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Abstract. We study tractability in the worst case setting of tensor product
linear operators defined over weighted tensor product Hilbert spaces. Tract-
ability means that the minimal number of evaluations needed to reduce the
initial error by a factor of ε in the d-dimensional case has a polynomial bound
in both ε−1 and d. By one evaluation we mean the computation of an ar-
bitrary continuous linear functional, and the initial error is the norm of the
linear operator Sd specifying the d-dimensional problem.

We prove that nontrivial problems are tractable iff the dimension of the
image under S1 (the one-dimensional version of Sd) of the unweighted part
of the Hilbert space is one, and the weights of the Hilbert spaces, as well
as the singular values of the linear operator S1, go to zero polynomially fast
with their indices.
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1. Introduction

I am pleased to dedicate this paper to Professor Nicholas N. Vakhania on
the occasion of his 70th birthday. I enjoyed many meetings with Professor
Vakhania in Dagstuhl, Tbilisi, Warsaw, and New York. I have learned a lot from
his books “Probability Distributions on Linear Spaces” [10], and “Probability
Distributions on Banach Spaces” [11] (the second book written jointly with V.
I. Tarieladze and S. A. Chobanyan). These books have been very helpful in my
work and in the work of many colleagues working in the average case setting of
information-based complexity, and are always cited in papers dealing with this
subject.

I also wish to add that Professor Vakhania solved an important problem in
the average case complexity. His paper [12] and the paper [3] prove that every
ill-posed problem specified by a measurable unbounded linear operator is well-
posed on the average for any Gaussian measure, and its average case complexity
is finite for any positive error demand.
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In recent years, my research interests has shifted to multivariate problems
and tractability issues. That is why I have decided to send a paper on this
subject in token of my appreciation of Professor N. N. Vakhania.

Tractability of multivariate problems has recently become a popular research
subject. The reader is referred to [1, 2, 4, 6, 7, 13, 14, 15, 16, 17], and to
the surveys [5, 9]. Tractability means that a minimal number of evaluations
needed to reduce the initial error by a factor of ε in the d-dimensional case
has a polynomial bound in both ε−1 and d. Strong tractability means that
this bound is independent of d, and is polynomially dependent only on ε−1.
Tractability is studied in various settings. Here, we only consider the worst
case setting, in which an approximation error is defined as a maximal error over
the unit ball of a Hilbert space.

In this paper, we study tractability of linear operators between tensor product
Hilbert spaces. In the d-dimensional case, a linear operator is defined as a
tensor product of d copies of the same linear operator. The domain of a linear
operator is assumed to be a weighted tensor product Hilbert space with weights
γ1 ≥ γ2 ≥ . . . > 0, where γj corresponds to the jth component of the tensor
product.

We comment on the role of the weights γj. For the jth component, we consider
a Hilbert space that is a direct sum of two Hilbert spaces H1 and H2, where
H1 ∩ H2 = {0}. The space H1 corresponds to the unweighted part, whereas
the space H2 corresponds to the weighted part with the weight γj. That is, for
f = f1 + f2 with fi ∈ Hi we have

‖f‖2 = ‖f1‖2
H1

+ γ−1
j ‖f2‖2

H2
.

Hence, if ‖f‖ ≤ 1 and γj is small, then f2 must be small too. In this way, the
weight γj controls the size of the weighted components.

We approximate linear operators evaluating finitely many arbitrary (contin-
uous) linear functionals. The case of a restricted choice of such functionals is
studied, e.g., in [14], and leads to different results. For example, we shall prove
that there is no difference between strong tractability and tractability. This
is not the case if we use only function evaluations instead of arbitrary linear
functionals.

We want to reduce the initial error which is defined as the norm of the linear
operator Sd defining the d-dimensional problem. The initial error is the error,
which can be obtained without any evaluation and which formally corresponds
to the error of the zero approximation.

