. In this case, the expression q − 2 and the
symbol ∨ in (3.13), (3.15)–(3.17), and (3.21) must be replaced by 1 and the
symbol +, respectively. Thus, Theorem 2.4 is proved.

4. Statistic with an Error Estimate

In this section we consider a statistic satisfying (1.2). Certain transformations
which improve approximation for S have been proposed by Cordeiro and Fer-
rari [2], Kakizawa [6], Fujisawa [5], Fujikoshi [4], and others. We give sufficient
conditions under which there exists a transformation T that improves approxi-
mation for S. We shall find a transformation T in the class of positive increasing
functions defined on [0, +∞). Fujisawa [5] has shown that a monotone increas-
ing transformation improving approximation exists. Sufficient conditions will
be formulated in terms of the function b(x) inverse to T . Our aim is also to
give a method of finding an error bound for this improved approximation.

Theorem 4.1. Suppose that there exists a positive, increasing function b
defined on [0, +∞) such that, for some positive constants Di = Di(q, k), i =
1, 2, 3, 4: D1 ≤ 1, D3 < D1/4, the following conditions are satisfied for all
x > 0:

b(x) ≥ D1x (4.1)

|b(x)− x| ≤ D2x

n
exp (D3x) (4.2)

G′
q(x)

∣∣∣∣∣b(x)− x +
x

n

k∑

j=1

aj

j−1∑

m=0

(x/2)m

∏m
l=0(q/2 + l)

∣∣∣∣∣ ≤ D4/n
2, (4.3)

where aj’s are the same as in (1.2).
If P(S ≤ x) can be written in form (1.2), then

|P(T (S) ≤ x)−Gq(x)| ≤ c

n2
, (4.4)
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where T is the inverse function to b and c is a positive constant depending on q,
Dj, j = 1, . . . , 4, and ck in (1.3) (see (4.12)).

Proof. Since Gq(x) is smooth for all x > 0, we can write

Gq

(
b(x)

)
= Gq(x) + G′

q(x)(b− x) +
1

2
G′′(x′)(b− x)2, (4.5)

where x′ ∈ (b ∧ x, b ∨ x). It is known that

Gq+2(x) = Gq(x) +
(x/2)q/2e−x/2

Γ(q/2 + 1)
. (4.6)

Note that in (1.2), it is necessary that
∑k

j=0 aj = 0. By using (1.2), (1.3), (4.5),
and (4.6), we obtain

P
(
T (S) ≤ x

)
= P

(
S ≤ b(x)

)
= Gq(x) + G′

q(x)(b− x)

+
1

n

k∑

j=1

aje
−x/2(x/2)q/2

j∑

m=1

(x/2)m−1

Γ(q/2 + m)

+
1

2
G′′

q(x
′)(b− x)2 +

1

n

k∑

j=0

ajG
′
q+2j(x

′′)(b− x) + Rk, (4.7)

where x′′ ∈ (b ∧ x, b ∨ x).
Now we construct a uniform bound for G′′

q(x
′)(b− x)2. We consider two cases.

Case 1: b ≤ x. Then x′ ∈ (b, x). Since

G′′
q(x) =

(
2q/2Γ(q/2)

)−1
e−x/2xq/2−2

(
−x

2
+

q

2
− 1

)
,

we obtain from (4.1) and (4.2) that

sup1|G′′
q(x

′)|(b− x)2 ≤
(
2q/2Γ(q/2)

)−1

2n2
D2

2

×sup2 exp
(
−x(D1/2− 2D3)

)
xq/2 (x + |q − 2|)

≡ c1(k, q,D1, D3)/n
2, (4.8)

where the first supremum on the left-hand side is taken over x such that b(x) ≤ x
and the second supremum is taken over all x > 0. By the hypotheses of the
theorem, we have c1(k, q, D1, D3) < ∞.

Case 2: b > x. Then x′ ∈ (x, b) and, by (4.2), we obtain

sup1|G′′
q(x

′)|(b− x)2 ≤ 1

n2
sup2|G′′

q(x
′)|D2

2(x
′)2

exp(2D3x
′)

≤
(
2q/2Γ(q/2)

)−1

2n2
D2

2sup3 exp
(
−x(1/2− 2D3)

)
|x|q/2(|x|+ |q − 2|)

≡ c2(k, q,D1, D3)/n
2, (4.9)
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where the first two supremums are taken over x such that b(x) > x and the
third one is taken over all x > 0. By the hypotheses of the theorem, we have

c2(k, q, D1, D3) < ∞.

Since c2(k, q, D1, D3) ≤ c1(k, q,D1, D3), we obtain

sup G′′
q(x

′)(b− x)2 ≤ c1(k, q, D1, D3)/n
2, (4.10)

where the supremum is taken over all x > 0. By using (4.6), we can obtain
similarly to (4.10) that, for all x > 0, one has

∣∣∣∣∣
k∑

j=0

ajG
′
q+2j(x

′′)(b− x)

∣∣∣∣∣ = |b− x|
∣∣∣∣∣

k∑

j=1

aj

j∑

m=1

((x′′/2)
q+2m

2
−1e−x′′/2)′

Γ
(

q+2m
2

)
∣∣∣∣∣

≤ D2x

2q/2Γ(q/2)n
(x′′)q/2−1 exp

(
D3x− x′′

2

)

×
k∑

j=1

|aj|
j∑

m=1

x′′ + q + 2m− 2
∏m−1

l=0 (q/2 + l)

(
x′′

2

)m−1

≤ D2

n

(
2q/2Γ(q/2)

)−1
sup
x>0


 exp(−x(D1/2−D3)x

q/2

×
k∑

j=1

|aj|
j−1∑

m=0

x + q + 2m∏m
l=0(q/2 + l)

(
x

2

)m
]

≡ c3(k, q, D1, D3)/n. (4.11)

Combining (4.7), (4.10), (4.3), (4.12), and (1.3), we obtain (4.4) with

c = D4 +
1

2
c1(k, q,D1, D3) + c3(k, q, D1, D3) + ck. (4.12)

This brings our proof to the end.