The main result of this paper is a full characterization of tractable linear
operators. Obviously, some linear operators are trivially tractable. This cer-
tainly holds for linear functionals, which can be recovered exactly by just one
evaluation. It turns out that the class of tractable linear operators is exactly
equal to the class of linear functionals iff the weights γj of the Hilbert spaces
have the sum-exponent equal to infinity. Here, the sum-exponent pγ is defined
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as the infimum of nonnegative β for which

∞∑

j=1

γβ
j < ∞.

Thus, pγ = ∞ means that the last series is always divergent. This holds, in
particular, for the unweighted case γj = 1, for which there is no difference
between the components from H1 and H2.

It is easy to see that pγ < ∞ iff the weights γj go to zero polynomially
fast with j−1. If pγ < ∞, then there are non-trivial strongly tractable linear
operators. They are fully characterized by two conditions. The first condition
is that the dimension of the image of S1 (the one-dimensional version of Sd)
of the unweighted part is one. The second condition is that the sum-exponent
pλ of the singular values

√
λi of S1 is finite. We stress that the requirement

pλ < ∞ is a stronger condition than mere compactness of S1.
For strongly tractable problems, the strong exponent is defined as the infimum

of p for which a minimal number of evaluations needed to reduce the initial
error by a factor ε is of order ε−p for all d. We find that the strong exponent is
2 max(pλ, pγ). We stress that the strong exponent is large if either pλ or pγ is
large.

As mentioned before, we use arbitrary linear functionals as tools for approxi-
mating linear operators in this paper. We plan to analyze the natural restriction
of arbitrary linear functionals to function evaluations in the near future. Pre-
liminary results indicate that a full characterization of strongly tractable and
tractable linear operators is more complex, depending on the specific Hilbert
space used when d = 1.

2. Tractability and Strong Tractability

Let H1 and H2 be two Hilbert spaces such that H1 ∩H2 = {0}. Their inner
products are denoted by 〈·, ·〉Hi

. For γ ∈ (0, 1], consider the Hilbert space
F1,γ = H1 ⊕H2 with the inner product

〈f, g〉F1,γ
= 〈f1, g1〉H1

+ γ−1 〈f2, g2〉H2
,

where f, g ∈ F1,γ have the unique representation f = f1 + f2, g = g1 + g2

with f1, g1 ∈ H1 and f2, g2 ∈ H2. Observe that the components in H1 are
unweighted, whereas the components in H2 are weighted with the parameter γ.
If ‖f‖F1,γ ≤ 1 for small γ, then the component f2 is negligible. For γ = 1, we
let F1 = F1,1.

Let G1 be a Hilbert space, and let S1 : F1 → G1 be a (continuous) linear
operator. Note that S1 is also well defined on F1,γ for all γ ∈ (0, 1].

For d ≥ 2, define Fd = F1 ⊗ · · · ⊗ F1 (d times) as the tensor product of d
copies of the space F1. That is, Fd is the completion of linear combinations of
tensor products f1 ⊗ · · · ⊗ fd, with fi ∈ F1, which we write, for simplicity, as
f1f2 · · · fd. Recall that if fi are numbers, then their tensor product is just the
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product of these numbers, and if fi are univariate functions, then their tensor
product is the d-variate function f(t1, . . . , td) =

∏d
j=1 fj(tj).

The space Fd is a Hilbert space with the tensor product inner product defined
as

〈f, g〉Fd
=

d∏

j=1

〈fj, gj〉F1
.

for f = f1 . . . fd ∈ Fd and g = g1 · · · gd ∈ Fd with fj, gj ∈ F1. We define the
Hilbert space Gd = G1 ⊗ · · · ⊗ G1 (d times) with the inner product 〈·, ·〉Gd

similarly.
For d ≥ 2, let Sd = S1 ⊗ · · · ⊗ S1 : Fd → Gd denote the tensor product linear

operator consisting of d copies of S1. Thus, for f = f1 · · · fd with fj ∈ F1, we
have

Sdf = S1f1 · · · S1fd ∈ Gd.

Take now a sequence of weights

γ1 ≥ γ2 ≥ · · · ≥ γd ≥ · · · > 0,

and consider the tensor product

Fd,γ = F1,γ1 ⊗ F1,γ2 ⊗ · · · ⊗ F1,γd
.

The space Fd,γ is a Hilbert space with the inner product 〈·, ·〉Fd,γ
. To see how

the weights γj affect the norm, take f = f1 · · · fd with fj = fj,1 + fj,2, where
fj,1 ∈ H1, fj,2 ∈ H2. Then

‖f‖2
Fd,γ

=
d∏

j=1

(
‖fj,1‖2

H1
+ γ−1

j ‖fj,2‖2
H2

)
.

Again, if ‖f‖Fd,γ
≤ 1 and the weights γj go to zero, then the components fj,2

must approach zero.
Observe that the linear operator Sd is well defined on Fd,γ independently of

the weights γj. Although the values of Sdf do not depend on γj, its adjoint S∗d
and its norm ‖Sd‖Fd,γ

do depend on γj. Indeed, for d = 1, it is easy to check
that S∗1 : G1 → F1,γ is given by

S∗1 = S1

∣∣∣
∗
H1

+ γ S1

∣∣∣
∗
H2

,

where S1

∣∣∣
Hi

denotes the operator S1 restricted to Hi and S1

∣∣∣
∗
Hi

: G1 → Hi is the

adjoint operator of S1

∣∣∣
Hi

. For d ≥ 2, we have

S∗d =
(
S1

∣∣∣
∗
H1

+ γ1S1

∣∣∣
∗
H2

)
⊗ · · · ⊗

(
S1

∣∣∣
∗
H1

+ γdS1

∣∣∣
∗
H2

)
.

To obtain the norm of Sd, define the non-negative self-adjoint operator Wd,γ =
S∗dSd : Fd,γ → Fd,γ and observe that

‖Sdf‖2
Gd

= 〈Sdf, Sdf〉Gd
= 〈Wd,γf, f〉Fd,γ

.



TRACTABILITY OF TENSOR PRODUCT LINEAR OPERATORS 419

This implies that the norm ‖Sd‖Fd,γ
is equal to the square root of the largest

eigenvalue of Wd,γ.
We want to approximate Sdf for f from the unit ball of Fd,γ. Our approxi-

mations will be of the form1

Un,d(f) =
n∑

i=1

Li(f) gi

for certain continuous linear functionals Li ∈ F ∗
d,γ, and for certain gi ∈ Gd.

We define the error of Un,d in the worst case sense as the maximal distance
between Sd(f) and Un,d(f) over the unit ball of Fd,γ,

e(Un,d, Fd,γ) = sup
f∈Fd,γ ,‖f‖Fd,γ

≤1
‖Sd(f)− U(f)‖Gd

.

For n = 0, we formally set U0,d(f) = 0. Then e(0, Fd,γ) = ‖Sd‖Fd,γ
is the

initial error, which is the a priori error without sampling the element f . Our
goal is to reduce the initial error by a factor ε ∈ (0, 1). That is, we want to find
Un,d, or equivalently we want to find Li ∈ F ∗

d,γ and gi ∈ Gd for i = 1, . . . , n,
such that

e(Un,d, Fd,γ) ≤ ε ‖Sd‖Fd,γ
.

We are ready to recall the concepts of tractability and strong tractability, see
[1, 2, 4, 5, 6, 13, 14, 15, 16, 17]. In some of these papers, tractability is defined
for absolute errors. In this paper we define tractability for normalized errors.
Let

n(ε, Sd) = min{n : ∃Un,d with e(Un,d, Fd,γ) ≤ ε ‖Sd‖Fd,γ
}

be a minimal number of evaluations needed to reduce the initial error by a
factor ε. Obviously, the minimal number n(ε, Sd) also depends on the spaces
Fd,γ and Gd and therefore it depends on the weight sequence γj. In fact, as we
shall see, the dependence on {γj} will be crucial.

We say that the problem {Sd} is tractable iff there exist nonnegative numbers
C, q and p such that

n(ε, Sd) ≤ C d q ε−p ∀ ε ∈ (0, 1), ∀ d = 1, 2, . . . . (1)

The problem {Sd} is strongly tractable if q = 0 in estimate (1) of n(ε, Sd).
The essence of tractability is that the minimal number of evaluations is

bounded by a polynomial in both d and ε−1, and the essence of strong tracta-
bility is that this number has a bound independent of d and polynomial in ε−1.
The exponent of strong tractability is defined as the infimum of p satisfying (1).