Remark 4.2. It is clear that a positive function b that satisfies (4.1)–(4.3) may
not be increasing. Therefore, we have to require the existence of an increasing
function b in Theorem 4.1. We have shown in the previous sections that the
required function b exists.

Theorem 4.3. Suppose that there exist a positive, increasing function b(x)
defined on [0, +∞) and positive constants Di = Di(q, k), j = 1, 3, 5, such that
(4.1) holds and, for all x > 0, one has

∣∣∣∣∣b(x)− x +
x

n

k∑

j=1

aj

j−1∑

m=0

(x/2)m

∏m
l=0(q/2 + l)

∣∣∣∣∣ ≤
D5

n2
x exp(D3x) (4.13)

with D3 < D1/4. If a statistic S admits the representation (1.2), then we have
(4.4), where T is the inverse function to b and c is a positive constant depending
on q, k, and D1, D3, D5.

Proof. The claim is proved similarly to Theorem 2.4.
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5. Examples

At first we consider the case in which S = χ2
q/Y with Y = n−1χ2

n and Y, χ2
n

are independent. In this case S can be represented in form (1.2) with

k = 2, a0 = −1

4
q(q − 2), a1 =

1

2
q2, a2 = −1

4
q(q + 2),

and a uniform bound for the remainder term of type (1.3) can be obtained (see,
e.g., [7]). Therefore we can apply Theorem 4.1. However, it would be preferable
to apply Theorem 2.1, since it yields a better constant c in a bound of type (4.4).
This is due to the fact that in Theorem 2.1 we have used the properties of a
χ2-variate mixture, but not representation (1.2). At the same time, it is easily
seen that some parts of the proofs of Theorem 2.1 and Theorem 4.1 are similar.
By using Theorem 2.1, we can obtain the following result.

Corollary 5.1. Let Y = n−1χ2
n. Suppose that conditions (2.1) and (2.2) of

Theorem 2.1 are satisfied and that (2.3) is replaced by the following:
∣∣∣∣b(x)− x +

x2

2n
((q − 2)/x− 1)

∣∣∣∣ ≤
1

n2
14.824B32

q/2Γ(q/2)x1−q/2ex/2, (5.1)

where B3 is the same as in (2.3). Then we have
∣∣∣P{T (χ2

q/Y ) ≤ x} −G(x)
∣∣∣ ≤ 14.824c/n2, (5.2)

provided that Y and χ2
q are independent and c is defined by (3.24).

Proof. It is enough to note that under the hypotheses of this corollary, we have

α2 = E(Y − 1)2 = 2/n, α3 = E(Y − 1)3 = 8/n2,

α4 = E(Y − 1)4 = 12/n2 + 48/n3. (5.3)

Since c in (3.24) is not less than 18.94, we may assume that n ≥ 17. Then, by
(5.3), we have

β = max {|α3|, α4} = α4 ≤ 14.824n2.

Therefore, this corollary follows from Theorem 2.1.

Now we consider examples of transformations of S = nχ2
q/χ

2
n with indepen-

dent χ2
q and χ2

n which provide better approximations:

T1(x) = (n + (q − 2)/2) log(1 + x/n),

T2(x) = n exp
(

q − 2

2n

)(
1− exp

(
− x

n

))
,

T3(x) =
q − 2

2
− n +

((
n− q − 2

2

)2

+ 2nx
)1/2

.

The transformations T1(x) and T2(x) have been introduced, respectively, in [4]
and [3]. The transformation T3(x) is a new one (cf. T0(x) in Section 2. We
show what bounds of type (5.2) can be obtained for these transformations.
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In what follows we assume that q = 4. Then we obtain

b1(x) = n
(

exp
(

x

n + 1

)
− 1

)
,

b2(x) = −n log
(
1− x

n
exp

(
− 1

n

))
,

b3(x) = x
(
1− 1

n

)
+

x2

2n

as the inverse functions for T1, T2, and T3, respectively. Note that b2(x) is
defined only for

x : x < n exp(1/n),

whereas b1(x) and b3(x) are defined for all x.

Moreover, if we take xε = n exp(1/n)(1− ε), then b2(xε) ↑ ∞ as ε ↓ 0. This
means that condition (2.2) is not satisfied for b2(x), and the approach proposed
in Theorem 2.1 does not lead to a uniform estimate of type (5.2) in this case.
Therefore, we exclude T2 from our considerations here.

In the case of T1, it is easy to verify that (2.1), (2.2), and (5.2) are satisfied
with

B1 = 79/80, B2 = 0.97065, B3 = 0.67556,

provided that n > 78. Therefore (5.2) holds for T = T1 with

c = c(T1) = 424.16.

However, in the case of the transformation T3, we obtain

B1 = 64/65, B2 = 0.77633, B3 = 0.

Therefore (5.2) holds for T = T3 with

c = c(T3) = 321.46.

Thus T3 yields better bounds for the remainder term than T1.

Moreover, by using the above simple expression for b3 and arguing similarly
to the proof of Theorem 2.1, we can prove (5.2) with

c(T3) = 132.34.

In particular, one has to take d = 0.34 in the proof.
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