Obviously, some linear operators Sd are trivially strongly tractable inde-
pendently of the weights γj. This holds for dim(S1(F1)) = 0, i.e., S1 = 0,

1It is known that neither nonadaptive information nor nonlinear approximations help in
approximating linear operators over Hilbert spaces, see e.g., [8]. Hence, it is enough to study
linear Un,d.
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since then Sd = 0 and n(ε, Sd) = 0 for all ε ∈ (0, 1) and d ≥ 1. Further-
more, if dim(S1(F1)) = 1 then S1 is a continuous linear operator of rank 1,
S(f) = 〈f, h〉F1

g for a nonzero h ∈ F1 and a nonzero g ∈ G1. Then

Sd(f) = 〈f, hd〉Fd
gd

with hd = hd and gd = gd. This means that setting L1(f) = 〈f, hd〉Fd
and

g1 = gd we get e(U1,d, Fd,γ) = 0 for all d, and n(ε, Sd) ≤ 1.
We define the set of such trivial strongly tractable operators as

triv(F1) = {S1 : dim(S1(F1)) ≤ 1 }.
Let

trac(F1, γ) = {S1 : {Sd} is tractable }
strong-trac(F1, γ) = {S1 : {Sd} is strongly tractable }

denote the sets of tractable and strongly tractable operators. Clearly,

triv(F1) ⊂ strong-trac(F1, γ) ⊂ trac(F1, γ) ∀ γ = {γj}.
The main purpose of this paper is to find the sets strong-trac(F1, γ) and
trac(F1, γ) and to check whether, or when, they differ from the set triv(F1).
As we shall see the answer will depend on the weight sequence γ.

As we shall see in the next section, the exponent of strong tractability de-
pends, in particular, on the sum-exponent of the weight sequence γ, see [14]. By
the sum-exponent of any nonnegative non-increasing sequence {aj}, we mean

pa = inf

{
β ≥ 0 :

∞∑

j=1

aβ
j ≤ ∞

}

with the convention that inf ∅ = ∞. In particular, for aj = j−k we have
pa = 1/k for k > 0, and pa = ∞ for k ≤ 0.

It is easy to check that pa is finite iff aj goes to zero polynomially fast in j−1.

Indeed, if
∑∞

j=1 aβ
j = M < ∞, then aβ

j ≤ M/j and aj = O(j−1/β) goes polyno-
mially to zero. The other implication is trivial.

3. Tractability Results

We are ready to prove the main result of this paper.

Theorem 3.1. (1) If pγ = ∞, then

trac(F1, γ) = strong-trac(F1, γ) = triv(F1).

(2) If pγ < ∞, then

trac(F1, γ) = strong-trac(F1, γ) = triv(F1) ∪ A(F1, γ),

where

A(F1, γ) = {S1 : dim(S1(H1)) = 1 and pλ < ∞},
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where pλ is the sum-exponent 2 of the ordered eigenvalues λi of the self-

adjoint operator S1

∣∣∣
∗
H2

S1

∣∣∣
H2

. Furthermore, if S1 ∈ A(F1, γ), then the

strong exponent is zero if λ2 = 0, and 2 max(pγ, pλ) if λ2 > 0.

Before we prove Theorem 3.1, we comment on its statements. The first
part assumes that the sum-exponent of the weights is infinity. This covers
the unweighted case γj = 1, for which there is no difference in treating the
components from the spaces H1 and H2. In this case the result is negative.
The only tractable problems are trivial and given by linear operators of rank
at most one. As already noticed, such problems can be solved exactly with at
most one evaluation, and therefore the strong exponent is zero.

The second case assumes that the sum-exponent of the weights is finite. This
means that γj goes to zero polynomially fast as j goes to infinity. Then trivial
problems are not only strongly tractable problems since strong tractability also
holds for problems from A(F1, γ). For such problems we must have that S1

reduced to H1 has rank one, and S1 reduced to H2 has singular values3 that
go to zero polynomially fast. This, of course, implies that S1 is a compact
operator. However, the converse is, in general, not true. That is, a compact S1

with dim(S1(H1)) = 1 does not necessarily have finite pλ.
We stress that although we have strong tractability, the strong exponent can

be very large. Indeed, if the singular values of S1

∣∣∣
H2

or if the weights γj go

slowly to zero, then at least one of the sum-exponents is large, which implies
a large strong exponent. For example, assume that λj = j−k1 , and γj = j−k2

with positive ki. Then p = 2 max(1/k1, 1/k2) so that if either k1 or k2 is small,
then p is large.

We stress that for both cases in Theorem 3.1, there is no difference between
strong tractability and tractability. That is, the minimal number of evaluations
needed to reduce the initial error by a factor of ε has either a bound indepen-
dent of d or more than polynomially dependent on d. This is a consequence
of two assumptions that we have made. The first assumption is that we use
arbitrary continuous linear functionals. However, if we restrict ourselves to only
function evaluations, then there is a difference between tractability and strong
tractability, as proven in [1, 2, 6, 7]. The second assumption is that the weights
are non-increasing and nested. That is, for the (d + 1)-dimensional case we
use the same weights as for the d-dimensional case plus γd+1. For more general
weights, as shown in [14], there is a difference between tractability and strong
tractability even if arbitrary continuous linear functionals are used.

We now turn to the proof of Theorem 3.1. It will consist of two parts. The
first part will be to prove that dim(S1(H1)) ≥ 2 implies intractability of {Sd}
independently of the weights γj. That is, if S1 has rank at least two in the
unweighted part of the space F1, then the behavior of S1 in H2, as well as

2If dim(H2) < ∞, then we extend the finite sequence λj of eigenvalues by setting λj = 0
for j > dim(H2). Then, obviously, pλ = 0.

3A singular value of a linear operator S is the square root of an eigenvalue of S∗S.
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the weights γj, are irrelevant, and we have intractability. This shows that the
unweighted part of the space F1 allows only at most rank one operators to get
tractability. The second part of the proof assumes that dim(S1(H1)) ≤ 1. This
case easily reduces to the problem studied in [14], and a slight modification of
the proof from [14] allows us to complete the proof of Theorem 3.1.

Lemma 3.1. If dim(S1(H1)) ≥ 2, then {Sd} is intractable.

Proof. For d = 1, consider the operator W1,γ = S∗1S1 : F1,γ → F1,γ. Let λi,γ

denote the ordered eigenvalues of W1,γ, λ1,γ ≥ λ2,γ ≥ · · · ≥ 0. The largest λ1,γ

is also equal to the square of the norm ‖S1‖F1,γ . For f = f1 + f2, fi ∈ Hi, we
have ‖f‖2

F1,γ
= ‖f1‖2

H1
+ γ−1‖f2‖2

H2
and

‖S1f‖G1
≤

∥∥∥∥S1

∣∣∣
H1

∥∥∥∥
H1

‖f1‖H1 + γ1/2

∥∥∥∥S1

∣∣∣
H2

∥∥∥∥
H2

γ−1/2‖f2‖H2

≤
(∥∥∥∥S1

∣∣∣
H1

∥∥∥∥
2

H1

+ γ

∥∥∥∥S1

∣∣∣
H2

∥∥∥∥
2

H2

)1/2

‖f‖F1,γ .

This proves that

λ1,γ ≤
(∥∥∥∥S1

∣∣∣
H1

∥∥∥∥
2

H1

+ γ

∥∥∥∥S1

∣∣∣
H2

∥∥∥∥
2

H2

)1/2

≤
(∥∥∥∥S1

∣∣∣
H1

∥∥∥∥
2

H1

+
∥∥∥∥S1

∣∣∣
H2

∥∥∥∥
2

H2

)1/2

since γ ∈ (0, 1].
We need a lower bound estimate of λ2,γ. Recall that

λ2,γ = inf
h∈F1,γ

sup
f∈F1,γ , 〈f,h〉F1,γ

=0

〈W1,γf, f〉F1,γ

〈f, f〉F1,γ

.

If we replace F1,γ in the supremum by H1 then we obtain a lower bound on λ2,γ.
For f ∈ H1, we have

〈W1,γf, f〉F1,γ
= ‖S1f‖2

G1
= 〈V f, f〉H1

,

where V = S1

∣∣∣
∗
H1

S1

∣∣∣
H1

: H1 → H1. Since 〈f, h〉F1,γ
= 〈f, h1〉H1

, the last infimum

over h ∈ F1,γ is the same as the infimum over h ∈ H1. Therefore we have

λ2,γ ≥ inf
h∈H1

sup
f∈H1, 〈f,h〉H1

=0

〈V f, f〉H1

〈f, f〉H1

= λ2(V ),

where λ2(V ) is the second largest eigenvalue of V . Since dim(V (H1)) =
dim(S1(H1)) is at least 2 by hypothesis, we conclude that λ2(V ) is positive.
Hence,

0 < λ2(V ) ≤ λ1(V ) =
∥∥∥∥S1

∣∣∣
H1

∥∥∥∥
2

H1

.
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We now turn to d ≥ 2. Let λi,d,γ denote the ordered eigenvalues of Wd,γ =
S∗dSd : Fd,γ → Fd,γ. From the tensor product construction, we have

{λi,d,γ } =

{
d∏

j=1

λij ,γj
: ij = 1, 2, . . .

}
.

The square of the norm of Sd is the largest eigenvalue λ1,d,γ, and so

‖Sd‖2
Fd,γ

= λ1,d,γ =
d∏

j=1

λ1,γj
≤

d∏

j=1

(∥∥∥∥S1

∣∣∣
H1

∥∥∥∥
2

H1

+
∥∥∥∥S1

∣∣∣
H2

∥∥∥∥
2

H2

)
.

It is known, see e.g., [8], that

n(ε, Sd) = min{n : λn+1,d,γ ≤ ε2λ1,d,γ }.
Take an arbitrary integer k, and fix ε as

ε =
1

2




λ2(V )
∥∥∥∥S1

∣∣∣
H1

∥∥∥∥
2

H1

+
∥∥∥∥S1

∣∣∣
H2

∥∥∥∥
2

H2




k/2

∈ (0, 1).

For d > k, consider the vectors ~i = [i1, i2, . . . , id] with ij ∈ {1, 2}. Take k

indices ij equal to 2 and d − k indices ij equal to 1. We have

(
d
k

)
vectors

such that the eigenvalues satisfy

d∏

j=1

λij ,γj
=

∏

j: ij=1

λ1,γj

∏

j: ij=2

λ2,γj
=

∏

j: ij=2

λ2,γj

λ1,γj

d∏

j=1

λ1,γj
.

Since
λ2,γj

λ1,γj

≥ λ2(V )

‖S1

∣∣∣
H1

‖2
H1

+ ‖S1

∣∣∣
H2

‖2
H2

,

we conclude that
d∏

j=1

λij ,γj
≥ 4 ε2 λ1,d,γ.

This proves that

n(ε, Sd) ≥
(

d
k

)
= Θ(dk) as d →∞.

Since k can be arbitrarily large, this means that {Sd} is intractable, as
claimed.

We now turn to

Proof of Theorem 3.1. We can assume that dim(S1(H1)) ≤ 1 from Lemma

3.1. Consider first the case dim(S1(H1)) = 0, i.e., S1

∣∣∣
H1

= 0 and ‖S1‖F1,γ =
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γ1/2‖S1‖H2 . Similarly, ‖Sd‖Fd,γ
=

(∏d
j=1 γ

1/2
j

)
‖Sd‖Hd

2
, where Hd

2 = H2⊗· · ·⊗H2

(d times). It is also easy to see that

e(Un,d, Fd,γ) =

(
d∏

j=1

γ
1/2
j

)
e(Un,d, H

d
2 )

for any optimal linear Un,d. Hence, the weights γj do not play any role and the
problem reduces to the space Hd

2 . It is proven in [14] that {Sd} is tractable
iff dim(S1(H2)) ≤ 1. Since S1(F1) = S1(H2), we have tractability iff S1 ∈
triv(F1).

Assume now that dim(S1(H1)) = 1. That is, S1 has the form

S1f = 〈f1, h1〉H1
g1 + Sf2

for fi ∈ Hi and nonzero h1 ∈ H1 and g1 ∈ G1.
Operators having a similar form were considered in [14]. The only difference

is that instead of the inner product 〈f, h1〉H1
a more specific linear functional

was considered. This is not important and we can modify Un,d considered in
[14] by taking for n = d = 1,

U1,1(f) = 〈f, h1〉H1
g1,

and for n ≥ 2,
Un,1(f) = U1,1(f) + Bn−1,1(f2),

where Bn−1,1 is a sequence of approximation of S1

∣∣∣
H2

in the space H2 defined

as in [14]. The rest of Theorem 3.1 follows from Theorem 1 in [14].

4. Examples

We illustrate Theorem 3.1 by two examples of Sobolev spaces of d-variate
functions defined over [0, 1]d. This will be done for the approximation problem
Sdf = f ∈ Gd = L2([0, 1]d).

Example 4.1. Let H1 = span(1, x, . . . , xr−1) be the r-dimensional space of
polynomials of degree at most r− 1 reduced to the interval [0, 1] with the inner
product

〈f, g〉H1
=

r−1∑

j=0

f (j)(0)g(j)(0).

Let H2 be the space of functions f defined over [0, 1] for which f (r−1) is absolutely
continuous, f (r) belongs to L2([0, 1]), and f (j)(0) = 0 for j = 0, 1, . . . , r−1. The
inner product in H2 is

〈f, g〉H2
=

1∫

0

f (r)(t)g(r)(t) dt.

Obviously, H1 ∩H2 = {0}, as required in our analysis. We thus have

F1,γ = { f : [0, 1] → R : f (r−1) abs. cont., f (r) ∈ L2([0, 1]) }
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with the inner product

〈f, g〉F1,γ
=

r−1∑

j=0

f (j)(0)g(j)(0) + γ−1

1∫

0

f (r)(t)g(r)(t) dt.

It is well known that the Hilbert space F1,γ has a reproducing kernel of the form

K1,γ(x, t) =
r−1∑

j=0

xj

j!

tj

j!
+ γ

1∫

0

(x− u)r−1
+

(r − 1)!

(t− u)r−1
+

(r − 1)!
dt,

where u+ = max(u, 0), see, e.g., [5].
For the approximation problem, we have dim(S1(H1)) = r. For r ≥ 2, Lemma

3.1 states that the approximation problem is intractable.

For r ≥ 1, it it known that the eigenvalues λj of the operator S1

∣∣∣
∗
H2

S1

∣∣∣
H2

are

proportional to j−2r. Hence, for r = 1, the approximation problem is strongly
tractable iff pγ < ∞, and the strong exponent is max(2pγ, 1).

Example 4.2. We consider spaces similar to those in Example 1, but with
a different split between the unweighted and weighted parts. We take H̄1 =
span(1), the space of constant functions, and

H̄2 = span(x, x2, . . . , xr−1)⊕H2,

with H2 as in Example 1. Then we have F̄1,γ with the kernel

K̄1,γ(x, t) = 1 + γ




r−1∑

j=1

xj

j!

tj

j!
+

1∫

0

(x− u)r−1
+

(r − 1)!

(t− u)r−1
+

(r − 1)!
dt


 .

This corresponds to the inner product

〈f, g〉F̄1,γ
= f(0)g(0) + γ−1




r−1∑

j=1

f (j)(0)g(j)(0) +

1∫

0

f (r)(t)g(r)(t) dt


 .

For this problem, we have dim(S1(H1)) = 1. It is known that the eigenvalues

λj of S1

∣∣∣
∗
H2

S1

∣∣∣
H2

are still of order j−2r. Hence, the approximation problem is

strongly tractable iff pγ < ∞, with the strong exponent max(2pγ, r
−1).
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